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CsH3h n11HeAHoA H HenHtteAHOA peanH38UHA cynepCHMMeTpHH 

Y CTaHOBnena Cl3H3h Me>KllY cynepnoneBblM DOllXOllOM K cynepCHMMeTpHR 

H Hen11HeAHon peanH3aUHeA BonKosa-AKynosa.nony,1eHhI o6wHe <jiopMyn&1 
nepexoaa oT 011HoA peam13amrn K 11pyron. noKa3aHo, 'ITO B nJ06ofi nepeHop­
M11pye~10A MOllenH co CDOHTaHHblM napyweHHeM cynepCHMMeTp1111 HHBapRaHTIIO 
aeRcTBlle, nepBoHa'lanhHO 38DIIC8HHOe qepe3 cynepnonH, MO>KeT 6hlTh 

3KB11sanettTHO npe11cTasnetto B TepM11Hax nonen Hen11tteAHofi peanH3au111t. 

Pr,6oTa DblOOnHeHa B fla6opaTOpRII TeopeTH'leCKOH <PR3RKH OJ.1 HH. 

IlpenpBHT 061»e.t1BHeHHOro BHCTBTYT& JIJlePHWX 11ccne.11oaaHBI. JJ.y6Ha 1977 

Ivanov E.A., Kapustnikov A.A. 

Relation between Linear and Nonlinear 
Realizations of Supersymmetry 

E2 - 10765 

The intimate correspondence between the superfield 
approach to the supersymmetry and the Volkov-Akulov 
nonlinear realization is established. General formulas 
for transition from the linear realization to the nonli­
near one and backwards are obtained. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. There exist.two different ways of im­
plementing the supersymmetry transforma­
tions. One of the~ is the liriear realization 
on superfields tPk (x, 0)/1/. · 

tP ' ( x, 0) = ¢, ( x - - 1-·c y O, 0 - d , ( 1) 
k k , 2i 

where k iepresents the Lbrentz inde~; another 
is the VolKov-Akulov nonlinear realiza­
tionl~which involves, as a basic entity, 
the nonlinearly transforming Golastone 
spinor !/J(x) 

S!/J(x)=c--1:--f-Y 1p(x)a/11p(x) 
• 2 1 /1 

(2} 

and acts on other fields ak(x) as follows: 
1 . 

8 a ( x) = - -: -; y 'P (x) a/1 a (~). 
k . 21 /1 · k 

(3) 

The nonlinear realization exhibits most 
purely the idea of spontaneous supersymmetry 
breaking. 

Based on the analogy with internal sym­
metries one may expect that these two approa-

3 



ches are related with each other* . In the 
present note we find a general relation 
between linear and nonlinear realizations 
of supersymmetry and give concrete prescrip­
tions how to pass from one realization to 
the other. In particular, we show how to 
construct linear superfields of nonlinearly 
transforming quantities i/J (x) , al.-.(x) . It is 
noticed, that in any renormalizable model 
of spontaneously broken supersymmetry one may 
use the parametrization of invariant action 
by fields i/J (x) , a ( x) equally with the con­
ventional paramelrization by linearly trans­
forming superfields. 

2. The general theory of nonlinear rea­
lizations of internal symmetries/5/ says 
that any linear multiplet of a given group 
can be converted into the direct sum of 
nonlinearly· transforming fields by means 
of the group transformation ~ith the Gold­
stone field as a parameter. The analogous 
theorem holds in the case of supersymmetry. 
Let us perform, in some superfield <l:Jk (x,O), 
local supertransla tion with parameter -i/J ( x): 

a I -
<l:Jk(x,0)=<1:Jk(x+ 

2
i i/J(x)y0, 0+i/J(x)). (4) 

*The possible existence of such a rela­
tion was pointed out by Ogievetsky, who_ in 
1974 construtted certain linearly tranifor­
ming functions of the Goldstone spirior i/1(~) 
in the space-time of dimensionality 2+1 (see 
al s.o Zumino /3,4/ ) 
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One may check that under transfotmations (1), 
(2) components of the "shifted" superfield 
<l:J~(x,O) transform independently of each 
other, according to (3): 

o (}Jk (x, 0) =-~EY i/J(x) aµ.<I>a (x,0). 
21 µ. k 

(5) 

Thus, by changing variables, any super­
field with linear transformation law (1) can 
always be brought into the splitting form 
(4) in which it is equivalently represented 
by a set of nonlinearly transforming com­
ponents. The components of <I>:(x,0) are finite 
polynomials in anticommuting spinors i/J(x). 
Note that unlike the case of internal sym­
metrie~5/ canonical transformation (4) in­
cludes necessarily field derivatives. 

3. Inverting eq. (4), one expresses~the 
superfield ¢k(x,O) ~n terms of the non­
linear realization quantities: . 

a !. -
<f) k ( X, 0) = <l> k ( X , 0 - i/J ( X) ) , {6) 

where.xp(x,0) is a solution of the nonlinear 
equation . 

;_ 1 -
X (x,0)+-i/J(x)y O = X (7) 

µ 2i · P. µ. 

~lving eq. {7) by iterations one may repre­
sent x (x, 0) as a finite polynomial in nil­
potenf quantities 0, i/J(x) and derivatives of 

1/,(x). 
Relation (6) is the supersymmetric counter­

part of the polar decomposition of linear 
multiplets of·internal symmetry, the Gold-
s tone field i/J ( x) being an analog of angle · 
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variables and the components of superfield 
<ti~(x, 0) being analogous to radial variables. 

The r.h. side of eq. (6) is the superpo­
sition of the following 0-polynomials: 

~ ) def -a k ( X , 0 = a k ( X (x , 0)) , 

ifJ ( x , 0 ) deJ Ip ( X ( X, 0 ) ) - 0 
a a a 

(8) 

(9) 

Each of them transforms under supertransla­
tions (2), {3) · by linear law (1), i.e., pos­
sesses itself the properties of superfield. 
To verify this one has to take into account 
that the group variation of functions ijJ (x), 
ak ( x) _ consists both of their• change .at the 
point x· according to rules (2), (3) and 
of the lhange due to the shift of x induced 
by the transformation of function 11 VJ ( x) · 

in eq. (7) (coordinates x and o remain 
unaffected). 11 

a 

So, given nonlinearly transforming.fields 
if, a ( x) , a k ( x) by the subs t it u t ion x

1
t ➔ i µ ( x, 0 ) one 

can construct linearly transforming super­
fields with any external spin. From. spinors 
0(x) alone it is possible to form super~ 
fields, either by multiplying basic •super­
fields (9) or by applying algorithm (8) ·to 
the covariant derivative VP V' (x)/2/ which 
transforms like fields a (x) ,' i.e., by. law 
(3). First method is rest'ricted to the 
construc:tion•of scalar,·pseudoscalar, ,spinor 
and: pseudovector' supetfields only; 

.·, 
4. Relation (4) makes it possible to rep­

resent any renormalizable model with spon­
taneously broken supersymmetry (linear ·q -; 

mod~l), in terms·of the nonl~near realiza~ · 
tion·, ,,in the. complete analogy .with_Jpe _C9-Se. 
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of internal symmetries/6,7/. To get the non­
linear representation of the linear a-model 
one has to do as follows. In the invariant 
action written through superf~elds <ti (x,0) 
and their covariant derivatives D~<ti(x,0) 

4 4 
S =Jd xd 0L(<ti(x,0), D~<ti (x,0)) (10) 

one performs the change of variables x , o 
as suggested by eq. (4), after that ac1tio~ 
(10) takes the form 

s·= Jd 4 xd 4 0 J
8

(x,0)L(0,ak(x),V ak(x),VA1p(x}},(ll) 
. p . 

where ak (x) are components of superfields 
<tia(x,0), V' ( x) is connected .by the equiva-
lence transformation with the Goldstone spinor 
of .the linear realiiatlon, v11 denotes the 
nonlinear covariant derivative. The quan-. 
tity . J (x, 0) is the Jacobian of transfor­
mation ,4). It is calculated according to the 
general rules of.changing variables in Gras-

. sman integr.als /a/ and has the following 
structure: ' 

J
8

(x,O) = det T(x)detM(x,O), 

where 

V V 1 V -( ( ) T (.x)=o --a. ·VJ x)y V' X, 
/l /l 2i /l 

. ' 
V V • 1 V- . 

M (x,0}==o --V i/J(x)y 0 
/l /l 2i /l 

(12) 

(13) 

(14) 

The integration measure d4 x det T • .arising 
in (11) coincides with the invariarit volume 
element introduced in ref .(2/:.·rt contains· the 
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kinetic term of the Goldstone spinor f(x). 
On imposing the covariant condition ak(x) = O, 
action (11) reduces to the nonrenormalizable 
nonlinear action of ref,/~ supplemented 
with certain nonminimal interactions of 
field f (x). In more detail .the transition to 
the nonlinear parametrization will be dis­
cussed in forthcoming publications. It is 
worth noting that the parametrization of the 
action by the fields f(x), ak (x) is most 
convenient while analyzing low-energy conse­
quences of the spontaneous supersymmetry 
breaking because the transformation of the 
Goldstone fermion f (x) is separated from 
that of other fields. 

. Finally, canonical transition· (4), (6) 
can be used to give the superfield form to 
the super symmetric Higgs ef fee t/9,4/ treated 
up to now in the framework of nonlinear 
realization. 

We express our deep gratitude to Professor 
Ogievetsky for interest in the work and 
construe tive remarks. \\e thank Drs. Saka tchev 
and Zupnik for useful discussions. 
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