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KsaHTOBa111te If He110Kanhttb1e non.H 

PaccMOTp$Ha CB.li3b nocrynara npH'iHH"rroCTH c yc11os11.HMH KBaHTosaHH51 

n1u1 cnyqa51 CKan~pHoro non.H. 
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tfiyHKUHOll8110B. nonyqeHO Bh1pail\8fHfe KOJ\1MYT8TOp8 TOKOB ll,fl.H HeflOK811bHblX 

noneH n npocrpa11crneHHo-nono6Hoii 0611acTH. 

Pa6oTa 01,1no11HeHa a fla6oparopHH TeopeTH'lecKoH 4JH3HKH OHHH. 
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Quantization and Nonlocal Fields 

A relation between the postulate of cau$ality and 
quantization conditions is considered for the scalar 
field. 

A formalism of outer forms given on the functional 
space is used. A current commutator is obtained for 
nonlocal fields in the space-like region. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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Usually, in quantum field theory, the 
condition of local commutativity is used to 
consider as an independent postulate. It 
should be noted, however, that at least for 
free fields it is an immediate consequence 
of the covariant conditions of quantizati­
on !11 • Therefore, it is natural to try to 
find the connection between the quantization 
conditions and causality postulate. In 
attepmting-to make this problem more clear, 
we shall use the formalism of outer forms 
given on a functional space. 

Let the s-matrix be a function of the 
asymptotical in-fields ¢(x) 

Following the method by N.Pogolubov 121 
, 

suppose that the region of space-time, where 
¢(x) is nonzero.breaks into two subregions 
a1 and G2 such that all points of one of 
them (say, G1) lie in the past relative to 
a certain time r whereas all points of the 
other ( G 2 ) in the future. Then 

oS 4 
--- 8¢ (x)d x. 
0¢ (x) (1) 

where 8¢(x} is an infinitesimal variation 
of ¢ (x) different from zero for x 0 >r only. 
Multiplying (1) by iS+ we obtain the 1-form 
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. + 4 as + 
w ~ 1 /ls S - i ( d x --- s B ¢ (x) -

x
0

>r 8¢(x) 

~ r d 4x j (x) 8 ¢ (x). (2) 
xo>r 

Taking the outer variational derivative of 
the 1-form (2) under the condition that 
ll¢(x') differs from zero only for x'.:;x, 
we get 

a j (x) 

8 ¢ (x,) 

4 4 
x (8¢ (x) !\ 8¢ (x ')]d xd x'. 

The expression in braces is identically 
written as 

{-llj(x) - __ llii:_'.l_ 1- i[ j(x),j(x')]. 
8¢ (x , ) 8 ¢ (x) 

The causality condition implies 131
: 

(3) 

(4) 

! ~j.5!)_ - ~kl I~ o. 
ll¢(x') 8¢(x) 

2 
for (x-x') <O. (S) 

Consequently, using condition (5), expression 
(3) gives 

(6) 
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Thus, the condition (6) is a consequence of 
the causality postulate. The field ¢ (x) which 
obeys the Klein-Gordon equation can be de­
composed into the system of orthonormalized 
functions 

¢ ( x) = ~ I f ( x) qa + f * (x) p I , 
a a a a 

(7) 

and the expansion coefficients can be regard­
ed as canonical variables lq",pa I of a gene­
ralized phase space m . Then we can define 
the contravariant vector 

a ---- ~ ! 
a¢(x) a 

r * (x) _a_ - f (x) _}!__ I . 
a aq a ap 

a a 

(8) 

Differentiating the expansion (7), the co­
variant vector is 

d¢(X)= 2: If (x)dqa+f* (x)dp I. 
a a a a (9) 

Then, let us use the following expression for 
the outer derivative of certain 1-form w 

given on lR 141 
: 

d w ( X , Y) = X w ( Y) - Y w (X ) - w ([ X , Y ) ) , (10) 

where x , Y are arbitrary contravariant vec­
tors on m. 

If the 1-form w is determined by expres­
sion (2) and the contravariant vectors ·are 
determined by expression (8), then equation 
(10) will be of the following form 

a a 
dAwl a¢(XJ, aq,(x~I= 
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- ' a j(x) a j (x, ) l . a 
_, --- - -.--- -w([---

a¢(x') a¢(x) a¢ (x) a¢ (x , ) ]) . (11) 
a 

Since from the condition (6) it follows that 

a a 
d w!---. ---1=0 

A a¢(x) a,f;(x ') (12) 

then from (11) and (4) we deduce the current 
commutator 

[j(x). j(x')J- w ([--a - . a ]) . 
iJ¢(x) a¢(x') 

(13) 

for (x-x' ) 2 < o. 

By using expression (8) the commutator 

[ a - a J can be given the other 
a¢(x) a¢(x-, )-

form 

r-L-. _---2._ __ J = 2 ! r (x)ff3*(x' )-ff3(x' )f*(x)I x 
a¢ (x) a¢(x') a.{3 a a 

x[-a __ , _ _i!___l= 21'> Jx,x')[_?-,_a ___ ]. Cl 4 ) 
aqa apa a.{3 a{5 aqa apf3 

where 
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From the quantization conditions for 
field ¢ (x) it follows 

hence, expanding 

of (14) into the 
we have 

the commutator in 

system of vectors 

(15) 

the r.h.s. 
a a 1--.--1 

aq a ap 
a 

(16) 

hithout loss of generality, we may assume 
that 

y 
caf3 ~ 0 for af f-! 

(1 7) 
Cy - Cy for a-=1,2, ... oo 

aa a 

then the commutator (14) reads 

a 2 
[ aq,(x )- · aef,(x7)- 1 ~ 

(18) 

z2 A (x.x')ICY __ a_ -Cy _a_ I. 
a,f3 aa a aq y a ap 

. y 

Substituting expressions (18) and (2) into 
(13) and taking into account the orthogona­
lity of the basis phase space 

d a a . a {3 
Q (-{3) z/3 , dp (-} -/3 

a .Tq f3 a ap a 
f3 

(19) 
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we find 

[ j( x) . j(x ') ] ~ 

4 y -
= { d Y j(y) S t> (x,x') !f (y)C -f* (Y)CY (20) 

a,y aa y a y a 

for (x-x' )2 < O. 

In the limit of plane waves 

f (x) ~ 
a 

1 ikx 
fk(x),....~-e 

vko 
(21) 

the expression (20) reads 

[ j ( x) . j (x , ) l -

for (x-x'/ < O, 

4 ikx 
where j(k) = rd kj(x) e 

If the Hilbert space H is defined through 
the scalar product 

<¢.<fr>={¢ (P)i/1*(p)d!Jm(p), (23) 

where 

¢.fr;, H • 
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then the orthogonal transformation J on H 

J : ¢ ~ i <(p 0 ) ¢ ( p) (24) 

determines the complex structure of H and 
allows one to determine the skew-symmetric 
form 111 

B I¢ , .p I = -< J ¢, .p > = 

= -i { ¢ (P)</J *(p) dPo)dn (P)' 
p2= m2 m 

(25) 

In terms of definitions (23) and (25)' the 
current commutator is [j(x), j(x') l~ 

= Im < j , B ( x-x ' ) > , for (x - x' )2 < Q, 

where 

Thus, finally, the current commutator 
acquires the following form: 

[ j( x) , j (x ' ) ] ~ Im < j, B ( x - x ' ) > 

2 
for (x-x ') < 0. 

For the ¢(x) local, the coefficients 

(26) 

(27) 

(28) 

9 



are analytic functions of p and, consequent­
ly, 

(2 9) 

where i\ (m, x-x ·) is the standard commutation 
function for a free scalar field. The pro­
perties of this function give rise to the 
following condition: 

I j (x), j (x • ) I ~ 0, for. (x-x'J2< 0. (30) 

That is just the usual condition of local 
commutativity. 

The author is grateful to D. Elokhintsev, 
V.Kadyshevsky and V.Suslenko for interest 
in the work and to E.Ivanov for useful dis­
cussions. 
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