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INTRODUCTION 
The scalar zero-mass quantum field in 

two space-time dimensions plays an essential 
role in the solution of the Thirring model. 
As is known .such a field does not exist 
in the conventional sense. Non-trivial ope
rators for such a field can be intoduced 
only in an indefinite metric Hilbert space. 
However, as is seen from papers/2-4/ this is 
not the only difference between the two-
dimensional and the four-dimensional scalar 
fields. The existence of a non-zero charge, 
whose sense neighbours that of the topologi
cal charge, in two dimensions is the most 
essential difference from the case of four 
dimensions. The spontaneous breakdown of 
gauge invariance in the Thirring model is 
a corollary of the existence of such a 
charge. For the first time this breakdown 
was observed in papers/2-*/, but these artic
les contain a mistake which did not permit 
their author to obtain one more charge 
(i.e., roughly speaking the vacuum is charged 
by two charges, rather than one as it is 
in papers/2-*/ ). In order to understand the 
situation we first define the quantum scalar 
field in two dimensions. Such a field sa
tisfies the two-dimensional wave equation 
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2 2 
пф = 0 (• = 5 о -<?i ) (1.1) 

and the commutation relation 
[0(x), qi(y)l = iD(x-y), (-1>2) 

where D(x) i s a commutation funct ion 

I 2 0 2 - ipx 
D(x) = - i - fdp f ( p )S(p )e 

i [ f ? ( x 1

+ x ° ) - e ( x 1 - x ° ) 
2 

( 1 . 3 ) 

The special form of the commutator function 
implies the following statement (see remark 
at the end of the paper) . 

For fields, satisfying (1.2), the quantity 
« 1 0 1 

Q = fdx д Ф(х ,х ) (1.4) 
—во 

cannot be equal to zero. 
Indeed, if we differentiate first eq. 

(1.2) with respect to x° and then integrate 
with respect to x 1 in the region from(-^.«) 
we obtain 

[Q,<My)l=-i. (1.5) 
\\e now introduce the f i e l d (we c a l l i t con
j u g a t e , for conv in i ence ) : 

0( X ) = fdz 1 d o ^(x° ,z 1 ) (1.6) 

If this integral exists it can easily be 
checked that the conjugate field satisfies 
eq. (1.1) and the commutation relation (1.2), 
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and therefore the in tegra l 
Q = / d x 1 д9ф(*°.хЪ ( 1 - 7 ) 

—oo 

should be non-zero too. It is the quantity 
(1.7) that is missed in papers /2-3Л 

That is why in the present paper we shall 
try to find (at -first classical) such solu
tions of equation (1.1),for which there 
exist finite non-zero charges (1.4) and 
(1.7). We insist that these are the solu
tions, which should be quantized. l\e do not 
impose the condition for finiteness of the 
integral (1.6) because it appears to confine 
unnecessary the class of possible solutions 
of (1.1). We define the conjugate field by 
the following equation: 

<£(x) = f dz^o^Cx0, z1) +R(x°), (1-8) 
where R(x°) is a subtraction, necessary for 
the regularization of the integral in the 
R.h.S. of equations (1.8). fte would suppose 
that R(x°) is such that between the fields 
<£(*) andqfT(x) there takes place the differen
tial relation 

дц < Д ( Х ) +V*''^(x) = 0- (1.9) 
where f 0 1 =-f10 =l , < 0 o = f n = 0 ( t n e metric 
tensor in the two-dimensional space-time is 
goo =-gn =1 » goi = gio =0). In^a quantum 
theory the new definition of <£(x) (1.8) 
implies a change of the commutation relation 
between^(x) and </>(x).That is why we now es
tablish, their form. 

If both sides of eq. (1.2) are differen
tiated with respect to xO and then integrated 
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over x 1 from -«. to +<» , having in mind (1.8), 
we obtain 

[чЬ(хМ(У)1-[В(х°).«*(У)]« 
= i f dz1,) D(x°-y°, z 1 ). 

The integral in the R.H.S. of the upper equa
tion is convergent. If we introduce the func
tion 
5(X) = _-lf(l2p((p)S(pl)e-il"L-i[0(XO

+Xl)-0(XO-X1) | (1.11) 
2ni 2 

/2 3/ (following papers ' ) , then 
f <10 D(x°,z 1jdz 1=D(x)- T . (1.12) 

— г а д ы 

It is easy to show that the commutator 
[R(x°), б (y) I is a constant. Indeed, having 
in mind translational invariance, we can 
write 

U(x°). й(у)1 = d(x°-y°). (1.13) 

(We certainly use the assumption that the 
commutators of two free fields are С-num
bers) . Using eq. (1.10) it is easy to obtain 
that 

[^(x0.x1),^(y)]|xl.,_oo =[R(x°).<My)l • (1-14) 

and, therefore, instead of (1.13) we can 
write 

d(x°-yO)-[0(xo.x1).*(y)l|,U-, • (1.15) 

Now, using relations (1.9) and (1.3), we 
can write down the following chain of equali-
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ties: 
5od(x0-ya)=ta0^(x0.-~).^(y)] = 

= aj[0(x°,x1).0(y)l|xl^_eo =i<?tD(x°-y°.x1-y1)|xU-sP-

Therefore 
[R(x°)r<£(y) =d = const (1.16) 

which proves our statement. Then it is im
plicit from (1.10) and (1.12) that 

[ф(*).ф(у)] =iD(x-y)-i-+d. (1.17) 

It is obvious, that the constant d is arbit
rary and depends on the choice of arbitra
riness of the regularization of the integral 
in the R.H. S. of eq. (1.8). 

Now we shall show that the field <£(x) 
defined by (1.8) satisfies the commutation 
relation (1.2). Starting from eq. (1.17) and 
operating analogously to the way eq. (1.10) 
was obtained, we can derive 

U(x) .<My)]-[<Mx),R(y0)] =iD(x-y). (1.18) 

where we have made use of the relation 
fdzid0D(xP,zi) = D(x). (1.19) 

— oo 

Now we s h a l l show t h a t 

[<Mx).R(y°)} = 0. (1.20) 

Indeed, s ince we have a l ready proved eq . 
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( 1 . 1 6 ) , i t i s i m p l i c i t t h a t 

[tf(x),R(y°)]-[R(x°),R(y°)l = 0 . (1 .21) 

If we now use t h e e q u a l i t y 

<? 0 R( x ° )=di^(x 0 , s 1 ) | x U _ o o (1 .22) 

(which is the necessary condition for R(x°) 
in order that eq. (1.9) holds), it is easy 
to obtain that 

[R(x°), R(y0)] =0. 
Then eqs. (1.21) and (1.19) imply 

[^(x) , ф(у)} =iD(x-y) , (1.25) 

i.e., our statement is proved. 

CLASSICAL SOLUTION 
In this section we construct the classical 

solutions of eq. (1.1) with allowing for the 
existence of the non-zero charges (1.4) and 
(1.7). It is obvious from relations (1.9) 
that solutions, which vanish on the space
like infinity, are excluded. Indeed, if, for 
instance, the field c/>(x) vanishes at x -*±x 

then the quantity (1.7) should be equal to 
zero. 

As it is known, the general solution of 
eq. (1.1) can be written in the form 

400 .i__ f_iElA +(p 1>e- | , e
 + 

V2* 2IP1! (2.1) 
1 Л l 

+ _I__f_£P. _ A (p^e'P* ^R, 
V2ff 2 l p11 



where p°= |p*| .while A+(p)=A~(p ) are arbitrary 
functions [the line denotes complex conjuga
tion) and R is a subtraction constant (the 
necessity of the latter will be seen in 
what follows). As is well known the decompo
sition into positive- and negative-frequen
cy parts of the field Ф(x) can be produced 
using the following formulae: 

ф-(к) =-i fdz1D(x-z)^0
z <Mz), (2.2) 

where A 5oB = Й0А.В-АЗ0З (see Appendix) 
and D* (x-z)are the frequency parts of the 
commutation functions D(x-z).The decomposi
tion onto D"(x-z),however, needs a regulari-
zation of integrals, and therefore, 

D ± ( X ) = ± i f f p T 1 [ e ; i P X " , ? ( K " l p l | ) ] p 0 = ' p 1 ' - ^.3) 
Now we insert (2.1) into (2.2) (for defini-
teness we choose sign + in formula (2.2)). 
After simple calculations, we obtain 

* + (x) =4— r _ i P 1

A

+ ( p 1 ) e - i p x + 
\/2тг 21Р1! 

( 2 . 4 ) 
1 

+ _ J _ f.12- 0(K_|p 1|)[A~(O)-A+(O)]+- 1-R. 
4V27 ' lP4 2 

It is evident from this result, that if 
A"(0) - A+(0)^=0* the integrals in formulae 

*The case A- (0)~A+ (0)= 0 is excluded. In
deed in the latter R = 0, the integrals (2.1) 
are convergent, and it is easy to show that 
the quantity Q (see (1.4)) equals zero. 
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(2.1 J are logarithmically divergent, and 
therefore, a regularization is needed. In 
this case 

l 
R = -4=.f-=J?- е(к-!р1|)[А+(0) + А~(0):].(2.5) 

2y/2n IP1! 
and instead of (2.4) we can write 
<Г0О = ~ r f^I7-[At(P1)eTlpx -A ±(0)0(K-|P 1|1. 

V % 2IP1! ( 2 > 6 ) 

Formula (2.6) can be used to ob ta in the 
asymptotic behaviour of <A*(x) (and the re fo re 
the f i e l d ф (x) a t the space - l ike i n f i n i t y . 
For t h i s purpose in the f i r s t term of the 
R.H.S. of eq. (2.6) we i n s e r t 

A ±(P 1) - A1 ( p V A 1 (0) 4 A±(0) (2.7) 

and after rearrangement, we obtain 
ф±{%) , _ L . f-ЙВ. t A ± ( P

1 ) - A ± ( 0 ) l e + i p x + 
2\/2тг IP1 | 

+ sl in A (O)D1 (x). 
(2.3) 

It is easy to show that the integral in the 
R.H.S. of eq. (2.8) is finite at infinity, 
and therefore, the leading asymptotic beha
viour of the field ф± (x) is given by the 
second term in the R.H.S. of these equations: 

+ A* (0) a 
*±(*)1ж»-.±» Pn(121xi|2

 ( 2.9) 
2V2ff 

( it - is a renormalization constant associa
ted with the constant к from eq. (2.3): 
„ =е-Г'0) к ). 

It is obvious that in order to obtain eq. 
(2.4) we have supposed that the quantities 
A* (0) exist, thus choosing such solutions 
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of eq. (1.1) which have the weakest growth 
at the space-like infinity, ive note that 
such a growth still allows the existence of 
formula (2.2), 

Having in mind eq. (2.6) it is easy to 
obtain the form of t-he corresponding conjugate 
field. For this purpose we use the differen
tial relation (1.9) and obtain 

^ ( x j ^ i p f J u l A ^ p l j e ^ +R±. (2.10) 
V2ff~ Э р 1 

If A~(0)is finite (as we have assumed),then 
the integral (2.7) is convergent at pi^o, 
if A* (p*) is a smooth function at this 
point. If however A" (p1) jumps <it p 1 = о 
a regularization is needed and R" is the re-
gularization constant. 

It can be shown, that in the case when 
A" (p1) is a smooth function at р !=0 
then the integral (1.7) equals zero. There
fore, we set 

A ±(P 1) = a ±( P
1) + f(p 1)b ±(p 1) (2.11) 

and shall suppose 
A^Q) *.*№>. ( 2 Л 2 ) 

Here f(P 1)=l if P!>0 ((p1) = -1 if p*< 0. At times, 
it is convenient to assume that б(0)=0. 
Moreover we shall assume that the functions 
a-fp1) and b ±(p 1) are independent and 
smooth at р* = 0. Inserting (2.11) in (2.10) 
we see that R ± should have the following 
form : 

i^JLaj-ile^pi,) С 2 Л З ) 
2V27T | p J | 
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(following from the equality P e(P )=|P I )• 
Thus, we finally obtain the following 

solutions of eq. (1.1): 

(2.14) 2V2* ' IP1! 
+ 

+ p jLiube^P* 1 
P 1 

and analogously for the conjugate f i e l d 

+ 

2V&r IP 1 ] P ( 2 . 1 5 ) 

Now it is easy to calculate the charges (1.4) 
and (1.7). Doing the proper substitutions 
we obtain after simple calculations 

Q = i ,/3.-[ a~(0)-a+(0)] . 
2__ (2.16) 

Q =-i V ~ [b~(0)-b+ (0)] . 

QUANTIZATION 
In this section we introduce the second 

quantization of the fields (2.14) and (2.15). 
For this purpose it is convenient to use for
mula (2.6). From the latter it is easy 
to write down the inverse Fourier transform 
in the following form: 

A* (p1) = ± i v / T ^ o 0 ± ( x ) e ± i p x dx 1
 ( З Л ) 
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and in view of eq. (1.2) we obtain the fol
lowing commutator for A+(p1) and A^q 1) 

[А +(рУ Alq 1) 1 =2 1 p1! S (Pi-q1 ). ( З ш 2) 

Eut, it is easy to see that if we now calcu
late once more the commutator (1.2), we 
obtain under the integral the quantity 

[ A + ( P Y A~(qSj ( 3^ 2 ) 

~ \P]\~4T\ 
It is obvious that we cannot use eq. (3.2) 
in order to determine it, since the equation 

IP1! Iq1! f (p1.q1)=o ' (3.3) 

has n o n t r i v i a l s o l u t i o n s . Indeed, suppose 
t h a t Ц р 1 , q 1 ) i s a s o l u t i o n of ( 3 . 3 ) . Then in 
g e n e r a l , we have 

[A +(p 1),A"(q 1) 2 B , l 14 , , 1 • l. 
Г~1 - 1 — - = ~ - 5 ( P -q ) + l (Р .4 )• (3.4) 

! p | | q | IP I 
So, we see that we need not formula (3.2) 

but formula of the type (3.4), and its de
termination is equivalent to the determina
tion of the function f (p1,q1)- We first of all 
notice that an arbitrary solution of equation 
(3.3) has the form 

f^.q 1) =h8(p1)S(q1)+g1(q1)0(p1)+g^p1)5(q1). (3,5) 

T h e r e f o r e , from (3 .4 ) we can u n i q u e l y d e t e r 
mine t h e commutator of A + (p 1 ) and A~ ( 0) (or A+(0) 
and A~(q * ) ) . Namely, 

1 [ A + ( p 1 ) > A " ( 0 ) ] = ZSip1). ( 3 . 6 ) 
IP 1 
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In order to obtain the function f(P .4 )from 
(3.5) we first calculate the integral 

^ + (х)е'Р* dx 1. 
Inserting <£+(x) from (2.6), it is easy to 
obtain 

, + d , + i p x , 1 [ф (x)e dx = 
— • V 1 ( 3 ' ? ) 

ч 1 

or 
A_<Li_ = V - 2 - U + ( * ) e i p x dx' + 

| P ' +* . , dq 1 (3.8) 
1Q1! 

Using formulae (3.1) we can also calculate 
the commutator of A'(p') and V -£- f^+(x) eJP* dx 1 

As a result we have 

[ V - l V ( * ) e i p x dx ,A-(q1)1 = 25(p1-q1). (3.9) 
n 

Now we are ready to find the explicit form 
of (3.2 ) . For that purpose we insert 
— y - * from eq. (3.8). Using relations 

and (3.9) we finally obtain 

.+, К .-, l L A_(2b AJl_U_ = _l S {pL qi ) + 2 5 ( pi ) M q l ) f.ik_ 1
e ( K-, ki, ). 

IP1! И 1 ! IQ1! |kM ( З Л 0 ) 

Eq. (3.8) gives also the possibility to cal
culate the commutator of A+(0) and A~(0). in
deed the following equality is readily ve-
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rified: • 
[Л+CpV.A~(q)1 

|р'1 " " , (з.и) 
= 25(р1) +[A+(O),A~(O)]S(p1)f~0('< -Ik1 I). 

Ik1! 
Comparing the latter with formula (3.6), we 
see that 

[A+(0), A" (0)1 = 0. (3.12) 

In order to accomplish the quantization of 
the fields A-(p1) w e must add also that the 
equal frequency fields are commuting.For the 
analogous quantization of the fields rJ(x) we 
use the following formal procedure. If we 
write the field (2.15) in the form 

<£±(x) = __l_rJPl[B±(pl)eTiP't-3±(0)(?(K-|p1|)l,(3.13) 
2JS, IP1' then comparing (3.13), (2.11) and (2.12) we 

see that 

B±(p1)=,b±(pl) +f(P1)a±(pi)=<(pi)A±(p1). (3.14) 

Since f(P ) enters the integrals by means of 
principal value (i.e., with p*= 0 point drop
ped) we must formally set 

f (P1)5(p1) = 0. (3.15) 

On the other hand, as the generalized func
tion « 2(p 1) does not differ from unity, there
fore the expression f(p)e(q)8(p) 8(q) must 
be formally defined as 

((P) 8 (P) € (q) 8 (q) - <r (p) f (q) 8 (p) 8 (p-q)=12(p) 8(p) 8 (q) « 
= 8(p)S(q). (3.16) 
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Now starting from eq. (3.10) and multiplying 
it byeCP 1) and e(q J ) . with taking into account 
relations (3.14), (3.15) and (3.16), we can 
obtain the following commutators 
__L_^[B+(pl).B~(q1)]=--i-s(Pl-4l)+2S(Pl)S(ql)rfl(«-|k|)—-. 
IP 1! la1! И 1 ! Ikl 

(3.17) 

-!-[A+(P1)1B"(q1)l = - T- r[3V),A"(q 1) ] = P- 15( P
l-q У Ip'llq'l HlQ 1! P 1 

From the 'latter we can easily obtain the 
rest of the commutators 

_1__[A+ (0), B~ (q1) ] = _L-[ A+(pJ). в" (0)1 = 0 
И 1 ! IP1! 
- — [3V),B"(0)] =25 (p1)-1| 

(3.18) 

As in the previous case the equal frequency 
fields are commuting, so are the operators 
A^O) and B^O) which in view of their de
finitions (2.12) and (3.14) (B* (0) = b*^)) 
are independent. Relations; (3.17) and (3.18) 
obtained above, show that in the R.H.S. of 
eq. (1.17) one must take d=i/2, and there
fore, instead of that equation we must have 

[^(x),0(y)]. iD(x-y). (3,19) 
Using the relations (2.11) and (3.14) we can 
easily write down all the commutation rela
tions in terms of the operators a* (p 1) and 
Ь ' С Р 1 ) . In doing this we must consider that 
all operators a ±(p 1) commute with all ope-
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rators b-(px). Since there are no principal 
difficulties in such a procedure, we ommit 
it here. 

ONE-PARTICLE STATES 
Consider the "one-particle" states asso

ciated with the fields ф(к) and <£(x). The va
cuum is defined as the state for which 

c/,+ (x)| 0> =0+(x)|O> = O, <0|0>=1. (4.1) 

Having in mind (3.1) and analogous formulae 
for the creation and annihilation operators 
3 _ (q1) associated with the field $ (y) 
eq. (4.1) means that 

A+CP^IO > = 3+(q1)|0> =0. (4.2) 

Operating with test functions that temper the 
field operators, one must be very carefull 
in view of the infrared divergency (see 
ref. ). Suppose F belongs to the space 
of complex rapidly decreasing infinitely 
differentiable functions of two arguments 
S(R 2). Consider its restriction on the light-
cone (the space of such functions we denote 
by S (C+) ) : 

f(pJ) a p (IP M . P 1 ) - C4-3) 

In order that the single particle state has 
a finite norm, a regularization is needed 

|f>= f-il£[AV)'(P1)-A~ai)r(0)e(K-|P1 Dl|0> • (4.4) 
IP 1! Indeed 
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•<f|f> =2f--£-[|f(P1)|2-|f(O)|20(K-|p1!] (4.5-1 

IP1! • and obviously |<f|f>|<». It is necessary to 
note that the second term in the R.H.S. of 
the commutator (3.10) garantees the conver-
gency of the integral (4.5). 

If f(0) = 0 (the subspace of S(C+) for 
which that takes place, we denote by S0(C+)) 
then 

<f|f> >0. (4.6) 
The c o m p l e t i o n by t h e norm 

||f | | 2 =<f|f> . 2 f ^ | f С Р г > I s (4-7) 
IP 1! 

of t h e p r e - H i l b e r t space S 0 ( C + ) i s in f a c t 
2 j . l 

t h e H i l b e r t space L (C+,-2£—) of q u a d r a t i c a l l y 
IP11 

i n t e g r a b l e w i th r e s p e c t t o t h e i n v a r i a n t 
measure d p W l P 1 ! f u n c t i o n s H P 1 ) - toe n o t e 
t h a t t h e c o n d i t i o n f(0) = 0 i s e q u i v a l e n t t o 
t h e c o n d i t i o n A +(0)|f>=0 s i n c e ( s e e r e f . ' 8 ' ) 

A+(0)|f>=2fdp1S(p1) fCp1) 10> = 2f(0)|0>. (4 .8 ) 

It is evident that for functions from S0(C + ) 
the second term in the R.H.S. of (3.10) is 
zero and the commutators obtain their usual 
form. 

LORENTZ TRANSFORMATION PROPERTIES 
Here we study the transformation proper

ties of the fields 0(x) and <?(x) under trans
formations belonging to the Lorentz group 
0(1,1). which in the two dimensional space 
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time, where no space rotations exist, are 
just hyperbolic rotations in the (x°,x') 
plane: 

(ch a sh a \ 
Sh a Ch a / 

(5Л) 

Note that 
(Л ах)°±(,\ ах) 1 = е ± а (Xo + xl) (5.2) 

and for the case p°=|p1| 

e«pi, pi>0 
(\ap)i =j . (5-3) 

e~°P , p J<0 

Ue first of all note, that in view of the 
commutators (3.17) and (3.18) we have 

[<£*«, 0+(y)] =D±(x-y), (5.4) 

5 ±(x)= T-L r_!RV i p x
 = T J - f n - x ° - x l + i 0 . (5.5) 

in pi in xO+xl +i0 

From the latter formulae it is easy to obtain 
the following identity: 

D*( Л х)=5±(х)^_а_ . (5.6) 
a Zn 

Taking into account eq. (5.4), this implies 
that the fields $±(x) and Ф±(х) are not sca
lers. Moreover, the Lorentz transformations 
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of these fields cannot be homogeneous. There
fore, eq. (2.2) defines the frequency parts 
of the field operators only up to certain 
additive constant operators. The source of 
this ambiguity is the principal value term 
in the R.H. S. of eqs. (2.11) and (2.12). In
deed, if we introduce the notation 

*« W = — f~iEi.[a±(pl)e + iPx_a
±(O)0(K-|P1!)]. 

R a VST IP1! 

ф±(х) =- -J=.f-l£i[b±(p1)e +_ipx-b±(0)6(K-!p1|)l . 
R 2V2* IP1! 

< A± ( x ) =-l =P f-iP 1b±(pl)e + _ iP x , 
P 2V2* pl (5.7) 

ф± ( x ) = _ _1__P f_Jj»ia±(p1)e+ips . 
p ZyjTn P 1 

then it is easy to confirm that, for instance 
the integrals 

rdz1D±(x-z)70
Z^±

p (z), fdzhr (x-z)7o
Z0+

p( * ) 
as well as the analogous integrals for<£~(x) 
are not determined. This arbitrariness can be 
fixed by means of the following identities: 

-ifdz1 D±(x-z)70
zc^*(z) = 

= -i/dz1D~ (x-z)T z^ ±(z)+A ± (~)-A± (-~) 
0 R 
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•г + -ifdzlD-(x-z) д0ф'(г) = 
(5.8) 

= -i /,dz1D~(x-z)S*o
z0^(z)+,A_(«) -A - (-«.), 

where 
A" (z) = iD "(x-z) [ф ~ (z) ± V'TTT D~ (z)b "(0) ] 

R 
(see Appendix). Now instead of eq. (2.2) we 
can write analogous but unambiguous equali
ties 

ф \x) =-i fdz lD±(\-z)~dz 0±(z)-i fdz 1D ±(x-z)^ > z ф* (z) + 
O R O R 

(5.9) 
* A -(«)-A -(-«) 

as well as 

ф ±(x) =-i fdzV (x-z)7p ̂ (z)-i fdz *D ± (x-z) 5 0 ф I (z) + 

+ + (5.10) + A (~ ) - A (-« ) 

Having in mind the above relations it is 
easy to obtain the transformation laws for 
the field ф * (x) and ф ±(х) with respect to 
the Lorentz group. 

We note first that ф~ (х) and ф ~ (x) are 
scalars, i.e., R R 

U * 1 ^ * (A - 1x)U = ф ± (x) , a R a a R 
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where U a is the representation of the two-
dimensional Lorentz group in the definition 
space of the field operators. Then using 
eq. (5^6), we obtain the following transfor
mation law for the field under consideration 

-1 , ± / * -1 ч „ , ± , ч а + U a* ф- ( Л a x ) TIa = ф " (x) - -JL~b (0) 
2yJ2n 

U" a^ * (Л;1 x) U a = ф ± (x) + _ S _ a* (0) 

APPENDIX 
Here we shall prove the identity (5.8) 

and explain its sense. We first introduce 
the following notation: 

L~pM =0*(x) ± x/27D ±(x)b ±(0). (A.l) 
L p W = Ф p W +>/&? D ±(x)a ± (0) , (A .2) 

L R ( x ) = *R W + ^^~ &* (x) »*«>). (A. 3) 

L R(x) = <дк- (x)+V2^D (x) b (0) . (Л.4) 
± -• ± ± - ± 

where </>p(x) , фр (х) , 0 R (x) and Фк (x) are 
defined by eq. (5.7). It is easy to prove, 
that arbitrary L* from (A.l) (A.4) is va
nishing at x 1 - ±oc . As an example we prove 
this statement for L± (x). Inserting л * (x) 
and D* (x) in the R. H°. S. of (A.l) p 

L* (x)= -A—P / _«P.1[b±(pi)-b±(0)]e +_iPx.(A.5) 
2V~8ir p l 
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From the latter there immediately follows 
our statement, if we have in mind that 

(A. 6) 

The q u a n t i t i e s L introduced by (A.1)-(A.4) 
s a t i s f y the following d i f f e r e n t i a l equa t ions 

д L * (x) + ( v д L z (*) = 0 , 
" " " / (A.7) 

Now we can pass со the proof of identity 
(5.8). Consider the integral 

J =-i |'dz D^x-zJ^LT (z). (A.8) 

Writing its explicit form by using the first 
of eq. (A.7) and the analogous identity 

± - + 
,1 D (x) + f

,y i) D~ (x) = 0 (A. 9) 
II Ц I' 

we can br ing the i n t e g r a l (A.8) in the form 

J = - i fd z ^ D *(x-z) L1,, (z) + i fdz D (x-z) д \ L \ (z). 
Integrating by part and subsequently ma

king use once more of the identities (A.7) 
and (A.9) we obtain 

-i fdziD±(x-z)V^ iTrt) = 
P (АЛО) 

= -i fdz1D±(x-z)'do'Lt
R(z)+A±(»)-A± (-~ ) . 
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where we have introduced the notation. 
A ±(z 1) = iD (x-zJLTfz). (A. 11) 

R 
Now in order to obtain finajly identity 

(5.8) we must insert L ± (z) and L ^ (z) from (A.l) 
and (A.4), respectively in (АЛО), having in 
mind the obvious equality 

-i fdz *D ±(X-Z) d*n
z D* (Z) = 
0 (A.12) 

= -i fdz1D±(x-z)?0
zD±(z) = D±(x). 

It follows from (A.11) that the constants 
A±(«.) and A ± (-<*) are determined by the 
asymptotic behaviour of L],(z) and are nonzero 
if and only if the following asymptotic con
dition takes place: 

L* <«>!,, ~—T- ( А Л З ) 

R м - ~ &i i z x | _ + If we now refer to the definition of L"E (equality (A.4,)) remembering that the quan
tities т V^JT'D (x) b- (0) are the leading terms 
in the asymptotic behaviour of Ф R (X ) it 
is implicite that the constants A(°°) and A(->.) 
are determined by the next terms in the 
asymptotic expansion of the given fields. The 
additive arbitrariness, which was discussed 
in the last section, is due to these constant 
operators. 

That is why fixing these constant opera
tors together with eqs. (5.9) and (5.10) we 
determine completely the fields ф± (x) and 
$ ± (x ) , after which their transformation 
properties with respect to the two-dimensio
nal Lorentz group take the form (5.12). 
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At last we note, that the results of this 
Appendix do not contradict those of the se
cond section where in fact the basic role 
in obtaining eq. (2.6) is plaid by the com
ponents ф ±(х) of the field Ф ± (x) , for 
which formula (2.2) remains valid. 

Remark: In fact eq. (1.5) follows directly 
from the equal times canonical commutation 
relations 

[ i) ci(x). «My)J xo = o=-iS(jT -у- ) 
not only in the case of two-dimensional 
space-time. Fq. (1.5) is obtained by integra
ting the upper equality over the space-like 
surface x0., const. 
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