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T'nankue KBA3uNnoTeHUKAaNlbl U OMHCaHHe paccegHUs aaApOHOB
NpH BHICOKHX SHepruax

Hcxona u3 BHICOKOIHEPTreTHYECKOr O NpPeacTaBleHHS ANs pPelaTHBHCTCKOH
aMIAXTYAbl, IO 3KCNEepHMEeHTAalbHBIM OaHHLIM ANnd yNnpyroro pp-paccesrns
npn sneprugax 3,1 u 26,6 TeB B c.u.M, BOCCTaHOB/IEH KBA3MNOTeHUHaN., B oc-
HOBE paccMOTpPeHUd JeXKAT KBA3HNOTeHUHANLHOS ypaBHeHHEe B TEpPMHHAX 6bICT-
poOT M CBH3aHHOEe C HHM HeNmHeHHoe WHTerpo-nHddepeHUUalLHOE YpaBHeHME
¢asosoro tuna. Ha pucyHKax npapeaeHbl MHHMble YACTH KBA3HNOTeHlpala
ImV(r) u pensrupucTCKOro ¢ypbe-obpasa aMIIATYAb Im A(xgo.r). Onga
CpaBHeHH$ NaHLI KPHBbie, OTBeYaloWlMe CTAHAAPTHOH NapaMeTpH3alHH
PHMEHTA/BHLIX AaHHBIX B 06/1acTH AMGpPAKUMOHHOTO NHKA,
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The Smooth Quasipotentials and the Scattering
of High Energy Hadrons

Proceeding from the high energy representation for
relativistic amplitude, the quasipotential is reconstruct
using the experimental data for elastic PP-scattering at
energy values 3.1 GeV and 26.6 GeV in c.m.s. The conside-
ration is based on the QPE in terms of rapidities and
connected with it nonlinear integral-differential phase
type equation.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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The experimental data on high energy had -
ron scattering are well described using the
local smooth quasipotential/bﬁ/.Thg quasi-
potential equations (QPE)**/ , making the
basis of this description, comprise the simp-
licity and physical transparency of quantum
mechanics with consistent quantum-field con-
sideration of the properties of relativistic
particle interaction. Let us emphasize that
an analogy of QPE with Schrédinger.and .
Lippman- Schwinger equations makes it possible
phenomenologically to take into account the
interaction, in the framework of these equa-
tions, without using complex galcu}atlon
procedure, necessary in a strict field -
theoretical approach. .

Proceeding from the analysis of experimen-
tal data and simple physical assumptions
about the nature of high energy hadron inter-
action, the reconstruction of a smooth poten-
tial is of great interest (compare with re-
view’t).

The aim of this paper is to reconstruct
an approximate form of the quasipotentlgl
for the interaction of two protons at high
energies. Our consideration is based on the
QPE in terms of rapidities’®:? and, connect-
ed with it, nonlinear integral-dlffgreptlal
phase type equation for the relativistic



amplitude of scattering’® .Note, that the
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The relativistic plane wave ¢ has the q d
form: . .
.. —i—ir Here wq(rjr ) is the wave function corres-
f(quJLﬁgzthq-nMnsth), (1.2) ponding to the potential (1.4). From.(l.S)
the boundary condition for the equation
where 6=Hshxq 1s the momentum of a particle (1.1) follows:
in c.m.s.,f=ri, is the relativistic radius- . .
vector. The case of equal masses is consider- Alx .np30.0)=0. (1.6)
ed. (1.2) o ] hol
The quantities E ™ (v, .r.ngn. ) were defined The amplitude of the scattering on the whole
in ref. 8. Fere we only give the relations potential V(") is obtained in the limit
for them which one will need further: I > o : (1.7)

AP, Q)=A(xy Ty i . ).



For spherically symmetric potential, taking
into account (1.3a), we rewrite equation
(1.1) in the form:
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We also take into account the fact, that the

amplitude of the scattering on spherically

symmetrig potential depends only on the angle

between n, and nq, (the scattering angle).
The equations (1.1) and (1.8) are exact.

Fowever, since they are cubersome and due

to the presence of the quantity E in inte-

grand, the analysis of these exact equations

1s complicated. Let us, therefore, search

for an approximate equation corresponding to
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high energies (comp./w ). Using the asympto-

tic form for the quantity E (1.3b), and inte-
grating in quadratic in A term, we pass to
the expression:

V(I.E o) 2ir)(q NN 55
___4__3 fA(xgTi—Dn)A(xq.Fin Dydn . (1.10)
m

It is easy to verify that at high energies
this term is small in comparison with the
rest terms of equation.

Indeed, in this regime the forward scatter-
ing is preferable, on the contrary the back-
ward scattering may be neglected, so as one
of the amplitudes in (1.10) is always small.
Besides, for the smooth potential, the con-
tribution of this term is additionally
suppressed by the oscillating factor e2irXxq
when integrating over r . The linear in A
terms of (1.8) are also simplified, since the
factors e''XPn  /shy and e'™Xan /shy . have
the pronounced maxima ath}|p and i}|d, res-
rectively. Let us, therefore, take the scatter-
ing function out the sign of integral assum-
ing A=A(xq.f:8,0 ). As a result, we come
to the equation:
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which is easily solved. Neglecting the oscil-
Jating quantity e?!'Xq , in the limit
> , we have:
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is the approximate wave function equal to the
plane wave Eq.t) multiplied by the slowly
varylng spherically symmetric factor

exp(— __h?_ f V(S Er ).

The expressions (1.12a) and (1.12c) are
the analogues of the (nonrelativistic) eiko-
nal representations:

o0

A(D.4)=-iq [ db.b. Jo(ma_p] ) x
0
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2. The Approximate Reconstruction
of Quasipotential Proceeding from
Experimental Data

The expressions (1.12b,c) allow one to
consider the approximate amplitude A®@®.3)
as relativistic Fourier transformation (Eorn
approximation) for a modified spherically sym-
metric potential:

i

— [dr' v’
fdr" v Ey)

~ Sth r

A (Xq,r)=V(r,Eq)e (2 .1)

where

~ 9 = L, sinrx q

Alx I)=-=[APG-——L0 shy dy . (2.2)
! 7 0 r pPa “pq

We consider (2.1) as an equation for V
One can easily see that it reduces to nonli-
near differential Riccati- type equation, the
solution of which has the form:

A(xq T
VE.Eg )= : w(Xq~) : (2.3)

1— %{dr'A(xq,r')

Proceeding from the relation (2.3) let us
reconstruct the quasipotential using expe-
rimental data for elastic pp-scattering. he
use the next relation between the scattering
amplitude and the differential cross secti-
dg
dtpq

AGD-1ImAGDHA-1a (x ). | (2.4)

on




2
sh Xq

Im A(p,q) =y -3¢

g 7 (1+a®(x, ) (2.5)

Here, the ratio « of the real part of the
amplitude to its imaginary part is assumed to
be weakly dependent on the scattering angle.

The Fourier transformation (2.2) of the
A(.4) , given with the errors is known to
be incorrect problem. Therefore, we used
experimental data in the form of interpolat-
ing functions. In the region of (first)

/
diffractive peak the fitting from the papersl/

was used; in the region of large momentum
transfers this solution was sewn with the

function describing the experimental data on
12,13/
dg ’

prame with the averaged relative

error less than 8% *. The values of total
Cross sections and a(x,) were taken from
refs./1011/ The relation (2.3) expressing the
quasipotential through the scattering ampli-
tude, is approximate, first of all, due to
the lack of knowledge of amplitude A (F.14)

in the nonphysical range (cosfpg>1 OT xpgxy ) -
Really, the experimental data are available
for much smaller interval of values X,

< max<2 .
Xpq S X Xq (2.6)

*The numerical analysis shows the slight
influence on the behaviour of the imaginary
part of potential of variation with the
errors of the fitting parameters.
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These data are sufficient for reconstructing
the quasipotential in the range:

P20 =1/x ™. (2.7)

We perform our calculations at two energy
values:

/127

E, = 3.1 GeV (x, = 1.79) (Fig.1)
E, =26.6 Gev ' (xq = 3.97) (Fig.2)
In both cases x ™* = 2,25, that gives

T nin = 0.1 fm. Figures 1 and 2 show the

imaginary parts of the quasipotential ImV(r)
(the curves (1)) and of the relativistic
Fourier transform of the amplitude ImX(X ,T)
(the curves (2)). ¢
They also show the curves corresponding
to the standard parametrization of the expe-

rimental data in the region of diffractive
peak:

N 2B(s)t d d
ImA (p, Q)= =(_1nd4g¢g
®.9)=g(s)e B=(gringd _,

KK(XQJ)= -8 K (2B) (the curves (3))

£K i @2B) (2.8)

V0 .E )= - i
1- L% fak _.en)
th r 1r
q
(the curves (4)).
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In the nonrelativistic 1limit A (x
turns into the Gauss function:

~ - -2B
A JP) - —_— e
K(Xq ) gV4B

—r2/4B
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7[ Ferms ]

r)

(2.9)
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