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Equations of motion for scalar and spinor fields in 
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1. Introduction 

In the papers/1-5/ a new formulation of quantum. field 

theory (QF'l') has been put forward, in which the key part ie 

assigned to a four-dimensional momentum space of constant curva­

ture. A space like that can be realized as a second-order surface 

in an auxiliary flat 5-epace with C_arteaian coordinates <1),,f ,t'" ). 
Depending on the cur'l'&ture sign, there arise two possibilities 

,1'=C,i): 
' " Mcf_;- ~ M" 

1 
(1.1) r.-r~ (curvature rvi' ) ' 

L _, l. r.-r- , , \., M-v; = - I" (curvature _ _!,_ 

M' 
) . (1.2) 

We call the new tundamental constant M which appears here the 

.L = l wi 11 be called 
M 

"fundamental mass", the inverse quantity 

the •fundamental length"• 

The spaces (1.1)-(:1.2) are known in theoreti.cal physic• as 

De Sitter spaces. In the limiting case of small 4-m.omenta \fl<<M 

(formally, as I'-\~ co , or ~ _,, () ) , the De Sitter geometry is 

tmdistinguishable from the flat paeudoeuclidean geometry. This 

fact is the basis of the correspondence. principle between the 

new st:heme and the usu&l theory iii. which .a Kinkowslq momentum 
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space is employed. Free particles occupy in the -? -space the 

three-dimensional mass shells 

(1.J) 

and it is of no importance tor them whether these surfaces are 

embedded in the flat ( t =0) or curved ( e ~o) f'our-dimeneional 

momentum space*>. 

However, when the interaction is introduced, the particles 

leave the surface (1.3) and can arrive at any region of the f -
space with arbitrary re la ti ve 4-momenta f The curvature of 

De Sitter momentum space becomes at large If\~ M such an essen­

tial factor that many relations of De Sitter geometry differ 

radically from their pseudoeuclidean analogues. 'l'herefore, the 

la'lt'B of particle interaction in the region lfl ?- .._1 (i.e., at 

small space-time intervals), which are prescribed respectively 

by the. local QPf and the new scheme, will differ drastically 

from each other. As a result, a new physics at superh1gh energies 

arises. Thie situation reminds qualitatively the transition troa 

the non-relativistic mechanics to the relativistic one, 118D.f 

predictions of which differ radically from. the conclusions of 

non-relativistic theory. 

Purther on, we shall use the systea of units 

(1.4) 

so that all the relations of the theory become dimensionless. 

~lat pseudoeuclidean lim1t corrrosponds in this system ot unite 

to the values 

( 1.5) 

*) In the case ( 1.1) the complementary restriction 'Wl
2 .f tvft 

must be fulfilled tor the mass spectrum of the tree particles. 
It is not burden·some provided the value M is large enough. 
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Wow we cannot choose with confidence between the possibi­

lities (1.1)-(1.2). Each of them has, from methodical point of 

view, its own flaws and merite. It is the experiment that is to 

make the decision, if the hypothesis ot the curved momentum space 

itself would be confirmed. 

In the present paper we shall c·onsider the I' -space t-o 

be with a negative curvature and described by equation (1.2). 

In the unit system (1.4) this equation reads: 

(1.6) 

All the results derived below can be easily transferred into 

the scheme based on the equation (1.1). 

2. Equation of J!otiqp tor the Scalar Pield and the 

Vacuum Momentum 

Let us consider free spinless particles of mass ·~'Yv and 

introduce the notation (cf. /J/) 

""' = ,\,. c 
1i.m', d'\' = m,, (2.1) 

Then, owing to (1.6), the equation of the mass shel~ hyperboloid 

can be written in the tom 

(2.2) 

1bere are two values ot f" corresponding to any fixed f 
the surface (1.6), which differ only in sign. Therefore, any 

bracket in (2.2) can be equal to zero: 

on 

J, t -1'"1 = u (2.J) 

(2.4) 

Let us tirst~aaswae that only the condition (2.J) is valid for 
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free fields. 1'bis leads to the following "Klein-Gordon equation": 

f (p, p,) being the scalar field describing our particles. 

If we appl7 the operator ·f>11 /.t to the left side of 

we get: 

~ c[, l t. l' ,' ) ~ (p, t•) > (,,, ,_ f ~) '{ (,(" f ,) ~ 0 . 

(2.5), 

(2.6) 

Thus, the standard Kl•in-Gordon equation is a cOnsequence o-r 
(2.5). 

Let us remark that the llein-Gordon equation can be obtained 

from (2.5) also in the :flat lilllit ,,,_•,r'"" 1 

(2.7) 

In so doing we iapl.y f<t) (J because, due to (2.5), 

when (2,8) 

Wow consider the equation 

which is baaed on tho relation (2.4), llhen llUJ.tipliod b7 - f~ , 

this equation is also reduced to the ord1n&.r7 Klein-Gordon 

equation: 

In the lilllit .Mt, r' .(.( 1 

J,r"' i ~ 

, puttingz 

h~'! 

·l\ "' - i - f' 
we get, in complete analogy to (2.7), the equationz 

6 
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(2.11) 

thus,. a question am.Best what is the relation between the 

fields \f and X /617 OWing to (2.6) and (2.10), the;r desc-

ribe particles with equal maasea. On the other hand, the ''{' 

and f - particle.a correspond to. ditterent value ot r; ·
1
' I • 
P• 

Thia quantity is a new quan1am. DURber, which has no analogue 

in llil:ikowek;r ·t -space. 

At 8Jl7 rate, we can assert that the :functions 1.((.p, r'f) and 

f. (,\>,f,) are C011119Cted through a discrete tren~oniaUon 

j (,t,p,) , l lf' (,p, p,) (2.12) 

containing the reflection of the coordinate f"" 

y, _, -·r.. <2. o> 
Let us obtain this transtormation. Our tollowin& reasoning 

eseentiall.7 eaplo7e the notion o:f vacuum. 4--aomentum \1,,. , which 
I 

has been introduced in QPT by I.E.'laJS!/21. He proposed to measu-

re all 4-moment'a from a certain vector V(',. rather than from 

zero. It corresponds to the transformation 

(2.14) 

As a result, the equations ot the theory become formally 

covariant under the whole 10-parameter aotion group ot t~ ao­

•ntua' 4-space (Po1ncar9 group) 

Por example, the kleiD-Gordou equation now reads 

\:»>'- ( p-V)'J'f'(~) = o, (2.t6) 

where we use the notation 

7 



(2.17) 

1'b.is equality demonstrates the transfoi:mation law of the field 

t\r) under the trenalationa in llinkoweky ·r -apace. 

Let us emphasize ·the f-ollowing point: the vacuum 4-momentum 

" may be interpreted in the case of charged particles as a 
\ 

constant (unobservable) vector-potential of electromag-

netic field, the quantity fi - \~..... being analogous to the' gene­

ralized momentum pf .. - ._ At; • 

The theory based on the curved momentum space (1.6) demands 

that we should use the De Sitter group SC1 (4, 1) 

r· = (Lp)(+)k (2.16) 

instead of Poincare group (2.15). The symbol(+) in (2.16) 

denotes "translations" of the space ( 1.6)/2, 31: 

. .· iE) 
\··' .fre1k)1' fr+kr\v,+ ,,k, , I' u,1,>,s. <2.19> 

p;= lff•ik) 4 ; pJ, I (pk), irk)~ p,J,- p~l, 

These transfol1Dations are De Sitter rotations in the planes 

( i'•, f\ ). In the limit (1.5) they are equiTalent, up to some 

discrete transformations, to the pseudoeuclidean translations 

i> 1- k 
I 

1'be scalar product of any two vectors 

( L :0,1,2,J,4) 

is an invariant of the group ')·(, (4, 1 ). 

If these vectors belong to the space (1.6) 
lrr"·_:...1'=-1 

8 
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then, 

(2.21) 

or, taking into account (2.19), 

(2.22) 

It is clear that the vacuus moaentmn. in the new scbeae ·1e a 

vector of the De Sitter space (1.6)1 

(2.2J) 

the transformation (2.14) being generalized as follows: 

f' _, f H V. c2.20 

'fhorefore, duo to (2.2?), equation (2.5) can be rewritten 

in tho SO (4, 1 )-oonriant tom (cf. (2.16)) 

whore 

(2.26) 

1he relation ( 2. 26) represents the transformation lP ot the 

field \( under tranalatione of De Sitter 1' -apace (cf.(2.17)). 

It is well known that the continuous aotion group of spaces 

ot constant curvature can also include such transto:rmations, 

•bich are reduced in the flat limit to reflections, i.e., to 

unproper operations n' · This fact has direct relation to our 

further discussion. 

Let us consider the translation (2.24) in the case % aO. 

O.,ing to (2.2)), 
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and we can set: 

\''t ::: (_ ('1 (: 

-:;,,~:: 1. 

Equations (2.19) give 

(Tc->V), o 1', 
(2.27) 

(\'l-)Y) = f - OZ (fi.it)(i- c.-oll)- ~ l'.''ni. 

Provided G =0, the vacuum momentum is 

V = (c o o o i) L J , ! ? 
(2.~8) 

and the translation (2.27) is reduced to the identity traneror-

mation o:f the group S(l (4,1): 

V~(cooo-i) L I ' ) , , 
(2.29) 

In this case from (2.27), we obtain 

(pH VJ,, = f, 
~ 

(~HV) =f-~h()C'.'h.)_ 
(2.30) 

The second line represents the reflection ot the )-vector .p' 
_., 

in the, plane orthogonal to the vector 'h.. • In particular, •hen 

n=(c,0,1) 
___,. 

( pc->V) = ( p,,1',,-t,). ( 2. 31) 

Tb.us, continuous t-ransformations in De Sitter space really 

enable us to make a retlection ot an odd number ot spatial a.z:es. 

Supposing thet the conditions (2.29) snd (2.31) ere ful­

filled, one can easily see tha' ~quation (2.25) gets the form: 

2 (cl, l"' .p,)lf(r •. t,,\',,--1,,,·'f,)= c_ <2.32> 
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HaVing compared (J.32) and (2.9) we have the right to conclude 

that tho fields /(p, f•l and \((p, p,) are connected through 

a reflection operation, which contains together with (2.13), 

an inversion of an odd number of spatial components of the vector 

fr • In particular, we may set (cf'. (2.12))1 

(2.JJ) 

We shall consider the relation (2.JJ) to be the definition 

of the space reflection in the new scheme. The fact that this 

definition is quite natural becomes evident in the case of 

spinor fields where the transformation (2.JJ) co~esponda to 

multiplying a epinor by the matrix t' (see (J.12)). 

Let us stress that the phase factor in (2.JJ) equals unity 

since the reflection (2.JJ) can be continuously connected with 

the identity transformation in .Sfl (4, 1 ). Thus, the field 

is a scalar field. Peeudoecalar fields correspond in 

this formalism to the "fourth components" of 5-vector fields. 

Wow we can sum up our considerations concerning equations 

(2.5) and (2.9), and the vector of vacuum momentum. \IL 

1. Equations (2.5) and (2.9) are connected through the 

transformation of space reflection, and, therefore, in tact 

we need only one of them, for example eq. (2.5). 

2. To the vacuum. llOlllentum, even in the "physical gauge" 

'/ ·~ 0 , there correspond two 5-vectors (2.28) and (2.29), 
I 

which turn into one another under the transformation of space 

ref'lection • 

. J. Dirac Equation 

Let us first remind (see, for example, / 8 ,9/) that an 
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arbitrary matrix ot the tour-dimensional (spinor) representation 

ot the group .<:.o (4, 1) is determined by the relation 

(J.1) 

\\ 1\ i.. MI\ being a 5x5-matrix of De Sitter rotation in tbe space 

( \\' f'· \'•' p, ' f, ). 
:,H,,,. (ni ~ \-,1. \-.i \.,i J") 
' , ' ' J 

denote five fourth-order anticODDUting 

matrices: 
1.('""r11'\(::.\''"i'"' \'"'!''"' 2.MN 
l ' '' \ -r" :. d 

'('" = ,L"j ( t - - - - ) . 

(J.2) 

Owing to (J.2) and (2.20), the tol1"'"ing foJ.'lllUla is valid for 

arbitrary 5-vectors ·'f._ and k i.. 1 

~ (pJ'), (Kr1IM)~ = {CrrJ,l•nj = 2 CtkJ 

( r fr= c r1, 
1be explicit tom ot the r ..... trices is chosen to be (ct/6•9/) 

C',, :;:: 6' =- ( ~ -0~) 
\',.,, ·-:::. xm .= 

(0 ~~) 
-cri.. e:, 

"Yl"\'::"i,2J~ (J.4) 

i''f ·:;:: {' (c EO) = - ~ 

E. c ' 

where 0 .,....,_ are the Pauli matrices, E. -:: ( ~ ~) Obrlously 

(J.5) 

The matrix S can be written in the exponential parametrization: 
~1.' M,.M 

S= e L 'NN\ (N.M = o,J.,2,,,4), (J.6) 
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where :_-.:; M,.., ::: - r.v,..,,..,., is an angle of. De Sitter rotation in 

the 'M N) \ , -plane, and 

are the corresponding generators. For example, the translation 

(2.19) by a time-like vector k f can be expressed, due to 

(J.6), in the fona 

Po:r:m~lae (J.5) and (J.6) produce 

Let 1\1 ( '\', \\) be a spinor field defined in De Sitter )' -

apace (1.6). It ie clear that this field transfo:tme with respect 
•·. ,. 

to the group .SC) (4, 1) as follows: 

(J.10) 

In particular, under the translations (2.19) we have 

If, for example, 

the matrix S( cJ) appears to be (up to a sign): 

Therefore, 

(J.12) 
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We have obtairied the spinor representation of the operation ot 

space reflection 1 (cf. (2.33)). As in the case of the scalar 

field, the phase factor in ().11) is real. 

O..ing to (3.10) and (3.9), 

(3.13) 

Bence, the Dirac quadratic form is an invariant Ot the De Sitter 

group SC (4,1): 

-'rrt-A 
It is also evident that the quantities 'I' I 'f 

(3.14) 

and if rMrN\jl 

transform. under the $(.' (4, 1 )-group as a 5-vecto-r and a 5-teneor 

reapecti vely. 

An analogue of the Dirac equation for the spinor 4'( f, f,) 
can be obtained by the procedure of "extracting square root~ 

froa the wave operator of the scalar equation (2.5). Using (2.21) 

end (2.25), we first represent the scalar equation in.the tonaz 

(3.15) 

Further, taking into account (3.3) we geh 

Thia relation enables us to •rite a "covariant" Dirac equation 

tor th& epinor field.in De Sitter space: 

{ .:l.1kl/,_,- LC\'-v)e]\'1''(-p,f,) ~o, 
(3.17) 

where 
(J.18) 
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Let us now put 'J L = ( 0, O, O, 0, i) and pass over to the notation 

(3.4). i'hen we get the following equation tor 'f ( .p, y;) 

[~skr1t- 'l'rxr- (\\-i)f 111'(-r.f,)~o <3.19> 

'l'he aultiplication ot equation (3.19) b;r the operator r;-~r-(p,·i)X'-

results evidentl;y in the scalar equation (2,5) for \.\ ( i-»r,) • 

(J.20) 

It is also clear that the flat limit (1.5) of equation (3,19) 

coincides with the ordinary Dirac equation. 

'l'he requinment that the s;yotOlll (J.19) for the functions 

~«(f 1 p<f) («. .. 1,t., 3Jli) possess a non-trivial solution gives: 

faking into account (1.6) and (2.1) we obtain the usual expres­

sion for the energy speotrua of a Dirac particle: 

Let us go back once again to the "oonriant" equation (3.17) 

and set vl,.": (010,0,s.119,!.0~). Purther •• shall vary the para-

""ter G • llhen (L J> , troa formulae (2.31) and (J,6)-(J.7) 

we get: 

1'his equation can further be transformed by rotation in the 

plane (1.2) b;y angle ;; to• 

l J ,k ~ft- 1'1·~r - c t•·i.)~' l ¥'\.\'Cr.,-; ,-1,,) = o (3.22) 
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Evidently, (J.22) coincides with the initial Dirac equation 

(J.19) up to the substitution f-. _ F , p,_, - \'' • On the other 

band, it is exactly the equation for the spinor wave-function 

which has undergone the transformation of reflection (J.12): 

(J,23) 

One can easily see that equetions (3.23) and (3,19) do not 

coincide. This is a direct consequence of the tact that 

the vacuum momentum is not invariant under the space reflection 

(see the end of the previous paragraph). One may say that the 

pair of the Dirac equations (3.19) and (3.23) is equivalent to 

the scalar pair (2.5) and (2.9) in what Concerns their behaviour 

under the operation of space reflection. 

Now we suppose 

(3.24) 

k"l.,,--Y,)'1)k">( 

and insert (J.24) into equetion (3;19), hking into account the 

relations 

1\-1-~ ;,k·11~ 

\'(·Jr"" ). ,I,!"/,_ cl, if!. 11\~C 

we get 

One can easily verify that the translation {J.8) with *- ~ c1.~ 

reduces equation {J.25) to the standard Dirac equation: 

(3.26) 
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(3.27) 

Let us stress that the argument of the exponent in ().27) is 

a pseudoscalar. It means that the equivalence of the new and 

old Dirac equations tails when the transformation of space ref­

lection is taken into account. 

4. 11ectrgmagnetio Concept of the Vector of Vacuum 

Momentum in the Bew Scheme 

It has been mentioned in § 2 that the vector ot vacuum 

DIOIHDtua can be treated in the ordinary theory as a constant 

vector-potential of the electromagnetic field. It this concept 

is transt•rred to the theory with curved momenttlll space, we 

can arrive at the following conclusion: 

1. The vector-potential of electromagnetic field should be 

a unit 5-vector 1101. 
2. If' we perform a substitution in equation (3.17) 

V -.-V 
\' \' 

v1 __,, v4 
it should be equivalent to a certain transformation of "charge 

con;lugation• of the wave-t'unction \\ ( p,p,) _,, Y, c ( '!',\', ), the new 

!unction ~'(p,f.) again eatiefying e<juation (3.17). It can be 

demonstrated that such an operation exists and coinc_idee with 

the ordi?l817 onei 

The pl"Qof ~f this statement essentially employs the following 

property 'J£ the tre.nslations S(\1) under the complex conjugation: 
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(4.J) 

5. Conclueion 

The importance of the free field equations of motion, in 

part1cdlar the Dirac equation, is well known in the existent 

QPT. The generalization of these equations containing the funda­

mental length is important in the new formulation of the theory 

developed by us. 

The obtained equations lead to modified expressions of the 

propagators, and therefore, to a new description of the virtual 

particles in the region of euperhigh energy-momenta (small 4-

distancee). Bxtremely intriguing is the fact that the new equa­

tions of motion need redefinition of the space reflection opera­

tion. 

The authors are sincerely grateful to N.B.Bogolubov, 
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A.A.Logunov, V.A.Katveev, V.A.Xeshcheryakov, A.N.Sieeakyan, 
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for fruitful discussions. 

References 

1. Kadyehevsky V.G. Preprint JIJllR, l'2-5717, Dubna, 1971. 

2. Kadysheveky V.G. Quantum Field 'l'b.eory and Momentum Space 

of Constant Curvature, in Problems of Theoretical Physics, 

dedicated to the memory of I.E.Tamm, JloecOll', Bauka, 1970. 

J. Donkov A.D., Kadyehevsky V.G., llateev M.D., Mi.r-Kaaimov R.K. 

Bulg. Journ. of l'hys., 1• 58, 150, 233 (1974), ,fl,. J (1975) 

18 



and Proceedings ot the Mathematical Institute V.A.Steklov, 

vol. CXXXVI, P• 85-129, Nauka, JloscO'lf', 1975. 

4. Donkov A.D., Kadysheve4y V.G., llateev K.D., llir-Kaei.mov R.M. 

Proceedings ot the XVII International Conference on High 

Energy l'byeics, p.1-267, London, 1974 end JillR prepr:l.nt 

E2-79J6, Dubns, 1974. 

5. Donkov A.D., Kadysheveky V .G., Jlateev Jl.D., 111.r-Kasimov R.JI. 

Proceedings ot the XVIII International. Conference on High 

EnerEQ'.' Physics, Tbilisi, P• A5-1, D1,2-10400, Dubna, 1977. 

6. Donkov A.D., Kadyeheveky V.G., llateev M.D .. , 111.r-Kaaimov R.ll. 

In: "Nonlocal, Nonlinear, Bonreno:cmalizable Field Theories", 

D2-9788, Dubna, 1976. 

1 .. Pelix Klein, Vorlesungen Uber nieht-eUklidiache geometrie, 

Verlag von Juliue Springer, Berlin, 1928. 

8. Kadyshevsky V.G. JETP, .!J., 1885, 1961. 

9. Volobuyev I.P., llir-KaeilDov R.11. JillR preprtm, P2-10676, 

Dubna, 1977. 

10. Kadyeheveky V.G. In: "lfonlocal, llonlinear and Nonreno:mali­

zable Pield Theories", D2-7161, Dubna, 1973. 

Received by Publishing Department 
on July 15, 1977. 

19 


	10860.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22


