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0 cyrrepCHMMe!'pH'IeCKOli MOJlenH 

'MeWKe' 
sine-Gordon 

E2 . 10793 

H 0 llBYXMepHOM 

B pa6oTe o6cylKJlaeTCll MOilellb sine-Gordon anll cnyqag CKangpHoro 

cyrreprronl! B llBYXMepHOM llpOC!'paHC!'Be. nonyqeHbl HOBble ypaBHeHHll, 

CMeWHBSIOWHe cjlepMH- H 6oae-nonll H HX CTSUHOHapHbl9 peWeHHSI, Peayllb-

TSTbi o6o6WeHbl Ha cnyqall MOJlenH llBYXMepHOI"'O 'MeWKa•, 

Pa6oTa BblllOnHeHa B Jla6opaTopHH Teope!'H'IeCKoll 4JH3HKH OHHH. 

flpeap••T 061.e.1111•euoro ucT•TYT& a,llepBWx •ccne.lloii&DA. ,lly6aa 1977 

Hruby J. E2 - 10793 

On the Supersymmetric Sine-Gordon Model and 
a Two-Dimensional "BAG" 

The sine-Gordon model as the theory of a.massless 
scalar field in one-space and one-field dimension with 
interaction Lagrangian density proportional to cos {3</> 
is generalized for scalar superfield. There are obtained 
exact solutions of the supercovariant coupled equations 
of motion. From this a "BAG" model is constructed. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. INTRODUCTION 

Most of the physicists believe that quan
tum field theory based on quark fields is 
a good candidate for hadron dynamics. Despite 
the successes of the quark model, one is 
puzzled as to why we do not see quarks. 

One of the possible answers is 1'quark 
confinement" /l/, The quarks may be "confined" 
in the "quark bags", for example the "SLAC
BAG" model/ 2/. This "quark bag" can be related 
to stable classical solutions of non-linear 
field equations, like "soliton". 

An instructive example of a soliton field 
is determined by the Lagrangian density/3( 

1 f1 a 0 
L =-a" cpa ¢ + -<cos{3¢ - 1). 

2 r {32 
(1 .1) 

Here a 0 and {3 are real parameters, the physi
cal meaning of which is the following: a 0 
is the "squared mass" of the minimum energy 
excitations and {3 is a parameter which mea
sures the strength of the interaction bet
ween these small oscillations. 

From the Lagrangian density (1.1) the 
equation of motion is the sine-Gordon equa
tion: 

ao 
o¢ =- -sinf3¢. 

{3 
(1 . 2) 
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The static solution of Eq. (1.2) is the so
li ton 111: 

4 -1 -
¢s ={3tg expy'aox· (1. 3) 

The main goal of this work is the super
symmetric sine-Gordon model and a two di
mensional "BAG" obtained from this. The 
procedure is the following: we shall start 
from the four dimensional superspace, using 
the technique of superfields in two-Bose
and two-Fermi-dimensions by straightforward 
adaptation of the usual technique in eight 
dimensional superspace. It means that the 
scalar superfield and the covariant deriva
tive are given by the usual expressions/~: 

- . -
S(x , e ) =¢(x)+ i(Jtfr(x) + ~ OOF (x), 

a a 2 (1. 4) 

Da 
a 
ae + iOy· a, (1. 5) 

where a=O,l and a=O,l. The supermul tiplet 
!¢<x),t/J(x),.F(x) l contains the Fermi field 
(Major ana sp inor) t/J(x) and the Bose fields ¢<x> 
and .~d. Using the covariant derivative on 
the scalar superfield S(x,e) one can construct 
the expression 

.Lims<x,O) = F<x>+ iO~t/J<x> + .Leeo¢<x> 
2 2 

(1. 6) 

and obtain the free massless equation 

-
DDS(x, e) = 0. (1. 7) 

The usual massless free-field Lagrangian is 
the coefficient of eo in the following ex
pression: 
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• - - 2 • -. 
~-S (x,O)DD S(x,O)= ... iOO( ~cf>Dcf>+J..F -tp~tfr>(l.8) 

In Sec. 2 we construct the supersymmetric 
sine-Gordon model and obtain two basic equa
tions of motion coupling the Fermi field 
tfr (x) and the Bose field cf>(x).Using the 
soliton (1.3) as the input potential in the 
equation of motion for the Fermi field we 
obtain the exact stationary solution for tfr. 
In Sec. 3 we get from these equations the 
coupled semi-classical differential equa
tions for the colourless quark fieldtfr(x) 
of one flavour only and for the Higg's field 
cf>(x). Such equations are obtained directly 
from the supersymmetric sine-Gordon model 
and are the starting point of the "BAG" 
model. 

The exact solution of the coupled equa
tions is derived in Sec. 4.So, we obtain the 
"BAG" describing strongly bound quarks in 
two dimensions from the supersymmetric sine
Gordon point of view. 

2. THE SUPERSYMMETRIC SINE-GORDON MODEL 

~e shall proceed as follows: first, we 
construct the supercovariant sine-Gordon 
equation for the scalar superfield S(x,e ) 
using the supersymmetry Lagrangian techni
que/sf. By analogy with the Lagrangian den
sity (1.1) the dynamics of the supersymmet
ric sine-Gordon model will be determined 
by the Lagrangian density which is the coef
ficient of oe in the following expression: 

{- s < x , e > D D s < x , e > + v < s <x , e > > , ( 2 .1) 
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where 
a 

V ( 8 ( X , () ) ) = b2 ( COS b 8 (X , () ) - 1 ) , 

and a,b are parameters which will be spe
cified later. The supercovariant equation of 
motion is 

~DO S(x,()) = V' (S(x,()) ), (2. 2) 

where 

V' (S(x,()))-=- :sin bS(x,() ). 

It is the supercovariant sine-Gordon equa
tion. Now, we obtain the coupled equation of 
motion from the Lagrangian density (2.1) for 
ordinary fields in two dimensions. 

First, we use the Taylor expansion of the 
cosine in the expression for the V(S(x,())): 

a 
V ( 8 (X, 0)) "" b

2 
(COS b 8 (X, 0) - 1 

( 2 0 3) 

2 2 4 4 6 6 
a ( b S (x,O) b S (x, 0) b S (x, 0) ) 

=- - ---- + ----- - ----b2 2! 4! 6! .... 

From the superfield theory / 5
/ we know that 

the product of superfields is again a super
field, and therefore, can be expanded in 
Taylor's expansion ino which is finished for 
two e because the e -elements anticommute. 
This specific characteristic of superfields 
allows one to express the cosine in the re
lation (2 . 3) : 

6 
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a b2 
2 - - - -

- [-- (¢ +2i0t/J¢ + i()() F¢ - (}{}t/Jt/J) 
b2 2! 

4 

+_!<¢ 4 +4iOtfJ¢3 +2iOOF¢3 -6oO~t/f¢ 2 > 
4! 

(2.4) 

- }! ( ¢ 6 + 6 i if t/1 ¢ 5 + 3 i 0 () F ¢ 5 -15 if() if; t/1 ¢ 4 
) etc . 

6! 

where we use e t/1 = ~ () and the symbolic express ion 
for the fields. In the Lagrangian density, 
which is obtained from the relation (2.1), 
the elements with two () only are important 
in the supersymmetric Lagrangian, and so, we 
get for ordinary fields Lagrangian density 
in two dimensional space the following expres
sion: 

1 1 2 i-· a -
L = -¢ D¢ + -F - -l/l~l/1 -- <F¢ + it/Jl/1 

2 2 2 2 

b 2 . b2 
__ F ¢3 _ _1_ if; t/1 ¢ 2 

3! 2! 

b 4 'b4 
5 1 - 4 

+-
5
-, F¢ +-t/Jt/1¢ )etc. 
. 4! 

1 1 2 i -· a i -
=- ¢o¢ +- F - - ljJ a ljJ- -- F sinb¢- -at/Jt/J cosh¢. 

2 2 2 2b 2 

(2. 5) 

There is no kinetic term for F; hence, this 
field can be eliminated by using the equation 
of motion which includes: 
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a 
F - 2"b sin b¢ = 0 . (2. 6) 

Using Eq. (2.6) we get the Lagrangian densi-
ty 

1 i -. 2 2 . 1 a . ta-L= 2 ¢o¢ --1/J ~ 1/J -- ~ sm b¢ - -1/J 1/J cos b¢ (2. 7) 2 8 b 2 

and hence, we obtain two basic equations of 
motion coupling the Fermi field o/ and the 
Bose field¢: 

( i ~ + i a cos b¢ ) 1/J = 0 , (2.8a) 

Dc/J 
1 2 . 
- ..!. sin b¢ cos b¢ + _!._ ab~ 1/J sin b¢ = 0 . 
4 b ~ 2 (2.8b) 

We can see that if we have no spinor fields, 
i.e., t/f= 0, then (2.8b) is equivalent to 
the sine-Gordon equation (1.2) under the con
ditions: 

2 
a . b Dc/J - -- sm2 ¢ = 0 
8b 

f3 = 2b 

ao 
2 

a 

f3 8b 

In this case we obtain the following expres
s ion for the parameters: b = ..11., a = 2 i i;;;. 

The static solution of Eq~ (1. 2) is the 
soliton (1.3). We shall now consider the 
soliton (1.3) as the potential in Eq .. (2.8a) 
and we obtain for the static solution tfJ the 
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following equation: 
I . 4 I -

iy ai!jf =- iacos b(-tg- expyao x)!jf . 
f3 (2. 9) 

~e want to derive the stationary solution 
o f Eq . ( 2 • 9 ) : 

0 1 1/JI' - -1 - 1/Jl 
i ( ) ( , ) -= 2 v a

0 
cos 2 tg expy ~ x ( ) , 

-1 0 I/J2 o/ 2 

where we denote c\ 1/J =1/J '. So, we have the 
equations: 

-I 
+ i!jf 2' = 2 y a 0 cos 2 tg exp y a

0 
x 1/J 

1 
, (2.10a) 

- -1 -
- i !jf1 ' = 2 y a 0 cos 2 tg exp y a

0 
x 1/J 

2 (2.10b) 

Now, we denote 1/J (x) =x<x> 
Eqs. (2.10a,b) we get 

ul 
u > and from 

2 

u u 
_2. + -l = 0 
u u 

1 2 

u 1 = u 

U2 "" ± 

and we have to solve one equation 

±x' = 2y-; cos2 tg-1 expya xx . 
0 0 

(2.11) 

(2.12) 

The solution of Eq. (2.12) has the amazingly 
simple form 
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±2 
x = C ( cos h y a

0 
x ) 

Since the condition 
2 

(jljij < 00 

must be fulfilled, we obtain the stationary 
solution 

-2 1 
V' ( x ) = C ( cos h y a 

0 
x ) ( _ i ) , 

where c is the constant. Such a solution 
is a fermion like the soliton. 

3. A TWO-DIMENSIONAL "BAG" MODEL 

~tarting with Eq. (2.8a,b), we shall now 
study small oscillations about the ground 
state c/J=Oo We can expand the cosine and sine 
in power series in Eq. (2.8a,b), and we 
obtain: 

0 b2 
i(j ljJ + i a1,U = _I~_ <P 2 ljJ 

2 

1 2 a2b2 i a·b2 -
o¢ ---a ¢ +--¢3=- -- ¢1/It/J 0 4 6 2 

We shall specify the parameters a, b 
usual notation (see ref./1 I ): 

o ab 2 

g = I--
2 

112 = -
a2 

--
4 

A = -
a2 b2 
--· 
6 

10 

(3 .la) 

(3 .1 b) 

with 

.I 
l 

1 
) 

where A and 11
2 are 

in the familiar ¢4 
coupling constant. 

the positive parameters 
theory and g is the 

Now, the equations 
(3 .la, b) become: 

2 
i/Jljl -2 flt/J = g¢ ljJ , 

(3. 2a) 

o¢ +f12¢ -A¢3 =-g¢ljlljl (3.2b) 

These equations are the starting point of 
the "BAG" model describing strongly bound 
quarks in a simple two dimensional case. 

Equations (3.2a,b) are derived from the 
supersymmetric Lagrangian density (2.7) for 
small oscillations: 

L = j_ ¢ Dc/J }22 1221 --a(p +--abc/J 
2 8 24 

2 
I - 1a - iah 2 -

- --lji;JtjJ - -- ljJ lji + --- ¢ ljlljl 
2 2 4 

or in usual notation 

L 1 1 1 -¢ o¢ + - 11 2 ch 2 _ _ A¢ 4 

2 2 4 

- _)__ J; (j ljJ + 11 J; ljJ + !_ ¢ 
2 J; lji 

2 2 

There are trivial 
Eq s . ( 3 . 2 a , b ) 

classical solutions of 

(3. 3) 

ljJ = 0, 
+ 

¢cl 
± _fl_ 

y A (3. 4) 
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corresponding to the minimum of the "poten-
tial energy" V < ¢ ) : . 

A 2 2 I v ( ¢ ) = -- I ( ¢ 2 ( X ) - __!!:_ ) d X 
4 A 

which is normalized to zero. We can see that 
the energy degeneracy of the classical ground 
state solutions (3.4) implies spontaneous 
symmetry breaking. 

Expanding around the stable vacuum solu
tiDns (3.4): 

¢(x) =¢(x) ±_£__ 

leads to ·li\ 
2 

J1 J1 -[-i~ -(2/1 + g- )]l/J ±2-= g¢lf 
A yA 

- 2 
g¢ l/1 = 0 (3. Sa) 

2 - - -2 - 3 - J1 
(-o-211 )¢ ± 3J1yA ¢ -A¢ +g(¢ ±-.=-) lf~' =0 

vA (3.5b) 

thus determining the classical mass parameters 
of the quark field 

2 
m = 2Jl + J!...IJ._ 

q A 
(3. 6) 

and of the Higg's field 
-

mH = v 2 J1 (3.7) 

From Eqs. (3. 2a, b) we can see there is anot
her stationary solution, with l/1 = o of the 
equation 

2 
d 2 2 

(--+Jl -A¢ )¢(x)=0 (3.8) 
dx 2 

namely, the "kink solution": 

J1X J1 ¢ (x) = -tanh 
A y2 (3. 9) 

12 
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l 

This kink solution has some obvious charac
teristic features of the classical solutions: 

i) ¢(x) is classically stable, 
ii) ¢(x) connects the two degenerate va

cuum solutions: 

</> (X ) -· + J1 for X --J> ± oc ; 

yA 
iii) The total energy of¢(x) according to 

(3. 4) is finite ( see also ref ./2/) 

E <¢ ) = 
VI~ _f3 

3 A (3.10) 

and the energy density is concentrated in 
a finite region around x= 0; 

iv) The kink solution¢< x) is singular 
for A ..,.o, i.e., "non-perturbative". 

The solution of non-linear field equa
tions with the properties i)-iv) is the soli
ton. In our approach we have obtained such 
a soliton directly from the supersymmetric 
sine-Gordon model. 

Of course the soliton ¢(x) is stable, be
cause it is the lowest energy solution with 
the conserved topological number 

rx T =~-(<f>(oo)-¢(-oo)). 
2fJ. 

The topological number is conserved because 
the spatial asymptotic behaviour of solutions 
¢<x,t) of the field equation (3.2b) remains 
fixed. The topological property of the 2-
dimensional spacetime allows one to relate T 
to a conserved current: 
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811 yA 11v (x,t)=--( a ¢ (x,t) 
211 

1/ 

+oo l 
T = f B (x,t)d x (3.11) 

0 

Ill/ =-(fill, OJ 
( ( = 1 . 

Now, we present the exact solution to our 
coupled field equations (3.2a,b) in 1 space, 
1 time dimension. 

4. THE "KINK WITH TRAPPED QUARK" 

Equation (3.2b), as was shown in Sec. 3, 
has for the "kink solution" (3.9): 

¢ ( x ) = _l!;_ tanh .1!:2£ __ 
K "17\ v2 · 

If we now consider this solution as the input 
potential in Eqs. (3. Za) , we obtain: 

2 
·] /1 2/lX 
Iy a]~' -2/llfr .. g A tanh -= lfr . 

y2 
( 4 .1) 

We want to obtain the stationary solution 
o f Eq . ( 4 . 1 ) : 

2 
( 0 1 ) ( lfrl' ) gil 2/lX lfr1 

= (211 + -- tanh --==-) ( ) , 

A v2 lfr2 -1 0 t/1.' 
2 

where we denote a !fr =lfr '. 
. I 

So, we have the equa-
t1ons: 

14 

+ i!fr' = (211 
2 

gJ12 2J1X 
+ --- tanh -- ) lfr ' 

A 2 I 
( 4 • 2a) 

2 
. ,/, ' ( g 11 h2 J1 X 

- 1'1' = 211 + -- tan -)lfr 
I A 2 2. 

(4.2b) 

Using the same method as in Sec. 2 we have 
to solve one equation: 

2 
gil 2 11 X 

± x ' = ( 2 J1 + A tanh -=- ) x ( 4 • 3 ) 
y2 

The solution of Eq. (4.3) has the form: 

g 11 2 g 11 v2 11 x 
x = C exp ± [ ( 2 11 + -- ) x - -- tanh -....=- ] . ( 4 • 4 ) 

A A y2 
Using the relation (3.6) for the quark mass 
and the relation (2.11), we can write 

- 1 
ljf(x)=Ccxp± (m x- ~/1V 2 -tanhll!_)(_i ). (4.5) 

q A v2- + 

Since the condition 
2 

fllfr I < oo 

must be fulfilled, we obtain the stationary 
so 1 u t ion of Eq . ( 4 . 1 ) 

lfr 
tr 

gJly/2 J1X 1 . 
(x) =Cexp-( m x ----tanh-==) ( i) for x .> 0 

q A yi2 + 

lfr (x) = C exp+(m x _gJlY~anh~) (_~) for x< 0. 

(4. 6) 

tr q A -y2 

The solution (3.9) (the kink field ¢K(x)) 

and the solution (4. 6) (the trapped quark 
field lfrtL<x> ) provide exact solutions of 
the coupled Eqs. (3. 2a, b) . 
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5. COMMENTS 

"e have discussed the realization of the 
two-dimensional supersymmetry theory in the 
sine-Gordon model. We have obtained the 
coupled field equations in two dimensions 
and also their exact stationary solutions: 

l -
¢ ( x ) = ..1. tg- exp v a x , 

{3 0 

-2 1 rP ( X ) = C ( COSh y'; X ) ( · ) • 
0 -I 

~e have studied how from the two-dimensional 
supersymmetric sine-Gordon model the quark 
confinement is obtained . Ey analogy with the 
"SLAC-BAG" model we have obtained "kink with 
trapped- quark" in our "BAG" model. 

The trapping of the quark does not play 
role in the kink energy because 

- t-0 . 01 1 
r/Jr/J""' r/J y t!f =x <t, -I)< ><. >x = o. 

, + 1 0 ±I 

The integral for the mass term vanishes, and 
we obtain the same expression (3.10) for the 
classical energy. 

Thus, the state "kink with trapped quark" 
described by the classical solutions (3.9) 
and (4.6) represents a "field theoretical 
bound state" with strong binding and may 
describe hadrons with confined quarks. In 
contrast with "SLAC- EAG" in the ref. 121 our 
approach is obtained directly from the 
supersymmetric sine-Gordon model. 

The author is indebted to Prof. V.I.Ogie
vetsky for useful discussion. 
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