


E2 - 10765

E.A.Ivanov, A.A Kapustnikov *

RELATION BETWEEN LINEAR

AND NONLINEAR REALIZATIONS
OF SUPERSYMMETRY

Submitted to “ITucvma 6 XITD“

OMAM
SUBJIMOTEKA

* Dnepropetrovsk State University,

L]



lisano E.A., Kanycruukos A,A. E2 - 10765
CBg3b NuHeitHoOW M HenuHefiHON peann3auuit CynepcHMMeTpHH

YcraHoBneHa c8sa3b MeKAYy CyMepnofeBhIM M0AX0A0M K CylNepCHMMeTpHH
M HenuHejHoll peanu3anunei Bonkosa-Axynosa.lTonyyenust ofmue ¢opmyannb
nepexoga OT OAHOW peann3auuu x apyroft. [TokasaHno, uTo B mob6oil nepeHop-
MHUpyeMOR MoaeNnw CO CHOHTAHHBIM HapylWeHHeM CynepCHMMEeTpHH UHBAPHAHTHO
JdeficTBHe, NMepBOHaYaNbHO 3anHCcaHHoOe 4Yepe3 CyNepnonig, MoxeT ObITb
IKBUBAMEHTHO [IPEACTAB/EHO B TEepMHHAX MoNel HelHHeHHOI peann3alHH,

PuaGora punonHeHa B JlaGoparopuu TeopeTuueckoit ¢uauku OUHAH,

1. There exist two different ways of im-
plementing the supersymmetry'transforma—
tions. One of them is the linear realization

{IpenprHT OGBENEHEHHOro RHCTETYTA AMEPHNX HccnenoBanull . Ay6una 1977
on superflelds ¢ (x, 0)/V.
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Relation between Linear and Nonlinear ‘ (Dk (x,0) = (Dk('x —2—icy‘0, 0-¢), ’ (1)
Realizations of Supersymmetry: =
, - : where &k represents the Lorentz index; another
The intimate correspondence between the superfield ‘ is the VOlkOV‘AkUlOV nonlinear realiza-
approach to the supersymmetry and the Volkov-Akulov tlon/2/ which involves as a basic entit
"nonlinear realization is established. General formulas . : ? . . Y
the nonlinearly transforming Goldstone

for transition from the linear realization to the nonli-

near cne and backwards are obtained. Sp1nor ¢ (x)

. =e— ¢ p
The investigation has been performed at the 8¢(X) (0 21 ey‘ul,[/(X)a v (%) (2)
Laboratory of Theoretical Physics, JINR. : . ’
, . and acts on other fields o, (x) as follows:
1 - - . .
o X) = — — ¢ ( )a‘u . -
Uk( ) Ty Y#H[’ X ”ak,(X)' - (3)

The nonlinear realization exhibits most
purely the idea of sportaneous supersymmetry

Preprint of the Joint Institute for Nnclear Reseirch.Dubna 1977 ‘) breaklng
‘ Based on the analogy with internal sym-

metries one may expect that these two approa-
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ches are related with each other* , In the
present note we find a general relation
‘between linear and nonlinear realizations
of supersymmetry and give concrete prescrip-
tions how to pass from one realization to
the other. In particular, we show how to
construct linear superfields of nonlinearly
transforming quantities ¢ (x) , o (x) . It 1is
noticed, that in any renormallzkble model
of spontaneously broken supersymmetry one may
use the parametrization of invariant action
by fields y(x), o, (x) equally with the con-
ventional parame{rlzat1on by linearly trans-
forming superfields.

2. The general theory of nonlinear rea-
lizations of internal symmetries/s/ says
that any linear multiplet of a given group
can be converted into the direct sum of
nonlinearly  transforming fields by means
of the group transformation with the Gold-
stone field as a parameter. The analogous
theorem holds in the case of supersymmetry.
Let us perform, in some superfield ® (x,0),
local supertranslation with parameter -y (x):

o 1 -
(Dk(x,0)=(l>k(x+i-x[1(x)y6,0+¢1(x)). (4)

*The possible existence of such a rela-
tion was pointed out by Ogievetsky, who in
1974 constructed certain linearly transfor-
mlng functions of the Goldstone spinor y(x)
in the space-time of dimensionality 2+1 (see
also Zum1n0/34/ )
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One may check that under transformations (1),

(2) components of the '"shifted" superfield
7(x,0) transform independently of each-

ot er, according to (3):

_____];_? y’ a ) ) R
o, (x,0)= ¥ nl¢(x)3 e (x,0). -~ (5)

Thus, by changing variables, any super-
field w1th linear transformatlon law (1) can
always be brought into the splitting form
(4) in which it is equivalently represented
by a set of nonlinearly 'transforming com-
ponents. The components of @7  (x,0) are finite
polynomials in antlcommutlng spinors ¢ (x).

Note that unlike the case of internal sym-
metries’s’ canonical transformation (4) in-
cludes necessarily field derivatives. s

3. Inverting eq. (4), one expresses- the
superfield &, (x,0) .in terms of the non-
11near reallzatlon quant1t1es

-, o
(Dk(x,ﬁ)szk(x,e—lll(x)), . ‘ (6)
where §'(x,6) 'is a solution of the nonlinear
equation '

~ 1 —4~ . |
:0 - : = .

xp(x )+ > x/zi(x)yFVO x, 7 (7)

{(7) by iterations one may repre-

‘as a finite polynomial in nil-
and derivatives of

Solving eq.
sent X (x,9)
poten{lquantltles 0, ¢{(x)
¥ (x) . }
Relation (6) is the supersymmetric counter-
part of the polar decomposition of linear
multiplets of ‘internal symmetry, the Gold-
stone field ¢ (x) being an analog of angle ’



varlables and the components of superfield

¢(x 0)° being analogous to radial wvariables.
The r.h. side of eq. (6) is the superpo-

sition of the following 60-polynomials:

5, (x,0) 4L, (% (x,00), - (8)

¢ (x 0) e def

=Y (x(x, 0))— o - o 09)
Each of them%transforms.under supertransla-
tions (2), (3) by linear law (1), i.e., pos-
sesses itself the properties of superfield.
.To-verify this one has to take into account:
that the group variation of functions ¢ (X), -
gk(I) consists both of their change at the
point x according to rules (2), (3) and
of the ghange due-to the shift of x,  induced
by the transformation of function #gb(§)
in eq. (7) (coordinates x_ and 0, remain
unaffected). #

So, given nonlinearly. transformlng fields
¥,(x),0,(x) by the substitution x»x,(x,0) one.
can construct linearly transformlng super-
fields with any external spin. From spinors
% (x) alone it is possible to form super-
fields either by multiplying basic -super- ..
fields (9) or by applying algorithm (8)-to
the covariant derivativeV_ ¢ (x)/2 which
transforms like fields o (x),: i.e., by law
(3). First method is restricted‘to the
construction:of scalar, pseudoscalar, spinor
and pseudovector superf1e1ds only

4. Relatlon (4) makes it p0551b1e to rep—
resent any renormalizable model with spon-
taneously broken supersymmetry (linear :o-.
model):in térms-of the mnonlinear realiza- .
tion, ..in the complete analogy.with_ the case.
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‘of internal symmetries/6.,7/

To get the non-
linear representation of the linear o¢-model
one has to do as follows. In the invariant
action written through superfields ¢ (x,6)
and the1r covarlant derivatives DB¢(x )

S = fd d? 0L(<1>(x o) D, (x, [N (10)

B

one performs the change- ‘of variables x 0

as suggested by eq.
(10) takes‘the fbrm

(4), after that act10n

s —fd4xd 0] (x,6) L (0,0,(x), V0,00,V ¥ (), (1)

where o, (x) are components of superflelds
%x,0), ¢ (x) is. connected by the equiva-
lence transformatlon with the Goldstone spinor
of the linear realization, v denotes the
non11near covarlant der1vat1ve The quan-
tity ~ J.(x,0) is the Jacobian of transfor-
mation (4). It is calculated accordlng to the

~general rules of changing variables in Gras-

sman 1ntegrals/&’ and has the following
structure ..

]B(x,0)=dé't T(x)detM(x,0), T an

where

s a V_‘L »V_‘—" : e

T (=8 2_6. v (x)y ¥, PR (13)
M(x@)a--l—vw(x)y .. - ~ (14)

The integration measure d%*xdet T ‘.arising
in (11) coincides with the invariant volume
element introduced in ref./2/It contains the



kinetic term of the Goldstone spinor ¢ (x).

On imposing the covariant condition g (x)=0
action (11) reduces to the nonrenormalizable
nonlinear action of ref./? supplemented
with certain nonminimal interactions of
field ¢ (x).In more detail the transition to
the nonlinear parametrization will be dis-
cussed in forthcoming publications. It is
worth noting that the parametrization of the
action by the fields y¢(x), 9 (x) is most
convenient while analyzing 1ow energy conse-
quences of the spontaneous supersymmetry
breaking because the transformation of the
Goldstone fermion ¢ (x) 1is separated from
that of other fields. ‘

. Finally, canonical transition (4), (6)
‘can be used to give the superfield form to
the supersymmetric Higgs effect/9.4/ treated
up to now in the framework of nonlinear

realization. :

We express our deep gratitude to Professor
Ogievetsky for interest in the work and
constructive remarks. We thank Drs. Sokatchev
and Zupnik for useful discussions.
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