ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

AYБHA
A.B.Zamolodchikov, AI.B.Zamolodchikov

RELATIVISTIC FACTORIZED S-MATRIX
IN TWO DIMENSIONS
HAVING $O(N)$ ISOTOPIC SYMMETRY

E2 • 10857

A.B.Zamolodchikov* Al.B.Zamolodchikov

RELATIVISTIC FACTORIZF,D S-MATRIX
IN TWO DIMENSIONS
HAVING O(N) ISOTOPIC SYMMETRY

Submitted to 'Nuclear Physics"

[^0]Замолодчиков А.Б., Замолодчнков Ал.Б.
E2 - 10857
Релятивистская факторизованиая S-матриша в двумерном простраистве-времени с изотопической симметрией ((N)
Построена самосогласоваиная полная S-матрииа с иэотопической симметрией $\mathrm{O}(\mathrm{N})$ в даумерном пространстве-времени. S -матрииа факторизована и удовлетворяет гребованиям аналнтичности и унитариости. Приведеши аигумеиты в пользу гого, чго эта S-матрииа оиисывает рассеяние частии в ауумерно月 киральнои (ON) модели.

Забота пиполцена в Лаборатории пдерных проблем ОИЯН.

$$
\text { Препрвнт Объедвненного внствтута ядерицх исследованиі. Дубна } 1977
$$

Zamolodehikov A.B., Zamolodehikov Al. B.
 E2 - 10857

Relativistic Factorized S-Matrix in Two Dimensions faving $O(N)$ Isotopic Symmetry

The factorized total S-matrix in two space-time dimensions with the isotopic $0(N)$ symmetry is constructed. The arguments are presented that this S-matrix is the exact one of the $0(N)$-chiral field.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint institute for Nuclear Research. Dubna 1977

1. INTRODUCTIOR

The recent progrese in the study of two-dimensional quantum field theory has led to the extensive development of some models which have a remarkable property: an infinite set of concervation lams, leading to the absence of the multiple production and conservation of the aet of individual momenta of particles in the acattering / $1,2 /$. The factorization of the total S-matrix alao seems to be the effeot of these conservation laws /3/. The classical analog of all these modele ia connected with nomlinear equations completely integrable by the inverse ecattering method.

The example of this type is the massive Thirring model (imin), or, equivalently, the quantum aine-Gordon model. It turns out that, due to the aimplified scattering propertiea of this model, all the elements of the total S-matrix / 4,5,6/ and nome off-shell matrix elements /7/ can be zound explicitly.

In the recent paper Karowaki, Thun, Truong and Weisz /B/ showed that the analyticity, unitarity and factorization equations $/ 5,6 /$ of this model cen be solved uniquely giving a oneparameter set of solutiona, the parameter can be connected with the MTM coupling conatant.

Being the model of charged fermions, MTM has the phase symmetry $U(1)=O(2)$. In the present paper the factorized S-matrix with isotopic $O(N)$ symmetry is constructed for any $N \geqslant 3$. We adopt the existence of an isovector N-plet of particles of the mase m and require the $O(N)$-iaosymmetry of the S-matrix elements. It turns out that under the ee requirements the S-matrix can be determined uniquely ${ }^{*}$, without parameters, except the overall mass acale. The latter is shown in Secs. 2 and 3, where we derive the explicit form of the S-matrix.

Up to the time we cennot definitely anewer what two-dimenaional field theory (if any) leads to this S-matrix. We have some argumente, however, that auch a theory is a $O(N)(N \geqslant 3)$ chiral field model deacribed by the Lagrangian denaity:

[^1]\[

$$
\begin{equation*}
\alpha=\frac{1}{2 g_{0}} \sum_{i=1}^{N}\left(\partial_{\mu} n_{i}\right)^{2} \tag{1.1}
\end{equation*}
$$

\]

and the constraint

$$
\begin{equation*}
\sum_{i=1}^{N} n_{i}^{2}=1 \tag{1.2}
\end{equation*}
$$

This model is $O(1)$ eymetric, renornalisable and amyptotically free /10,11/. Infrared charge elngularity in thie model coom to lead to the desintegration of the goldstone vacuur and to the mana transmutation of particlos /12/, which ahould form the $O(\mathbb{O})$ multiplete in this case.

In the asymptotically free theoriea with the spontaneous mase transmutation the observable characteristica do not depend on the ooupling conetant (due to the ranormaliability) /13/. We ahould like to mention in thie connection that the s-matrix obtained in Sec. 3 does not depend on free parametern.

The S-matrix obteined depende analytically on \mathbb{K} and can be expanded in powers of $1 / \mathrm{N}$. Thus, our hypothenis conoerning its connection with the model (1.1) is based on the oomparison of this S-matrix with the $1 / \bar{M}$ - perturbation theory rasulte of (1.1). In Sec. 4 we show that in $1 / 1$ - perturbation of (1.1) there is no perticie production and the S-matrix really factorizes in the order of $1 / N^{2}$. The two-particle matrix elements, calculated in the order $1 / \mathrm{M}$ do coincide with the correaponding term of the $1 / \mathrm{M}$ oxpanaion of the S-matrix obtained in Sac.3.

The comparison of the ultraviolet asymptotice of the 3 matrix of Sec.3 with the reaulte of the ordinary g = perturbations of the model (1.1) is another poseible check. Although in uuch perturbation theory one dealm with $\mathrm{H}-1$ - componont multiplet of goldatone partiales instead of the E - component multiplet of the maseive particlea and, hence, faces the infrared divergencies, one mag auppose that the contribution of ultraviolet logarithas

[^2]of the perturbation theory into the acattariag amplitudes gives the correct eaymptotics of this amplitudes (at least up to g^{2}). The compariaon with the perturbation theory ia performed till g^{2} in Sec.4. The reault alao confirma our hypotheala.

2. analymisity, untmariny and pactorization bquations por THE O (N) - SYiNitiric S-matrix

Conaider the $O(N)$ ieovector $\mathbb{N}-\mathrm{plet}$ of particles of the mass m. The S-matrix element of the $2 \rightarrow 2$ acattering can be taken in the form

$$
\begin{gather*}
{ }_{i k} S_{j \ell}=\frac{p_{1} \sum_{p_{2}}^{i} p_{i}^{j} p_{i}^{\prime}}{p_{i}^{\prime}}=\delta\left(p_{1}-p_{i}^{\prime}\right) \delta\left(p_{2}-p_{2}^{\prime}\right)\left[\delta_{i k} \delta_{j \ell} \sigma_{1}(s)+\right. \tag{2.1}\\
\left.+\delta_{i j} \delta_{k l} \sigma_{2}(s)+\delta_{i!} \delta_{j k} \sigma_{3}(s)\right],
\end{gather*}
$$

where $S=\left(p_{1}+p_{2}\right)^{2}$. Purther it will be convenient to use the rapidities θ_{a} instead of the momenta ρ_{a}^{μ} :

$$
\begin{equation*}
p_{a}^{0}=m \operatorname{ch} \theta_{a} \quad ; \quad p_{a}^{l}=m \operatorname{sh} \theta_{a} . \tag{2,2}
\end{equation*}
$$

Then σ_{1}, σ_{2} and σ_{3} will be the functions of the rapidity differences of the initial particles $\theta=\left|\theta_{1}-\theta_{2}\right|$, which is simply connected with S :

$$
\begin{equation*}
s=2 m^{2}\left(1+C_{2} \theta\right) . \tag{2.2a}
\end{equation*}
$$

Note that under the traneformation (2.2a) the threshold points $S=0$ and $S=4 \mathrm{~m}^{2}$ of the functions $\sigma(S)$ (which are the equare-root branching points due to the two-particle unitarity) become the nonbranching pointa of $\sigma(\theta)$. So σ_{1}, σ_{2} and σ_{3} are the meromorphic functions θ.

The two-particle unitarity conditions and the croasingsymmetry relations of the two-partiole S -matrix (2.1) can be represented as the functional equations

$$
\begin{align*}
& \sigma_{2}(\theta) \sigma_{2}(-\theta)+\sigma_{3}(\theta) \sigma_{3}(-\theta)=1 \tag{2.3a}\\
& \sigma_{2}(\theta) \sigma_{3}(-\theta)+\sigma_{2}(-\theta) \sigma_{3}(\theta)=0 \tag{2.3b}
\end{align*}
$$

$$
\begin{equation*}
\left[N \sigma_{1}(\theta)+\sigma_{2}(\theta)+\sigma_{3}(\theta)\right]\left[N \sigma_{1}(-\theta)+\sigma_{2}(-\theta)+\sigma_{3}(-\theta)\right]=1 \tag{2.36}
\end{equation*}
$$

and

$$
\begin{align*}
& \sigma_{2}(\theta)=\sigma_{2}(i \pi-\theta) \tag{2.48}\\
& \sigma_{3}(\theta)=\sigma_{1}(i \pi-\theta) . \tag{2.4b}
\end{align*}
$$

The equations (2.4) and (2.3) do not determine the functions $\sigma(\theta)$. In addition to unitarity and analyticity let us require the factorization of the multiparticle S-matrix.

The factorization means the apecial structure of the multiparticle S-matrix: the multiparticle S-matrix elemonte are the sums of terme, each being the product of the two-particle Smatrix elements, as if the multiparticle soattering would be the consequence of two-particle colliaions /14,15,5,6/.

The factorized S-matrix can be represented by the aimple algebraic construction /5/, which in our oase consists of F types of apecial noncommutative symbole $A_{i}(\theta) ; i=1,2, \ldots \ldots .$. . each symbol corresponding to certain component of the isovector multiplat. The asymptotic states of the acattering theory should be identified with the produots of this eymbols, each ejmbol $A_{i}\left(\theta_{a}\right)$ correaponding to the particle with rapidity θ_{a} in the atate. We identify the in(out)-states with the products in which all aymbols are arranged in the order of decreasing (inereasing) θ. Any in-atate can be reordered in terme of out-Btatea by means of the commutation rules

$$
\begin{align*}
& A_{i}\left(\theta_{1}\right) A_{j}\left(\theta_{2}\right)=\delta_{i j} \sigma_{1}\left(\theta_{12}\right) \sum_{k=1}^{N} A_{k}\left(\theta_{2}\right) A_{k}\left(\theta_{1}\right)+ \tag{2.5}\\
+ & \sigma_{2}\left(\theta_{12}\right) A_{j}\left(\theta_{2}\right) A_{i}\left(\theta_{1}\right)+\sigma_{3}\left(\theta_{22}\right) A_{i}\left(\theta_{2}\right) A_{j}\left(\theta_{1}\right), \quad \theta_{12}=\theta_{1}-\theta_{2}
\end{align*}
$$

which correspord to the two-particle S-matrix (2.1). The algebra (2.5) represents the faotorized total S-matrix.

The Jacoby identitios of algebra (2.5) give us the functio-
nal equations for σ_{1}, σ_{2} and σ_{3}. The factorization property forces these identities necesaarily, so we shall refor to them as the factorization equations.

The factorization equations have the simple meaning. Consider, for example, the colliaion of three particles with rapidities $\theta_{1}>\theta_{2}>\theta_{3}$. In the infinite past they have apatial coordinates $X_{1}<X_{2}<X_{3}$. The particles collide with each other subsequently in the interaction region, the aucceseion of the colliaions depending on the initial pasitions of particles, as is show in Fig. (a),b).
in quantum mechanics both these possibilities give two parts of the aame outgoing wave. The conservation of the set of momenta implies the monochromacy of this wave, hence, the

a)

b)

Fig. 1.
symbole $A_{i}\left(\theta_{1}\right) A_{j}\left(\theta_{2}\right) A_{k}\left(\theta_{3}\right)$ in two poserible auccessiona and requiring the results to be equal. The number and the form of identities turns out to be different for the cases $\mathbb{N}=2$ and $\mathbb{N} \geqslant 3$. For $\mathrm{H}=2$ the factorization equations are given in $/ 5,6,8$ / and their solution is the sine-Gordon S-matrix. For the case $\mathbb{N} \geqslant 3$ they acquire the form:

$$
\begin{gather*}
\sigma_{2} \sigma_{3} \sigma_{3}+\sigma_{3} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} \sigma_{3} \tag{2.6a}\\
\sigma_{2} \sigma_{1} \sigma_{1}+\sigma_{3} \sigma_{2} \sigma_{1}=\sigma_{3} \sigma_{1} \sigma_{2} \tag{2.6b}\\
N \sigma_{1} \sigma_{3} \sigma_{1}+\sigma_{1} \sigma_{3} \sigma_{2}+\sigma_{1} \sigma_{3} \sigma_{3}+\sigma_{1} \sigma_{2} \sigma_{1}+\sigma_{2} \sigma_{3} \sigma_{1}+ \tag{2.6c}\\
+\sigma_{3} \sigma_{3} \sigma_{1}+\sigma_{1} \sigma_{1} \sigma_{1}=\sigma_{3} \sigma_{1} \sigma_{3},
\end{gather*}
$$

where the first, second and third σ in each term are functions of $\theta, \theta+\theta^{\prime}$ and θ^{\prime}, reapectively.
3. SOLUTION OF the Unitarity; analyticity and factorization equations
In tertas of the ratio $h(\theta)=\frac{\sigma_{2}(\theta)}{\sigma_{3}(\theta)}$ equation (2.6a) takes the forms

$$
\begin{equation*}
h(\theta)+h\left(\theta^{\prime}\right)=h\left(\theta+\theta^{\prime}\right) \tag{3.1}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\sigma_{3}(\theta)=\frac{-i \lambda}{\theta} \sigma_{2}(\theta), \tag{3.2}
\end{equation*}
$$

where λ is a cercain parameter. Croasing equations (2.4) lead to

$$
\begin{equation*}
\sigma_{1}(\theta)=\frac{-i \lambda}{i \pi-\theta} \sigma_{2}(\theta) \tag{3.3}
\end{equation*}
$$

Hote that (3.2) and (3.3) satiafy equaitions (2.3b) and (2.6b) identically. It is notable also that after subatitution (3.2) and (3.3) equations (2.3c) and (2.6c) lead to the sams algebraic equation for the parameter λ, which has, except trivial $\lambda=0$, the unique solution

$$
\begin{equation*}
\lambda=\frac{2 \pi}{N-2} \tag{3.4}
\end{equation*}
$$

The rast equation (2.3a) acquires the forms

$$
\begin{equation*}
\sigma_{2}(\theta) \sigma_{2}(-\theta)=\frac{\theta^{2}}{\theta^{2}+\lambda^{2}} \tag{3.5}
\end{equation*}
$$

Eqs. (3.5) and (2.4a) form the aybtem for $\sigma_{2}(\theta)$.
It is clear that these equationg permit σ_{2} to be multiplied by any $2 \pi i$ - periodic meromorphic function which is real on the imaginary axis and satiafies identities

$$
\begin{align*}
& f(\theta) f(-\theta)=1 \tag{3.6}\\
& f(\theta)=f\left(i \pi^{2}-\theta\right)
\end{align*}
$$

Therefore, the general solution having eingularities on the fmaginary axiv only has the form:

$$
\begin{equation*}
\sigma_{2}(\theta)=\left[\prod_{k=1}^{L} \frac{\operatorname{sh} \theta+i \sin \alpha_{k}}{\operatorname{sh} \theta-i \sin \alpha_{k}}\right] \sigma_{2}^{(0)}(\theta) \tag{3.7}
\end{equation*}
$$

where α_{k} are real numbers and $\sigma_{2}^{(0)}$ is the "minimum" nolution of (3.5) and (2.4 a), i.e., the solution with the minimum set of singularities in the θ plane:

$$
\begin{equation*}
\sigma_{2}^{(0)}(\theta)=Q(\theta) Q(i \pi-\theta) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(\theta)=\frac{\Gamma\left(\Delta-i \frac{\theta}{2 \pi}\right) \Gamma\left(1 / 2-i \frac{\theta}{2 \pi}\right)}{\Gamma\left(-i \frac{\theta}{2 \pi}\right) \Gamma\left(1 / 2+\Delta-i \frac{\theta}{2 \pi}\right)} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta=\frac{\lambda}{2 \pi}=\frac{1}{N-2} \tag{3,10}
\end{equation*}
$$

In principle, all the solutions (3.7) are permitted. However, the solution $\sigma_{2}=\sigma_{2}^{(0)}$ is the only one, which does not lead to the 1sospin degeneracy of the spectrum*). This solution does not diaplay any poles on the physical sheet of the S-plane, 1.e., isovector particlea cannot produce any bound atates.

Fote that in the case $\mathbb{T}=3,1.0 ., \Delta=1$ expreseion (3.8) is reduced to

$$
\begin{equation*}
\sigma_{2}^{(o)}(\theta)=\frac{\theta(i \pi-\theta)}{(2 \pi i-\theta)(i \pi+\theta)}, N=3 \tag{3.11}
\end{equation*}
$$

[^3]4. the comparison of the factorized s -matrix with the 1/A EXPANSIOR OF THE MODEL (1.1)

It is convenient to develop the $1 / \mathrm{N}$ expansion of the model (1.1) in the following way /17/. The generating functional for the Green functions of the $n_{i}(x)$ field car be written in the form:

$$
\begin{align*}
& Z\left[J_{i}\right]=I\left[J_{i}\right] / I[0] \\
& I\left[J_{i}\right]=\int \prod_{x} d \omega \prod_{i} d n_{i} \exp \left\{i \int d^{2} x\left[\mathcal{L}^{\prime}\left[n_{i}, \omega\right]+J_{i}(x) n_{i}(x)\right]\right\} \tag{4.1}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{L}^{\prime}\left[n_{i}, \omega\right]=\frac{1}{2 g_{0}}\left[\left(\partial_{\mu} n_{i}\right)^{2}-\omega n_{i}^{2}\right]+\frac{\omega(x)}{2 g_{0}} \tag{4.2}
\end{equation*}
$$

The n_{i} - integration in (4, 1) can be performed explicitly and leads to $Z\left[J_{i}\right]=I^{\prime}\left[J_{i}\right] / I^{\prime}[0]$,

$$
\begin{align*}
& I^{\prime}\left[J_{i}\right]=\int \prod_{x} d \omega \exp \left\{i S_{e f f}[\omega]+\right. \tag{4,3}\\
& \\
& \left.+i \int J_{i}(x) J_{i}\left(x^{\prime}\right) G\left(x, x^{\prime} \mid \omega\right) d^{2} x d^{2} x^{\prime}\right\}
\end{align*}
$$

where

$$
\begin{equation*}
S_{e f f}[\omega]=i \frac{N}{2} \operatorname{tr} \ln \left(\partial_{\mu}^{2}-\omega(x)\right)+\int \frac{\omega(x)}{2 g_{0}} d^{2} x \tag{4.4}
\end{equation*}
$$

and $G\left(x, x^{\prime} \mid \omega\right)$ - the Green function of the operator $\partial^{2}-\omega(x)$. The perturbative calculation of the integral (4.3) leads to the $1 / N$ expansion of the model (1.1). The atationary phase point of the integral (4.3) $\omega(x)=m^{2}=\Lambda^{2} \exp \left(-\frac{4 \pi}{N g_{0}}\right)$ should be taken into account, so functional $S_{\text {eff }}$ and $G\left(x, x^{\prime} \mid w\right)$ should be expanded in $\omega^{\prime}=\omega-m^{2}$ rather than in ω.

It is convenient to use in calculations the following diagram technique which contains:

1) the ω^{\prime} field propagator

$$
\begin{equation*}
D\left(k^{2}\right)=\text { K } \tag{4.5}
\end{equation*}
$$

2) the n_{i} propagator

$$
\begin{equation*}
G_{i j}\left(k^{2}\right)=\frac{i}{k^{2}} j=\frac{i \delta_{i j}}{k^{2}-m^{2}+i \varepsilon}, \tag{1,6}
\end{equation*}
$$

3) and vertices

$$
\begin{equation*}
i \underline{j}=i=i \delta_{i j} ; \tag{4.7}
\end{equation*}
$$

In this technique the closed loops on n_{i} - field lines should nos be dram (they are already taken into account in (4.7)). In (4.5)

$$
\begin{equation*}
i \phi\left(k^{2}\right)=\frac{1}{(2 \pi)^{2}} \int \frac{d^{2} F}{\left(p^{2}-m^{2}+i \varepsilon\right)\left((p+k)^{2}-m^{2}+i \varepsilon\right)} . \tag{4.8}
\end{equation*}
$$

The calculation of loops in (4.7) can be made expiicicitly by means of the following cutting rule /18/*). The ariltrary loop is the evan of terms, each corresponding to a dy division of the loop through two lines.

The momenta $K_{:}$and K_{j} are determined by the condition $k_{i}^{2}=k_{j}^{2}=m^{2}$. The contribution of each division is equal to the production of two trees in both aide of dashed line in (4.9) by the function $i \phi\left(S_{i j}\right)$. At $S_{i j}$ fixed the equations $k_{i}^{2}=K_{j}^{2}=m^{2}$ have two solutions ($k_{i} \rightarrow k_{j}$), both should be taken into account in (4.9).

Consider the $2 \rightarrow 4$ amplitude (Fig. 2) in the order of $1 / \mathbb{N}^{2}$.

[^4]For the sake of simplicity wo shall

Fig. 2. concentrate on the case $i \neq j \neq k$. This amplitude ia given by the sum of disgrams in Figs. Using (4.9) one can replace the diagram in Fig. Sg) by the sum of the loop divisions.

a)

e)

b)

d)

f)

g)

Fig. 3.

Fig. 4.

Consider, for example, the division In Fig.4. Two solutions of $k_{1}^{2}=k_{2}^{2}=m^{2}$ are $k_{1}=p_{5} ; k_{2}=p_{6}$ and $k_{1}=P_{6}, k_{2}=P_{5}$. The factor $i \phi\left(S_{56}\right)$ in this division is the reciprocal wavy line with an opposite align. Therefore the division in Fig. 4 canella out diagrams in Pig. 3 o), I). It is easy to check up that other possible divisions of the triangle in Fig. 4 cancel out diagrams In $\operatorname{Fig} .3$ a), b) , c), d).

The cases $i=j, j=k$ and so on contain more diagrams, however, one can check up that the fie cancellation takes place in all these oases too.

How let us turn to the procese $3 \rightarrow 3$ (Fik.5) and conaider again the cane $i \neq j \neq k$. In the ordsr of $1 / \mathbf{M}$ the matrix element contains dieconnected diagrams onily, the kinematica ensuring the conservetion of the momenta $e=t$. In the ordar of $1 / /^{2}$ we have 7 connected diagrans listed in Fig. 6 。

e)

f)

g)

$$
\text { Fig. } 6 .
$$

It can be easily checked up, that if all the intermediate propagators in diagrams in Figa. 6 a-f) are nonbingular, difforent divielons of the diagral in Fig.6g) cancell the other diagrame in the came manner, as in the previoue oxample. Mabs-ehell aingularities of diagrams in Pig. 6 a-f) require more detailed analyse日. For example, if $p_{1}^{\prime} \rightarrow p_{3} ; p_{2}^{\prime} \rightarrow p_{1} ; p_{3}^{\prime} \rightarrow p_{2}$ diagrama in $\left.\mathrm{Fige}_{\mathrm{g}} .6 \mathrm{c}\right)$, 6d) and 6f) get into mass-shell poles. It can be ahom, however, that the principal parte of these three diagrams cancell er.eh other, and one remains with some regular function and terns with mase-mhell δ - functions. The diagram 6g) cannot cancell the latter, being nonsingular in this region (all the momenta transfared are apace-like). Finally wo are loft with δ - function teris only, the $\bar{\delta}$-functions onauring the factorised etructure of the S-matrix element in Fig. 5.

Uning the teohnique (4.5), (4.6),(4.7) one can oaloulate two
particle S-matrix elements. In the order $1 / \mathrm{N}$ they are

$$
\begin{aligned}
& \left.\sigma_{2}(\theta)=\frac{P_{1}}{P_{1}}+\frac{P_{1}}{P_{2} \quad P_{1}}+P_{2}\right\} \quad \text { (4.10a) } \\
& \sigma_{3}(\theta)=\frac{P_{1} \quad P_{2}}{\left.P_{2}\right\} \quad P_{1}}=-\frac{2 \pi i}{N \theta} \quad \text { (4.10b) } \\
& \sigma_{1}(\theta)=P_{p_{2}}^{p_{2}}=-\frac{2 \pi i}{N(i \pi-\theta)} . \\
& \text { (4.10c) }
\end{aligned}
$$

Expressions (4.10a-c) do coincide with the first terms in $1 / \mathrm{N}$ expansion of (3.8), (3.2) and (3.3).

Another possible expansion check of the $S-m a t r i x ~ o b t a i n e d ~$ is worth mentioning. Adopting the S-matrix (3.8), (3.2) and (3.3) to correapond to some renormalizable and asymptotically free field theory, one can expand matrix elements which are the functions of

$$
\begin{equation*}
\ln \frac{s}{m^{2}}=\ell_{n 2} \frac{s}{\mu^{2}}+\int^{g(\mu)} \frac{d g}{\beta(g)} \tag{4,11}
\end{equation*}
$$

in the asymptotic series in powers of $g(\mu)$. Taking the first term /10/ of the Gell-Hann-Low function of the model (1.1)

$$
\begin{equation*}
\beta(g)=-\frac{N-2}{4 \pi} g^{2}+O\left(g^{3}\right) \tag{4.12}
\end{equation*}
$$

one gets up to $g^{2}(g \equiv g(\mu))$

$$
\begin{align*}
& \sigma_{2}(s)=1-i g^{2} / 8+O\left(g^{3}\right) \\
& \sigma_{3}(s)=-i g / 2+i \frac{N-2}{8 \pi} g^{2} \ln \frac{s}{\mu^{2}}+O\left(g^{3}\right) \tag{4.13}
\end{align*}
$$

$$
\sigma_{1}(5)=i \frac{g}{2}-i \frac{N-2}{8 \pi} g^{2} \ln \frac{5}{\mu^{2}}-\frac{N-2}{8} g^{2}+O\left(g^{3}\right) .
$$

In Eqg. (4.13) the asymptotice $S \rightarrow \infty$ is written down and the power terms in S are dropped.

The ubual g - perturbations of (1.1) are besed on the goldatone vacuum and therafore lead in two-dimenaions to infrared divergencies. However, one can obtain the abymptotics of the scattoring amplitudes, calculating the ultraviolet logarithme of the acattering amplitudes of goldatone particles (to circumvent the infrared difficulties one can impure formally the mass of the goldatone particle). Calculations are Btraightforward and the result coincides with (4.13).

One of the authora is obliged to E.S. Fradkin whose valuable remarke stimulated to some extent the execution of this work.

We thank A. A. Migdal, Yu.M. Makeenko, A. M. Polyakov, M.I. Polikarpov and Yu. A.Simonov for useful discuseions.

REFEREGNCES

1. V.B.Korepin, L.D.Paddeev. Teor.Mat.Fis.25,147(1975).
2. B.E.Vargeles, V.M.Gryanik. Yad. Fiz.23,1324(1976).
3. P.P.Kulioh. Teor. Mat. Fiz.26,198(1976).
4. A.B.Zamolodchikov. Pirme JBrP 25,499(1977).
5. A. B. Zamolodohikov. Preprint ITEP-12(1977).
6. M, Karowel, M.-J.Thun. Preprint FUB/HEP Pebr. 77/5.
7. P. Teine. Phya.Lett. 67B, 179, (1977).
8. M. Karowth, H.-J.Thun, T.T.Truong, P. R. Teine. Phya.Lett. 67B, 321(1977).
9. L. Castillejo, R.E.Dalitin, F.J.Dyeon. Phym.Rev. 101 ,453(1956).
10. A. M. Polyakov. Phyw. Lett. 59B, $87(1975)$.
11. A.A.MEdal. JEPP,69,1457(1975).
12. E.Brezin, J.Zinn-Juntin, J.C.Ie Guillon. Phye.Rev.Di4,2615(1976).
13. D. Grcess, A.Feveu. Phy』.Rov. D10, 3235(1974).
14. C.H. Yeng. Phym. Rev. 168,1920(1968) .
15. J. B. Me'Guire. J. Fath. PhyE. 5,622(1964) -
16. ReDemhon, E.Hanalechor, A. Xovau. Fhya.Rev.D12,2443(is75) 17.E.Bresin, J.2inn-Ji@tin. Phya.Rev. 814,3110 (1976). 18. I. Ya.Arafeve, V.E.Xorepin. Piema ∇ JB2F, $20,680(1974)$. 19. B. Barg. Praprint FUB/REP Pebr.77/6.

[^0]: *Insti+ute of Theoretical and Experimental Physics, Moscow.

[^1]: *) In this case, as well af in the MTM, the unitarity, analyticity and factorization conditiona admit, of course, the arbitraryness of the CDD -typa, so here we mean the uniqueness of the

[^2]: "minimum" golution, i.e; the eolation with the minimul eot of eingularitien (see Sac.3).

[^3]: *) The other remarkable eolution containe aingle CDD pole $\alpha_{1}=2 \pi \Delta$ Contrary to $\sigma_{2}^{(0)}$, this Bolution correeponds to the attraotivo interection and seema to be the sxact S-matrix of the fundamental fermano of the arosin-lioveu model /13,16/. The argumente rill be publimhed elsewhere.

[^4]: *)
 An analogous result for the arbitrary fermion loop has been obtained in /19/.

