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Ycnoeue, onpenensiniiee BeJHYHHY HeNepEHOPMUPOBAHHOA
KOHCTaHTbl CBFI3H B KBAHTOBOH 3/IeKTPOOMHAMHUKE

PaccmaTpupaeTcs CNMHOPHAS 3NeXTPOLHHAMUKE B KY/NOHOBCKOH Kaiik6—
poBKe. ﬂoxaaano,_yro iernepeHopmiuposainas ¢yHkuwsa IpuHa dorona
Xk;q,m, 1) (q=e” /(477 e - HelepeHOPMHDPOBAHHLI 3apsin 3MeKTpo—
Ha, M -~ Mmacca angxrpoua,? - MaKcCHManbHbll 3-UMTYIbLC) HMeeT BHA

Wkigmf ) =F IDk’? :q.00 + QUm/ 8},
rae D)’(t;q,00 — dyuxunq, onpeneneunas ypabHenusamu (7a), (8a), (6s). Ans
TOoro, 4robn mMacca ¢oToHa 6hula paBHA HyM©, HEOGXOOMMO, YTOGLI dyHKUM A
Dt q,0) umesna nomoc npu t2=0 (ecnw 6ul 3Ta QYHKUHS MMeNa NOMIOC
npu t2-t240, To $poTOH MMen Sbi GeckoHeumnyw Maccy fit,l u 6o 6w
ifenonsusen). ITO ycloBue W onpefeliseT KOHCTAaHTY CBA3H e,0HAa OKa3bipa-
eTcd He JapHCcHed or m.

Hacroswas paboTa ocHoBaia #a BaXHOM yTBepKOCHHM O TOM, 4YTO
ofpiMuas npouenypa OTHpachiBaHKS KBAAPaTHYHO pacxomswuxcs -f 2 ynenos
B oneparope [)‘ka,m_F) ARNASTCA HENONHOH! yCl/IOBHe paBEHCTBA HYMIO
KBANPATHMIIO PACXOAAUEHCT HACTH MOIBONSET ONPEACIIHTL BETHYHHY KOHCTAHTH!
¢ DNICKTPOMACHUTHOrO B3aumoneiicTousi, PaccmaTpuBaeraa B HacToswled
paGoTe BOIMMKHOCTL ONpPENeCHHS KOHCTAHTH CBN3H CyWeCTByeT B Mmoo
Modesu, TC HaCTh WIEHOR NepeHOPMIPOBKM 3anpemena (om, §5.3),
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The Condition Determining Nonrenormalized

Flectromagnetic Constant e2/(he) in Quantum

Electrodynamics

The spinor electrodynamics in the Coulomb gauge is

considered. It is shown that the nonrenormalized photon”
Green function IMkigqml) Iq = oz'Mnl), e is the non-
renormalized electron charge,f 1is the cutoff momentum, as
introduced by formula (3) (see also paragraph 2.2),m is
the electron mass | has the form Dikiqm.f)={D/f:q0 -
+ Otm=/¢ N f=, where D't:q.0? is the function, defined by
(6b) and (7a), (8a), where one has to put n-0 (note that
cutoff { does not enter into these eqs.). For the photon
mass to be zero it is necessary that the function D’(t;q.0
has a pole at t?= 0 (if the pole were at tZ=t2 # 0, then
the photon would have the physically inacceptable infinite
mass -f|t;|). The latter condition defines the value of
the constant q,q=q;. The constant q; does not depend on the
electron mass m. This work rests entirely on the following
important statement: the usual procedure of omitting the
quadratically divergent terms (~f? of the function Dlk: q.m. 0!
is incomplete; the condition for the omitted -2 part of
the operator Dikiqm, £)! to be equal to zero enables
one to find the value of the electromagnetic charge e.
The discussed possibility of determining coupling constant
exists in any model where one of the mass renormalization
terms is forbidden (see paragraph 5.3).
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1. Consider a model of quantum elgctrody-
namics describing the interacting spilnor
and electromagnetic fields. This model has

the Hamiltonian /1/
' (L)
H = H0 ot Ho ph+HI+H2 +H3

Here H, , and H, , are the Haml}tOE}aTZ of
free transversal electromagnetic 1tie
and free spinor field H'",e.g.,

Hy = fd*xy*-ia v o+ B (2)
The operator H,,
) —efuraA | (pe0d i, (3)

describes the interaction of these fields;

/2 L iEx=Tx|o .

A (x,0=(2n) . [ d k[ak)\(me c.c.l,
k| <f ()

€, €, =0 , &5 k=0, A0 =12
kA kA7 A kA



The analogous representation of the fermion
operator ¢(x,t) also contains only momenta
smaller than the cutoff momentum ¢. The ope-

rator H2,

3. 43
. - - - d X d Yy
H, = (e 2/2) (1" (X, 00 (b * (30U (3 ) Y (5)
i X -¥|
describes the Coulomb interaction between
electronics. The operator Hg,,

H3:Bnlfilj(xﬂ,t)’»“;-’t)dgx’ (2a)

corresponds to the electron mass renormaliza-
tion,

We stress that the Hamiltonian (1) has no
term of photon mass renormalization

Lo - 2 3
H, = const [(A " (X,t)" d x. (1a)

2. Summing up the perturbation series gives

the integral equations for determining the
nonrenormalized photon and electron Green
functions /% (see also /% )and the vertex
functicn {we are looking for the nonrenorwma-
lized Green functions so we do not include
into the Hamiitonian (1) the terms of wave
function renormalization):

1 .

Gpie,mty - ip+ m+Sm o+
+qfA (,p-k:;k;q,m,0)Gp-k;aq,m,0) ~
IL

=~y D , (k;q1xn,ﬂ)d4k,

v {a

D#V(k;q,m, Py = D;V(k)+ qD'ua(k;q,m,[’,)
x Spl[G(p;q,m,E )Aa(p,p—k;k;q,m,ﬂ) x

x Gp-k;q,m,0)y, dpIDS, k),
A, (p,p-s;s5q,mb) =y, -

—qu#(p,p—k;k;q,m, OGp-kiq.m,f) ~

X

xA ,(p-k,p-k-s;8;q,m0)Glp-k-s;q,m, 1 >

4
xA, (p-k-s,p-si~k;q,m, )D,, (kiqg,m,E)d7k + ...

Here

2 o2 2
a=e% W d% = dpdp,dp,dpy k= (k) -k,

r

k. /() 2/k 2

H-v

[, ~k

p=0 v =123;

pD° (k)= ¢ O,
(1%

v =0, p = 1,2,3;

k VK2, p=v =0,

=1,2,3;

(7)

(8)

(9)

(10)



is the photon Green function in the zero-order
approximation (Dg, (k) arises from the
Coulomb term (5)3.

2.1. Equations (7) and (10) imply

D, (kig,m Ok, =0, p = 123,

1 ﬁMw
onn—-

D#V(k;q,m,g )k#:O, v = 1,2,3,

=

so that Dgs(k;q,mf) =0 (g3 is the unit
vector in the direction k, cf. (4)) and the
matrix D#V(k;q,mjﬂ), pv = 01,23, has no
inverse one. This matrix, however, has the
inverse one in the space pv = 0,1,2, just
this latter space will be used in our work.

2.2, According to eq. (4) and the remark
after it, the integration regions in eqs.
(6)-(8) are limited by the condition that
spatial parts of all the 4-momenta are smaller
than the cutoff momentum¢.As for the integra-
tion over zero-components Py.ky, these are to
be performed in infinite limits (from -w till
+e ). The latter rule follows from the
usual transform of the three dimensional in-
tegral

@n) [ = explik - y) =ik xg-y 16, =k, k /00 %),
|k{<t
Hy =1,2,3

into the four-dimensional integral
—4 Foe

i(27) [ dk, f

T e K-k

3
d k

explik(x-y) (6, ~k k, /K)?).

2.3, Eauations (6)-(8) imply the Ward
identity//

(pl_pz)#A#(plvpzﬁ)l“Pz;q,m.g) =
- -1 (11)
=G (;q,m ) -G (pqm0),

thus facilitating the task of solving these
eqs.

5. Let us produce in eqs. (6)-(8) the
change of variables

m=¢n, dm = €&n,

p=1Ffr, k ft, s = fu,

G(p’ q,m, g) = G'(r; q,n)/?,

12
A (p,p-k:k;qm,l) =A’(r,r—t;t;q,n), (12)
M M
: , 2
Dlw(k;q,m,[’)d)lw (t;q,n)/f .
Then we get:
G’(r;q,n)_1 =ir +n+0n +
6a
+ qu; (r,e-t;t;q,n) G’(r—t;q,n) x (6a)
’, . 4
xyVD#V (t;q,n)d%t,
7



D#V(t; q,n) = D#V(t) + qD;lo(t; q,n) x

(7a)
><fSp[G'(r;q,n)r\,;(r,r—t;t;q,n)><
x G*(r=t:q.m)y )ID° ()dt ,
T TV
A’(r,r-u;u;g.n) =y +
a g
(8a)

—qu;l(r,r—t;t:q,n)G'(r—t;q,n)><
><A('7(r—t,r—t—u:,u;q,n)G'(r—t-—u;q,n)x

4
xAL(r—t-u.r-u;-t;q,n)D’ (tig.m)dt + .. °

(3%

(here the spatial parts of all 4-momenta do
not exceed unity: cf. paragraph 2.2).

4. The main advantage of the system (6a)-
(8a) 1s that unlike (6)-(8) it does not cua-
tain explicit:y the cutoff momentum ¢.

5. Now 1t 1s easy to explain the idea of
the present work. Equations (6a)-(8a) contain
two constants n+én and q.

The solution of these eqs. must satisfy
the following two physical conditions: the
masses of electron and photon are to be
equal to m and zero, respectively, so that
the Green functions G'(r;q,n) and D’(t:q,n)
would have poles at r?--n2 and t2=0. These
8

two conditions, in general, define completely
both the constants at our disposal.

5.1. According to (12)

n=m/t, (12a)
where m is the physical mass of electron.
Since m does not depend on ¢, eq. (l2a) im-
plies that n is an infinitesimal quantity:
we are to solve the system (6a)-(8a) with n=0
and then look for the small corrections

due to n#0.

5.1.1. The quantity én 1in eq. (6a) 1is
determined by the condition that the Green
function G’r;q,n) has a pole at r2=-n2.
So, for the case n=0 eq. (6a) is to be re-
written in the form:

. 1A
G'r;q, M =ir+q/ A“(r.r—t;t;q,()) X

« G lr=t; 0,0 y D’ itiq,0d"t -
1% IJ.I/
(6b)
4 4 .
—qu;“L~t;uq,O)GT—t;qJDyVD“VQQQJDd t;

herc the latter term is dn; in eqs. (7a),

(8a) one has to put n=0.
5.2. Let a#q, (see Abstract) .Then the

Green function D’(t;q.0) would have a pole at
some value t?=t2£0 of the parameter t?,so that

9



the photon Green function D(k;q,m,¢) would
have a pole at kZ-k2¢? This pole cor-
responds to the physically inacceptable
photon mass ~fk,|. (In particular, there would
be no interaction between such '"photons").

5.2.1. Let n#0; then the electron mass
would be infinite(-fn), and there would be no
interaction between "electrons",

5.2.2. S, egqs. (6)-(8) have ‘the physi-
cally admissible solution only for some
definite value a=qg of the electromagnetic
coupling constant g,

5.3. One can make the photon mass to be
zero by including into the tamiltonian the
additional term (la). Such an inclusion,
however, is inadmissible one for the reason
that it spoils the initial Maxwell eqs.
(unlike Familtonian 1)).

>.4. For any value of n, the condition of
paragraph 5.2 (the function D%t:q,n)
has a pole at t%-0) defines @ as a function

of n:
q = f(n).

The infinitesimal variation of n due to m£0
gives only an infinitesimal increase in the
value of q g

Bq 0--m/f.

5.4,1. S, the value of electromagnetic
charge does not depend on the electron
mass m.

10
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6. Our work rests entirely on the fol-
lowing important statement: the usual proce-
dure (see, e.g., refs./3.4/ ) of omitting the
quadratically divergent part-f2 of operator

-1 A
D(k; q,m,f) (see paragraph 2.1) is in-
complete: the condition for the omitted wE
part of D(qm )77 to be equal to zero
enables one to determine the value of the
electromagnetic charge e. The argument for.
omitting is that this part contradicts the
gauge invariance. The latter statement is
wrong for the following reason. a) The for-
mulation of electrodynamics we use (eqs. (1)-
(5)) evidently is gauge invariant throughout.
b) The ~f2part of the operator Dik;q,m, £)-!
is nonzero in the lowest -e? order of pertur-
bation theory. This is evident when we take
into account the eqs. (3) and (4).

6.1. We stress that our consideration is
gauge invariant throughout. The variables
which were subjected to the gauge transfor-
mation were removed in deriving the Hamilto-

nian (1)—(5)/“4The operators A (x,t) and
Y(x,t) in eqs. (1)-(5) are gauge inva-
riant*.

6.2. Th? 02 divergent part of the operator
D(k;q, m,f) does not arise if one uses the
gauge invariant Pauli-Villars regularization

*

- -1 i
A0 A -A gad diva

4

¢f(x)=exp[ie1\0(x)]l,//0(x), Ay (x)=A divA

where ¢,(x) is the function in the initial
Lagrangian &8¢ =-ie¢10y#l/10A#(x); A 1is the
Laplace operator.

11



(4). This regularization, however useful prac-
tically, cannot be considered as satisfac-
tory in principle, for it means, e.g., the
breakdown of the Hamiltonian (1)-(5) and
Schrodinger equations.

7. In the present work we use the nonco-
variant cutoff. For this reason we have to
use noncovariant counter-terms of wave func-
tion renormalization /4/,

8. The possibility of the coupling con-
stant determination, noted in this paper,
exists evidently, in any other model where
the mass renormalization term of type (1la)
is forbidden (e.g., the scalar electrodyna-
mics and massless Yang-Mills model)*,

9. The problem of coupling constant de-
termination we discuss is considered also in
two (at least) groups of works/56/ and /7/
(see also references in /7/ ). All these
works do not take into account the ~£2
part of the operator D(;qm?)}.
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