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~CTaBeHKO n,f, E2 - 10819 
Y enos He, orrpenensnn111ee B€11H4HKY HenepeHOpMupoe.aHHoH 
KOHCTBHTbl CBH3H B KB8HTOB0i1 ~lleKTpO!IHHBMHKe 

PaccMaTpHaaeTC51 cnKHOpHASl 3neKTpO!IHH8MHKa B KynoHoacxoH Kann6-

poaKe. noKA38HO, l..JTO HenepeHOpMHpOB8HH8SI tflyHKUHSl fpKHB !fJOTOHa ,, 3 
IXk;q.m. Y) (Q• e" /( 4"' ) . e - aenepeaopMKpoaaaHLili 3ap>!ll 3nexTpo-
Ha, m - MBCC8 3lleKTpOHA, p - MBKCHM81lbHbiJi 3-HMrrynbC) HMeeT BHll. 

In·qmfl-P-lfl'(k'P ;q.Ol • 0((m'Pl"ll. 
rne ll'(t;.q,'Ol- ¢YHKUKR, onpeneneaaaR ypaaHeHK>!MK (7a), (Sa), (6a). llnR 
Toro, 'IT06hr Macca ljJoToaa 6hlna paaaa aymo, aeo6xonHMO, 'IT06br ljJyaKUH>I 
[J'(t;q,Ol HMena non10c npH 12=0 (ec-~H 6br 3Ta ljJyaKUH>I KMena non10c 
npH t 2- q ,i 0. TO ljJOTOH HMen 6hr 6ecxoae'IHYIO Macey r It II H 6brn 6bJ 
HeOOflBH/hefl). 3TO yC1lOBHe H onpeaensteT KOHCTBHTy CBH3H e.0!-18 0K83biB8-

eTC51 HC 3l)BHCSUUei1 OT Jll • 

HacroRlll<lSI pa6ora ocnosa11a .-ia Ba)KHOM yrsep>t<ll.eHHH o TOM, 'iTO 

Ofihi'IHS>I npouenypa OTfipaChiB1lHH>I KBtlllpBTK'IHO paCXOil>IWKXC>I _p 2 qneHOB 
B onepaTope [l-l(k:q,m. Pl SHIJlReTCR Henomtoil: ycnOBKe paBeHCTBa aymo 
KBatlpDTH'-IIfO pACXO!lRUiei1C51 '-lfiCTH n03B011ReT onpeae11HTb B811Ht{JHty KOHCTBHTbl 

e :':llTCKTP0'\1llrHHTHoro B3BHMoaeiiCTBHst. PaccMaTpHBae~.:aH a Hacrosmreif 
pn6ore B03MO>KHOCTb onpetieneHHSl KOHCTaHTI->1 CBSl3H CyWeCTByeT B 111060H 

MonenH, rnc '-laCTb qneHon nC'pPHop~titpoBKK .3anpewena (eM. §5.3). 

flpenpRHT 061.e.llRReHHOrO RRCTRTYTR a.llepllW. RCCnC.IlO&aUI. Jly6H& 1977 

Zastavenko L.G. E2 - 10819 
The Condition Determining Nonrenarmalized 
Electromagnetic Constant c2/(he) in Quantum 
Electrodynamics 

The spinor electrodynamics in the Coulomb gauge is 
c;onsidered. It is shown that the nonrenarmalized photon 

1 Green function IHk;q.n:.f) lq ~ " 2 ·r4rr 1l , <' is the nan-
renormalized electron charge, r is the cutoff momentum, as 
introduced by formula (3) (see also paragraph 2.2),m is 
the E;,lec,troiJ mass I has the farm D<k;q.m.PI~ID'<k/f;q.Ol ' 
+ O(m" 'f "ll Y-. where ll'<t;q.Ol is the function, defined by 
(6b) and (7a), (8a), where one has to put n ~ 0 (note that 
cutoff Y does not enter into these eqs.). Far the photon 
mass to be zero it is necessary that the function D'(t;q,Ol 
has a pole at t 2= 0 (if the pole were at t 2 ~t~ f, 0, then 
the photon would have the physically inacceptable infinite 
mass -Y !t 1 1 ). The latter condition defines the value of 
the constant q,q=q0 . The constant q 0 does not depend on the 
electron mass m. This work rests entirely on the following 
important statement: the usual procedure of omitting the 
quadratically divergent terms (-Y 2l of the function D<k:q,m.rl-1 

is incomplete; the condition for the omitted -~ part of 
the operator ()(k;q:m. n-1 to be equal to zero enables 
one to find the value of the electromagnetic charge e. 
The discussed possibility of determining coupling constant 
exists in any model where one of the mass renormalization 
terms· is forbidden (see paragraph 5.3). 
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1. Consider a model of quantum electrody­
namics describing the interacting spinor 
and electromagnetic fields. This model has 
the Hamiltonian /1/ 

H Hoe+ Ho ph+ Hl +H2 +H3 

Here H
0 

hand H0 e are the Hamiltonians of 
free trlnsversal el~ctromagnetic field 
and free spinor fieldHtr,e.g. 

(1) 

-> -> 

H
0 

e= fd 3xt/J*(-i(l V + (3m)t/J. (2) 

The opera tor H 1 , 

-> -> tr 3 
H

1 
= eft/J*(x)ClA (x)t/J(x)d x, (3) 

describes the interaction of these fields; 

-> tr __, -3/2 
(x,t)=(2rr) · · f A 

-> 
( _,. ( _. 

k.\ k ,\' 
=0 

-> 

\k \ <f 

,\,\ ,• 
-> 

{__, 

k.\ 

3 -> i(k;- \k\ t) 
d k[akt\<kAe +c.c.], 

( 4) 

k 0 , .\,.\' 1,2 0 
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The analogous representation of the fermion 
operator tjJ (;., t) a 1 so contains only momenta 
smaller than the cutoff momentum e. The ope­
rator H2 , 

3 3 2 , -. -.. --..-. dxdy 
H ') =(e /2' (l;J*(x,t)!jJ (x,t)v *(y,t)lj,(y,t)---· 

~ lx -.YI 
describes the Coulomb interaction between 
electronics. The operator H 3 , 

- --> -+ 3 
H 3 =omJt/l<x,t);u(x,Ud x, 

(5) 

(2a) 

corresponds to the electron mass renormaliza­
tion. 

We stress that the Hamiltonian (1) has no 
term of photon mass renormalization 

-• tr -+ 2 3 
H 4 = constJ<A (x,t)) d x. (la) 

2. Summing up the perturbation series ~ives 
the integrJl equations for determining the 
nonrenormalized photon and electron Green 
functions .'2/ (see also /3/) and the vertex 
functicn (we are looking for the nonrenor~~­
lized Green functions so we do not include 
into the tk1.mlltonian (1) the terms of ~·ave 
function renormalization): 

4 

·-1 
G(p;t;,m.P) " ip ·+ m tum + 

+qJA Cp,p-k;k;q,m,EJG(p-k;q,n,O :-.. 
~ . 

4 
y D (k; q, m, f )d k, 
· v 1u/ 

(6) 

Dllv<k;q,m, e>= n;)k>+qD!lO(k;q,m,f) X 

X Sp[JG(p;q,m,£ )Aa(p,p-k;k;q,m, e) X 

x G(p-k;q,m,Oy
7 
d 4p}D~v (k), 

A 
0 

(p, p- s; s; q, m, f) = y a -

-qfA
11 

(p,p-k;k;q,m, f>G(p-k;q.m,P) v 

x A a ( p- k , p-k- s ; s ; q , m, f) G ( p- k- s ; q , n:, f) :. 

x A v ( p- k- s , p- s ; - k ; q , m, f) D 11 v ( k; q , m ,f ) d 
4 

k I "' 

Here 

q = e 2/(4rr 3);'d4p= dpldp2dp3dpo ,k 2 ~o7> 2 -k~' 

[o/lV -k11 kv/(k) 2]/k 2
, /l•V =1,2,3; 

D 0 (k )= 
/lV 

0, 
ll = 0, v = 1,2,3; 

v = 0, ll = 1,2,3; 

1/(k) 2 , /l =V = 0, 

(7) 

(8) 

(9) 

(10) 
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is the photon Green function in the zero-order 
approximation <D~Q (k) arises from the 
Coulomb term (S)J. 

2.1. Equations (7) and (10) imply 

3 
I D 11 v (k; q, m,f>kv = 0, IL = 1,2,3, 

V=l r 

3 

I D llv<k; q, m,f )kll = 0, ~/ = 1,2,3, 
!L= 0 

so that D33 <k;q,m,£> = 0 ... (; 3 is the unit 
vector in the direction k, cf. (4)) and the 
matrix Dllv<k;q,m,f), IL·v = 0,1,2,3, has no 
inverse one. This matrix, however, has the 
inverse one in the space IL·v = 0,1,2, just 
this latter space will be used in our work. 

2.2. According to eq. (4) and the remark 
after it, the integration regions in eqs. 
(6)-(8) are limited by the condition that 
spatial parts of all the 4-momenta are smaller 
than the cutoff momentumf.As for the integra­
tion over zero-components p

0
,k

0
, these are to 

be performed in infinite limits (from -oo till 
+oo ) • The latter rule follows from the 

usual transform of the three dimensional in­
tegral 

3 
-3 d k --> --> --> -+ -+ 

(277) f -- exp[ik(x-y)-ijk)jx
0

-Y.
0 

j](o -k k l<k> 2>, 
-> 2)ki !LV v IL 

jkj<f 

/L,V = 1,2,3 

into the four-dimensional integral 

-4 +oo d 3k -> 

i(2rr) f dk 0 f --exp[ik(x-y)](o/lv -~k/ll<k>2 >. 
-oo -+ k2 . 

)kj<f - lC 
6 

2.3. E~uations (6)-(8) imply the Ward 
identity I I 

(p1-p2)1L/\/l(p1,p2;p1-p2;q,m,f) = 

-1 -1 
= G (p 1;q,m,)- G (p 2;q,m,f), 

(11) 

thus facilitating the task of solving these 
eqs. 

3. Let us produce in eqs. (6)-(8) the 
change of variables 

m = e n, om = eon' 

p = er, k = et, s = eu, 

G (p; q,m, e> = G '(r; q,n >I e, 

1\ (p,p-k;k;q,m,O =A'(r,r-t;t;q,n), 
IL IL 

. 2 
n,LV<k;q,m, O=D(lv (t;q,n)/e. 

Then we get: 

-1 A G'(r;q,n) = ir + n +On+ 

+qfA' (r,r-t;t;q,n) G'(r-t;q,n) x 
IL 

x y D' (t;q,n)d4t, 
V /LV 

(12) 

(6a) 
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D'(t;q,n)=D 0 (t)+qD' (t;q,n) x 
f.lV f.1V 11a 

x J Sp [ G '(r; q, n) A '(r, r- t; t; q, n) x 
(J 

4 
x G '(r- t; q, n) y )] Do ( t) d t , 

T TV 

A'(r,r-u;u; q,n) = y + 
a a 

- q J A' (r, r- t; t: q, n) G '(r- t; q, n) x 
Jl 

x A' (r- t, r- t-u; u; q, n) G '(r- t- u; q, n) x 
a 

4 
xA~1(r-t-u.r-u;-t;q,n)D;1v(t;q,nld t + ... 

(7 a) 

(Sa) 

(here the spatial parts of all 4-momenta do 
not exceed unity: cf. paragraph 2.21. 

4. The main advantage of the system (6a)­
(8a) is that unlike (6)-(8) it does not ct·:l­
tain explicit;y the cutoff momentum t'. 

5. Now it is easy to explain the idea of 
the p r e s en t work . Eq u a t ions ( 6 a ) - ( 8 :1 ) c on t a in 
two constants n+on and q. 

The solution ~f these eqs. must satisfy 
the following two physical conditions: the 
masses of electron and photon are to be 
equal to m and zero, respectively, so that 
the Green functions G'(r;q,n) and D'(t:q,n) 
would have poles at r 2=-n 2 andt 2 =0. These 
8 

~ 
~ 

' I .. 

two conditions, in general, define completely 
both the constants at our disposal. 

5 . 1 • According to ( 1 2 ) 

n = m/C, (12a) 

where m is the physical mass of electron. 
Since m does not depend on e, eq. (12a) im­
plies that n is an infinitesimal quantity: 
we are to solve the system (6a)- (8a) with n=O 
and then look for the small corrections 
due to nt'O. 

5.1.1. The quantity on in eq. (6a) is 
determined by the condition that the Green 
function G'(r;q,n) has a pole at r 2 =-n 2 • 

So, for the case n= 0 eq. (6a) is to be re­
written in the form: 

C'<r;q,Ol-l ~· i;+ qfi\'(r,r-t;t;q,O) x 
' fl 

xG'(r-t; q,O) y D' \t;q,O>d4
t -­

v f.lV 
(6b) 

- qf'\1 <0,- t; t; q '0) G '(- t; q' ()) y VD ;lV(t; q, ()) d \; 

her~ the latter term is on; 1n eqs. 
(8a) one has to put n=O. 

(7 a) , 

5.2. Let qfq
0 

(see Abstract) .Then the 
Green function D'<t;q, ()) would have a pole at 
some value t 2 =t~f0 of the parameter t 2 ,so that 
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the photon Green function D(k;q,m,e) would 
have a pole at k 2=kif 2. This pole cor-
responds to the physically inacceptable 
photon mass -flk 11. (In particular, there would 
be no interaction between such "photons"). 

5. 2 .1. Let ntO; then the electron mass 
would be infinite(-fn),and there would be no 
interaction between "electrons". 

5.2.2. &>, eqs. (6)- (8) have the physi­
cally admissible solution only for some 
definite value q=qo of the electromagnetic 
coupling constant q. 

5.3. One can make the photon mass to be 
zero by including into the t~miltonian the 
additional term (la). Such an inclusion, 
however, is inadmissible one for the reason 
that it spoils the initial Maxwell eqs. 
(unlike ramiltonian (1)). 

5. 4. For any value of n, the condition of 
paragraph 5.2 (the function D'<t;q,n) 
has a pole at t 2=m defines q as a function 
of n: 

q = f(n). 

The infinitesimal variation of n due to m;£0 
gives only an infinitesimal increase in the 
value of q

0
• 

Bq 
0
-m/f. 

5. 4 .1. &>, the value of electromagnetic 
charge does not depend on the electron 
mass m. 

10 
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6. Our work rests entirely on the fol­
lowing important statement: the usual proce­
dure (see, e.g., refs. 13 ,41 ) of omitting the 
quadratically divergent part~2 of operator 
D<k;q,m,f)-

1 
(see paragraph 2.1) is in-

complete: the condition for the omitted -f 2 
part of D(k;q,m, o-I to be equal to zero 
enables one to determine the value of the 
electromagnetic charge e. The argument for. 
omitting is that this part contradicts the 
gauge invariance. The latter statement is 
wrong for the following reason. a) The for­
mulation of electrodynamics we use (eqs. (1)-
(5)) evidently is gauge invariant throughout. 
b) The -f 2part of the operator D(k;q,m, o-I 
is nonzero in the lowest-e2 order of pertur­
bation theory. This is evident when we take 
into account the eqs. (3) and (4). 

6.1. "e stress that our consideration is 
gauge invariant throughout. The variables 
which were subjected to the gauge transfor­
mation were removed in deriving the Hamilto­
nian (1)-(5) /I/.The operators Atr(;,t) and 
!f!<i,t> in eqs. (1)-(5) are gauge inva­
riant*. 

6. 2. The e 2 
divergent part of the opera tor 

D(k;q, m,e)-
1 

does not arise if one uses the 
gauge invariant Pauli-Villars regularization 

* ->tr -+ -I -> 
A (x) = A (x) - ~ grad divA 

-I -+ 1/l(x)=exp[ieA 0 (x)]!/1 0 (x), A0 (x)=~ divA, 

where 1/1 0 <x) is the function in the 
Lagrangian o£ = -ie!/1

0 
y 1/1

0 
A (x); 

Laplace opera tor. 11 11 

initial 
~ is the 
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(4). This regularization, however useful prac­
tically, cannot be considered as satisfac­
tory in principle, for it means, e.g., the 
breakdown of the Hamiltonian (1)-(5) and 
Schrodinger equations. 

7. In the present work we use the nonce~ 
variant cutoff. For this reason we have to 
use noncovariant counter-terms of wave func­
tion renormalization /4/. 

8. The possibility of the coupling con­
stant determination, noted in this paper, 
exists evidently, in any other model where 
the mass renormalization term of type (la) 
is forbidden (e.g., the scalar electrodyna­
mics and massless Yang-Mills model)*. 

9. The problem of coupling constant de­
termination we discuss is considered also in 
two (at least) groups of works /s,6/ and /7/ 
(see also references in 171 ) . All these 
works do not take into account the 4 2 

part of the operator D<k;q,m,0-1 • 
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