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Equations of Motion fer the Scalar and Spinor
Fields in Four-Dimensional Noneuclidean
Meomentum Space

Equations of motion for scalar and spinor fields in

a four-dimensional non-Euclidean momentum space are obtaint

ed. These equations incorporate 28 a parameter the funda-
mental length and coincide with the ordinary Klein-Gorden
and Dirac equations in the limiting case f- 0.

In the new formalism an important role ig plaved by
“"yacuum momentum” {(this notion was introduced by I.E.Tamm).
The equations obtained remain invariant under the space
inversion only if the vacuum momentum transforms simulta~
neously.
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1. Introduction

In the papera‘“'y

theory {Q¥Fr) has been put forward, in which the key part is

a new formulation of quantum fleld

agsigned to a four~dimengional momentum gpace of constant curva-
ture. A space like that can be realiged as a second—order surface
in en auxiliary flat S5-space with Cartesian coordinates (/p‘,F,fL, ).
Depending on the curvature sign, there arise two posgibllities

2

- P rx-ﬁa} = M (eurvature f;lz Yy (1.1)

- Fhe F‘i'g?:' . v (curvature - r;\{:r-‘ ). (1.2)

We call the new fundamental constant M which appears here. the
"fundementsl mses®, the imverse quentity -l will be called
the "fundamental length".

The spaces (1.%)={1.2) are kmown in theoretical physics as
De Sitter apaces. In the limiting case of small 4-momenta |rl&iM
(formally, as Mo , orbo O ), the De Sitter geometry is
undistinguishable from the flat pseudoeuclidean geometry. This
fact ia the basie of the correspondence principle betwean the

new scheme and the usual theory i’h:which 2 Minkowsky momentum



gpace ie employed. Pres particles oceupy in the P -gpace the

three-dimensional mape shells

plemt= 0, (1.3)
end it is of no importance for them whether these surfaces are
embedded in the Flat { { =0) or curved ( [ #0) four-dimensionsl
momentum space*).

However, when the interaction is introduced, the particles
leave the purface (1.3) and can arrive at any region of the P -
space with arbitrary relative 4-momenta :P . The curvature of
De Sitter momentum space becomes at large W\ 2 M esuch an essen~
tial factor that many relations of De Sitter geometry differ
radically from their peseudoeuclidean snmlogues. Thexrefore, the
laws of particle intersction in the region i’f| 2 M (i.8.4 0t
emall space-time intervals), which are prescribed respectively
by the local QFT and the new scheme, will differ drastically
from each other. As s result, a new physics at sﬁperhigh energies
ariges. This situation remindes qualitatively the transition from
the non-relativistic mechanics to the relativistic one, many
predictions of which differ raedically from the conclugions of
non-relativistic theory.

Purther on, we ghall use the gystem of units

FeC=z=t=M=24 {1.4)

80 that all the relations of the theory become dimensionless.
Plat pgeudotuclidean limit torrespoads in this system of units

to the values
bpdes L Plec d. (1.5)
) In the case (1.1) the complementary restriction wmiz M

must be fulfilled for the maas spectrum of the free particles.
It is not burdensome provided the value ™M  is large snough.



Row we cannot chooge with confidence between the possibi-
litiea (1.1)=(1.2). Each of them has, from methodical point of
view, its own flaws and merite. It is the experiment that ie to
make the decision, if the hypothesie of the curved momentum space
iteelf would be confirmed.

In the present paper ws shall consider the {" —space to
be with a negative curvature and described by equation (1.2).

In the unit systerm {1.4) this equation reads:

L) L

RSN - (1.6)
A1l the results derived below can be eagily transferred into

the scheme besed on the equation (1.1).

2. i i 0 € 8 Fiel d e
Yacuum Momentum

Let us congider free spinlegs particles of mass v and

introcduce the notation {cf. /3/)
w, = e [u
\W= ctx(-l =y . (2.1)

Then, owing to {1.6), the equation of the mass shell hyperboloid
can be written in the form

KLL\F‘,FH)(LE\V*PQ) = Q. (2.2)
There are two values of [, corresgponding to any fixed £ on

the surface (1.6), which differ only in sign. Therefore, auy

bracket in (2.2) can be equal to zero:
{ .
vhp a0 (2.3)
hprpo-o (2.4)

Let us first ‘eesums that only the condition (2.3) is valid for



free fields. This leade to the following "Klein-Gordon equation™:

El(bfn@—f w) € (pp) = O (2.5)

2 ('p, PJ being the scalar field depcribing our psrticles.
If we apply the operator 4 g to the left gide of (2.5),
we got: '
[ 2 2\ p E3 EA 1
G ) () - O ) (pp) =00 6
Thus, the standard Klain-Gordbn equation is & congequence of

{2.5).
let us remark that the Klein-Gordom equation can be obtained

from (2.5) also in the flat 1imit W\?’, f;ai’ < i s

(mi-pt) d(pA) = O (2.7)
In go doing we imply b, > () because, due to (2.5),
¢ ( P o) = O when P < O, ('2.3)
Fow conesider the equation
(2.9}

- ‘

2 (LE\(V.-L P‘{)X\’F’?’D =0,
which is based on the relation (2.4). When multiplied by - % ,
this equetion is aleso reduced to the ordinary Klein-Goxdon

equation:
(m*- _Fi))((-p,p*) =C. (2,10)
In the 1imit w?, Pi<< {1 ., putting:
hpr o B
Py = -1 - 2 ,

we get, 1:n complete anslogy to (2.7), the equation:



(™ 8% X (p.pu) =0 (2.11)

Thus, a queption arrises: what is the relation bveiween the
tields ¥ and X 77 owing to (2.6) emd (2.10), they desc-
ribe particles with equal masses. (n the other hand, the Y-
~and X -~ particles correspond to different value of -P:'i-;i&'l .
This quantity is a new quantum number, which has no analogue
in Minkowsky fF —gpace.

At any rate, we can agsert that the functions ‘{‘(-P. Px,) and

)( (,?,,m ere comnected through a diperste transformation
X (pp) =1V {prpy) (2.12)
containing the reflectlion of the coordinate Py
Py = = P . _ (2.13)
Let us obtain thig transformation. Our following reasoning
egsentially employs the notion of vacuum #4-momentum \ + Which
hae been introduced in Q!'T by I.E. Tm’zl. He proposed to measu~-

re all 4-momenta from a certain vector V{,, rather than from

zero. It corresponds to the tranaformation

pr Pr_\/r. ' (2.14)
Ap a Tepult, fh& equations of the theory become formally
covariant under the whole 10-parameter motion group cof the mo-~
mevtua’ 4-ppace (Poincare group)

F': L’P"\“ (2.15)
For example, the Klein-Cordon equation now reads
Yw-’-_ ('P‘V)t_]\(!(rp) =0, (2.16)

where we use the notation



§'(p) = (peV) (2,17}

This equality demonstrates the transformation law of the field

7(y) under the tranelations in Minkowsky f -space.

Let us emphasize the following point: the vacuum 4-momentum

“":l“' may be interpreted in the case of charged particles as a
constant (unobservable) vector«potential QA(M of electromag-
netic field, the gquantity Fk‘\?. being analogous to the: gene-
ralized momentum V -y Ar

The theory based on the curved momentum space (1.6) demands

that we should use the De Sitter group SO (4,1)
"= (Lpwk | (e

ingtead of Poincare group (2.15). The eymbol {+) in {(2.18)
denotes "translations" of the space (1.5)/2’3/:

. ,
u)k) P v K (p“wf{l) r:u;,z,;.

SR I

Thege transformations are De Sitter rotations in the planes

(2.19)

( i}" > P ). In the limit (1.5) they are equivalent, up to some
discrete transformations, to the pseudoeuclidean translations
U + l< ' - | " | . -t e
The acalar product of any two 'rectors Pe . and l<i_'
('— ‘0:1:21334)
L -
P L) 1"1“11 - ('j PL i<H - LPk] (2_20)
is an invariant of the group S (4,1).

If these vectors belong to the space (1.6}
R b kR
{P [N



then,

£ 2lek]) o [pekl™2 (2.21)
or, taking into account (2.19),
= 2Lpkd = 5 2 (pk), - (2.22)

It is clear that the vacuum momentum in the new scheme is a

vector of the De Sitter ppace (1.6):

\/j“., v \’f =-4, (2.23)
the transformation (2.14) being generalized as follows:

P e V. {2.24)

Therefore, dus to (2.22), squation (2.5) can be rewritten
in the S0 (4,1)-covariant form (cf. (2.16))

2y LV pp) =0, (2.25)
whare
¢ () = @ (g (pov),). (2.26)

The relation (2.26) represents the transformation law of the

fiela L(} under tranelations of De Sitter /| ~space (cf.(2.17)).
It ia well mown that the continuous motion group of spaces

of constant curvature can also include such %ransformations,

which are preducsd in the flat limit to reflections, i.e.,to

1/

_unproper operations + This fact has direct relation to our
fuxther discussion.
Iet us considar tho tmslation (2.24) in the caae V =0,

Owing to (2.23), \ -\-V 4-\’... V' = 4



and we cen get:

Vo= (A6 C4e0serw

4 ’

Equations (2.19) give
(-PK’")V)L‘ = )FC

—_— (2.27)
-2 ¢

('Pt_)\") = F - m klv?';l') ('—L’ f.,r’)e).. ';L 1?‘1-5”\9 .
Provided (O =0, the vacuum momentum is
Vo= (0,0_ 0,01), (2.28)

end the translation (2.27) is reduced ito the identity transfor-
mation of the group SO (4,1): (/PL-)\/)-—‘/F. If Q=1 ,

Vo= (00.0,0-1). © (2.29)
In thip case from (2.27), we obtain

(po¥) = p,

(‘F VY = ’?"’ in (-\3’.7\.) .

The second line represents the reflection of the 3«vector 1_;’

{2.30)

—
in the plane orthogonal to the vector m. . In particular, when
= (0,0,1)

——
(pV) = L paba,~ 1), : (2.31)
Thus, continuous transformatione in De Sitter space really
enable ug to make & reflection of an edd number of spatial axes.
Supposing that the conditions (2.29) and (2.31) are ful=-
filled, one can easily see that equation (2.25) gets the form:

2 (e s 9 (s By s 1) = ©. (2.32)

10



Having compared (3.32) and (2.9) we have the right to conclude
that the fields [ (p,p) snd ({p,p)) are connected through
a reflection operation, which contains together with (2.13),

an inversion of an odd number of spatisl components of the vector

,.'Fr . In particuiar. we may set {cf. (2.12)):
Koo = Llppa) = € 0o\ B,-4,). (2.33)

We rhall coneider the relation (2.33) to be the definitibn
of the space reflection in the new scheme. The fact that this
definition is quite natural becomes evident in the case of
spinor fields where the traneformation (2.33) corresponds to
multiplying a spinor by the matrix X" (see (3.12)).

Let us mtresa that the phasge factor in (2.33) equala unity
since the reflection (2.33) cen be continmuously connected with
the identity tranpfommation in 58 (4,1). Thus, the field
\¢(p, ) is a scalar fie1d. Paeudoscalar fields correspond in
thie formalism to the "fourth components™ of S5-vector fields.

Now we can sum up our considerations concerning equations
(2.5) and (2.9), and the vector of vacuum momextum \fL 3

1. Bquationa (2.5) and (2.9} are conne.ctad through the
transformation of space reflection, and, therefore, in fact
we need only one of them, for example eq. (2.5}, |

2. To the vacuum momentum, even in the "physical gauge"
Y,=C , thare correspond two S-vectors (2.28) and (2.29),
which turn into one another under the transformetion of apace

reflection,

-3, Di Equation

Let us first remind (see, for example, 78:9/3 that an

11



arbitrary matrix of the four-dimensional (spinor) representation
of the group 50 (4,1) is determined by the relstion

s FMS ;\”L/\LM ~(3.1)

i AN being a 5x5-matrix of De Sitter rotation in the space
( Pv. TR Py, Pa ).
A ALt 1,‘"") denote five fourth-order anticomauting

mtriceg: Ny
;f”,r”“‘r CMPE TP e 2™
M (3.2)

47" = F(mg (+----).

Owing to (3.2) and (2.20), the following formula is velid for

arbitrary S-vectors Pu and k_ ¢

‘ X(M‘)}. (Kﬁrﬂ)p {{?T’J,[kr]} = 2(pk]
TIRICETIE
The explicit form of the | -matrices is chosen to be (¢

E o
(o2

— ™M C Tm
| = Xm ; ( Ly M= i,l,g (3.4)

{3.3)

£./8:9/y

¥-|c;.

1
o=
o

i

1i

T ©

A s ¢ B
R (& o);

where 7.  are the Pguli matrices, E = i’ L;) « Obviously

(\“”)T: Lﬁ"’l"” - K'TMXJ (3.5)

¢
The matrix S can be writt?}\z in the exponentisl persmetrization:
. Ly, MP 1 :
S=¢* ("“,"1:0,1,23‘,"), (3.6)

12



where (o, =- Wam is an angle of De Sitter rotation in

the { M N) ~plane, and

M= s (TR (.7

are the corresponding generators. For example, the translation
(2.19) by a time-like vector l(t, can be expregped, due to
(3.6), in the form

Q(L _ QxF( \!1_2_ r\&(‘X’j 7,)(:&151\\[;;. (3.8)

Pormulae (3.5) and (3.6) produce

e

STy =S (3.9)
Let \V (p !p‘,) be a opinor field defined in De Sitter P
space (. 6). It is clear that this field transfoms with respect
to the group SO {4,1) as follows: ;

Yiep)= Sy, G
In particular, under the $ranslations (2.19) we have
W’(?(L)L,(f@i}ﬁ)—: S(R Yl pa). (3.11)

If, for example,

! B
e (oo
the metrix S(LQ) appears to ba (up to a sign):

) l—\l"\?. El—ﬂrl"f

S ()= e | ¢ =y

Therefore,

RV 2 | ay =
ViporBorp) = YW (e Fop). (3.12)

13



We have obtained the spinor representation of the operation of
space reflesction i {of. (2.33)). As in the cdes of the scalar
field, the phase factor in (3.11) is real.

Owing to (3.10) and (3.9),

._‘,’,. , , + ' . . ) - B Lo

) = Yy = Y (n ) 57 (w). (3.13)
Honce, the Dirmc quadratic form is an invariant of the De Sitier
group SC (4,1):

Y () WP pa) = aow. o (3.14)
It is alao evident that the quantities & | =V  wna{ PMNY
transforw under the < {4,1)-group as & S5-vector and a 5-tesnpmor
reapectively. ) )
An analogue of the Dirac equation for the spinoxr W(,P, 1)
can be obtained by the proced_ura of "extracting square root"
from the wave operator of the scalar aquatidn {2.5). Using (2.21)

and (2.25), we first represent the scalar equation in. the form:

L4 s\n’% ~ VI pp) = O (3.15)

Further, taking into account {3.3) we get:

Gory-tp 1) =§2&|\ 0+ -9 7 }{:sL%- 0TI, e
This relation enables us to write a "covnriant".mrac equation
for the spinor field in De Sitter space: :

{25kt - L-WTHW(pp) =0,
where )

Vo) = SMU(peN, pov)).  Ga®

(3.17)

14




Lat us now put V;_: (O, Q,0,0, i) and pass over to the notation
(3.4). Then we get the following equation for ‘t(p 4,) :

[2shpy, - Y= (Pt TW(np)=0 (3.19)

The mltiplication of equation (3.19) by the operator f’ HF*(P& 1)3
results evidently in the scalar equation (2.5) for 8! (q"f Pff) :

2(h - Py (popa) = ©. (3.20)

It is alsmo clear that the flat limit (1.5) of egquation (3.19)
coincides with the ordinary Dirac squation.

The requirement that the system (3.19) for the functions
U‘;(P:Pq) (a{,. 1,2_,'5}’1) possess a non-trivial golution gives:

dek 25k r/x'ﬁ*h’r-‘ (V«'i)g”—]é @Jx(w-i‘fzq)i:(?, (3.21

PTaking into account (1.6) and (2.1) we obtain the usual expres~

eion for the energy spectrum of & Dirac particle:

pee xVEE

Let us go beck once again to the "covariant™ equation (3.17)
and set V,_: (0,0}O,S-MG,WG) » Purther we shall vary the para-
meter @ , Whemn (-7 , from formulae (2.31) and {3.6)={(3.7)

we get:

{ 2k {“/5__ )Frxr" (Tu*l)b’jk Kg{w(‘?% RsBer ) = O
Thie egquation can further be trameforwed by rotation in the
plame (1.2) by angle 7 to: .

B gt (e} ¢ Yo F g =0 o

15



Evidently, (3.22) coincides with the initial Dirac equation
{3.19) up to the substitution }?ﬁ_,? » P> -y o+ On the other
hand, it is exactly the equation for the spinor wave-function

which has undergone the transformation of reflection (3.12):

ohff,e Pryt - Cpuedy Y po Frpy=o. 3022

One can easily see that equations (3.23) and {3.19) do not
coincide. This iz a direct consequence of the fact that

the vacuum momentum is not invarisnt under the epace reflection
(oee the end of the previous paragraph). One may say that the
pair of the Dirac equations (3.19) and (3.23) is equivalent to
the acalar pair (2.5) and (2.9) in what concerns their behaviour
under the operastion of space reflectiom.

How we suppose

Fipp) = W) 0k E (k) (3.24)

L(H"T‘J(.' ) Ke »C )
and ingert (3.24) into equation (3.19). Taking into amccount the

relations
ﬁ ‘>i\ g (V@

— 2 >IL (“/i(tl{vimrh,r’ = 4

I

1
=

"

p—
[
|

we get

l'.\L -k (ffi ”Hr - sh [‘/i Y“’) U.(-r) =0 (3.25)

One can easily verify that the translation (3.8) with ¢ - (Yﬂ,
reduces equation {3.25) to the standard Dirac equation:

—~ Y1 Y\)LKIP -A(’

16
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LL’(,P) = exp (_ 1:_1_ nrxf yh')u(‘,'j). (3.27)
Let us strese that the argument of the exponent in (3.27) is
a pseudescalar. It means that the equivalence of the new and
old Dirac equationa falle when +he transformetion of space ref-

lection 1a teken into account.

4. 13 tic Co t of the Vector of V

. Nomentum in the New Scheme

It has been mentioned in § 2 that the vector of vacuum
momentum can be treated in the ordinary theory aes a constant
vector-potential of the électronagnetic field, If this concept
ie trangferred to the theory with curved momentum space, we
can arrive at the following conclusion:

1. The vector-potential of eleciromagnetic field should be
a unit S~vector /10/.

2. If we perform a substitution in egquation (3.17)

N,—= - \/(M

{ (4.1)
it should be equivalent io a certain transformation of "charge

T :
conjugation® of the wave-function Us (P;Pq)—pk{’ (1},11,,), the new
<

tanction ' (p,p,) sgain satisfying equation (3.17). It can be
demongtrated that such an operatlon exists and colrncides with

the ordinary one:
Ll’c('}?d?tf) = C\P(—'p,r?‘,)w (4.2)

The proof of this statement oasen‘qialiy employs the folluowing
property of the translations S(‘V) under the complex conjugation:

17
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>. Copclugion

The importance of the free fleld equations of motion, in
particelar the Dirac equation, is well known in the exigtent
QFT. The generalization of these equations containing the fundsx—
- mentsl length is important in the new formulation of the theory
developed by us.

The obtained equationsg lead to modified expresslona of the
propagators, and therefore, to a new description of the virtusl
particles in the region of superhigh energy-momenta {(smsll 4~
digtancen). Extremely intriguing is the fact that the new equa-
tione of motion need redefinition of the space reflection opera-
tion.

The authors are sincerely grateful to N.N.Bogolubov,
S.S.Cerstein, A.D.Donkov, V,Ia.Fainberg, D.A.Kirzbnits, A.A.EKomar,
AJA.Logunov, V.A.Hatveev, V,A.Neshcheryakov, A.K.Sissakyan,
L.A.Slepchenko, L.D.Soloviev, A,N.Tavkhelidze, I.T.Tcdorov
for fruitful discussions.
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