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On the Continuity of the Entropy

In the paper it is shown for a quantum-mechanical
system with finite degree of freedom that taking into
account also unbounded observables one gets physical
topologies on the state-observable system with respect
to which the entropy becomes a continuous function.
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1., The Physical Topologiles

For infinite dimensional density matrices € ¥ o, tr &= 1,
the entropy S5(@) = -tr@1lng is not always finite /10/, More-
over, S(g) is uncontinuous with respect to the metric
afg, ) = ”f—/“'”1 , naturally given on the density matrices by
the trace norm // ¢ ”1‘ = tr/el . In this paper we shall show that
taking into account also unbounded observables in the case of a
quantum mechanical system with finite degree of freedom one will
be let to a strong topology on the set of density matrices with
reaspect to which the entropy is continuous,

Let us begin with a general definition of the physical topo-
logy. For that we assume that the states ¢ of the physical system
are normed positive functionals on the ¥ -algebra with the unity
I, i.e. g(A*A) 2 0 for A€ A ana S(I) = 1. We call A
the observable algebra of the physical system, By Z we denote the
set of states and by 4 the complex space of linear functionals
on A generated by 2 . Purther we assume that the states geparate
the observables, i.e. for every A€ 4, A # 0, there exists a

€ Z with p(a) # O,

(€ ,A4) form a dual pair in the semse of the theory of
linear spaces with respect to the bilinear form ( €, A) = @ (1),
We denote by ﬂ'= 70( 4,4 ) the strong topology in 4 and by



/3 = 76 ¢t 2,4 ) the strong topology in A s/, v.T).
78' on 4  is defined by the system of all seminorms

/}'= 1, () = sup) le )/,

where 0L runs over all weakly bounded sets in /A . These are
exactly the subsets 0t ¢ £ for which 94 ( L3 } is finite for
§ < 4~ .Quite analogously one g=ts the seminorms defining the
topology ﬂ .

We call 7@ and * the (uniform) physical topologies of
the atate-observable system ( 72, .2 ). This notion is justified
by the fact that a sequence Sn of states converges to a state
$¢ with respect to the physical topology ﬂ* if and only if the
expectation values gn( A ) converge to @ (A) uniformly on
every weakly boumded set 0z of observables, i.e. 3\;%"/9,‘(;\) -

—‘f(A)/——>O-Juite analogous 1. the paysical nterpretatior of the
topology ﬂ on the observable algebra.

Let us now regard the case that A= LY D) is the
% -algebra of all (unbounded) operators A in a Hilbert spaced
go that A and its adjoint A% are defined on the dense domain O
and leave & invariant, i.e. A D < P ,ATD c D .

Involution in £*( @) 4is defined by A-— A% = a%)5 , the re-

gtriction of A¥ to D /A/. < , > denotes the scalar product
in .

Definition 1

By {'1( P ) we denote the set of all operators ¢ € £+(&)
for which A @ B is a nuclear operator in & for all
A,B e LY D)., We call the §€"{'1 (P) &P -nuclear
operators and if ¢ > O and tr § =1, g0 we call ¢

D -density matrix. The set of all P -density matrices we
denote by 2Z (P ).

( '6‘1( D), LD ) ) forms a dual pair with respect to the bi-

linear form ( @, A) = (A) = tr ©A, e & (D),
A e L Y, d d 3 1

If ¢ is a < -density matrix, then ¢ (A) = tr p A is a
normal state on the x -algebra XL Y(PD ). In what foilows we

reatrict ourselves now to the special state-cbservarle

sytem ( 2 (D), £*(PL) ). Let us remark, that the physical
topology ﬁ' is automatically defined on {“’1( D) 22 (D)
A more general description of the so-called {5 ~topologies on
operator systems is given in /1/.

) The special case D = X is the up to now mostly regarded
case in the algebraic approach to statietical physics. Then
L D)= B (E), the W% algebra of all bounded operators
on # /4/, and {'1( D) = {1, the ideal of all nuclear opera-
tors on ® . Now the topology/& ig the usual uniform topology on
B (&) defined by the operator norm Jl Al and ﬁ‘ on 1{:
is the topology defined by the trace-norm // ¢ //1 = tr I_?/ /9/.
These both uniform topologies on the bounded operators and on the
density matrices are the most applied topologies on observables
and states .

2. The Continuity of the Entropy

In“what follows we only regard domains oD c £ of the form
O = “n'o LT™) where T 2 I is a selfadjoint operator
in % with nuclear inverse Y, D (T™) 1is the domain of defi-
nition of the operator T. J 1is then a domain of type I in the
sense of /6/. The /5* topology on {’1( & ) has some interes-
ting properties. ’

Theorem 1 )

i) The topology »{5' on 6'1( D ) 4is given by the denumera-

ble system of norms

Jobe = Ig™l, k=0,1,2, 000
where | Tkj ™| is the usual operator norm of the ‘bounded
operator 'l'k_g ™, e € 4{: (D)

11) € 4¢ D) 1is a Prechet * -algebra with respect to the
topology 7’5* and the norms /) . /f, are multiplicative,

I//u-j//k él//u//;( Il Il g’/‘e,g;(@))hon,z,...
and symmetric, [l p*/, = el .

The proof of this theorem and some other important properties of
£ (P ) 1is given in the next section.Here we will discuss an




interesting aspplication of this theorem

Theorem 2

The entropy S( ¢ ) = -tr ¢ log ¢ is a finite function on
the set 4~ 140D ) of positive & -nuclear operators,

& e 61( ) © 2 O0,and S(§ ) is continuous with
respect to the physical topology /5' on 6"“( D).

Before we prove this theorem we want to give a special,more phy-
sical formulation of that theorem, We can say, that for a quan-
tum-mechanical system of finite degree of freedom generated by the
Schridinger operators Qp = X,, P, = %- %}m) n=1,...,3f, the
entropy is finite and continuous with respect to the uniform
physical topology on the set 7 of all density matrices ¢ which
huve finite expectation values ¢ (Qn) =trgQ, and s (Pn) =
tr ¢ Pn for position and momentum operators. Namely, the natural
domain ) of definition for the operators Qi’ Pi is the Schwartz
space § = 1 (r3fy o rapidly decreasing functions ¢ (x)
in 3f variables. As a dense subspace of L2(R3f) { 1is of the
form o= ,f,'n s ety where we can take for T the operator
P = ( N41 )2 , N= > An+ An the number operator,
ALY =3 (hn-3x) s A = & (xmt Sxn) (see /8/,13).
Then Q. , P, € £ *C £ ) and the density matrices ¢ with
finite expectation values for the position and momentum operators
Qn’ Pn are exactly the o -density matrices $ < 2 (1)
Let us now remark that the applications of Theorem 2 are
not restricted to the Schwartz space { .Por many quantum mecha-
nical systems (a.e, Harmonic oscillator, electron in central
potential /1/) the operators are defined on a domain of type I
(nuclear space) and Theorem 2 can be applied.

Proof of Theorem 2: To prove the continuity of the entropy S( ¢ )
with respect to the physical topology /3" we show S( e ) ——
S(e’) 4if Il g-g’ﬂz—-» 0, where H}f’ 1/2 = 12 [3 ™/  1is one of
the norm of Theorem 1 defining ﬂ .

Let A 2 X 5, 7 A 3 Z .+ be the eigenvalues of T and
$17 § 2 2 S§4 7 +-o the eigenvalues of ¢ < {1_'( D)
then from ¢ r2(r° € ) we get the estimation (/2/ II1§2.1)

-2 . -
fn (:’\ﬁ i !2Sl|él\n2H§"2’
Il 72 S U&ﬂgﬂz holds as a consequence of 12 > 1. Let g’ < {153)
be fixed. First we can choose a natural number L ao large that

for n>L A2 llell, <« T forair g with lg-¢'ll, < 1.
Since -xlnx is monotonically increasing for O<x <« % we get
for these ¢ the following estimation

R(§)=55, " 8nbng, < %LU—;"(Z bady — bnlighy).

Let £ > O, Since % An € ™, we can yet take L 80 large that

£ _ e
R (g )€ 3 forall § with lg-¢'ll, < 1.
From this we also see that S(¢) is finite,

Further we get the following estimation for the entropies
L ' ' 2
\s(g)-s(g')lslgi(gngng“—gn&ngﬂlJ{ 3¢.

'
Since |¢ n " §n|5'§‘§‘ ”2 s n=1,2,3,... we can now find a
0 ¢ d ¢ 1 80 that also the first part on the right-hand side
of the estimation is less than £ for Il g. ¢'l, < d". Por These ¢

wehavethen'S(g)—S(f")|<2. H
3. The Ideal of &) -Nuclear Operators

The main aim of this section is to prove Theorem 1. As a
preparation of that we derive some important properties of &) -
nuclear operators.

Let us recall that we regard only domains 3) c ¥ of the
form described at the beginning of section 2. For any real s
- LB ¢ +°° we define on ® the norm ¢ UB = “TB¢“ and
denote by HCS the completion of 4 with respect to | . Hs‘
Then {3 _,] 1is a scale of Hilbert spaces with & = e =_{1 %s)

¥, = H.
’ Lemma 1

1) & 1is a auclear Frechet gpace with respect to the topo-

logy t given by all norms | . §_y = €8 ¢ 42

ii) Any operator A € D) s a continuous mapping of

[t] into itself and there exists an r>0 depending

on A so that T7TA, AT are bounded operators on ¥ ,

Proof: 1) D [t1 is the projective 1limit of the Banach spaces
8 (™) with the norm | 9]l = I ¢ n=0,1,2,...



and therefore a Prechet space. Since T_1 is a nuclear operator

QD Ct1 is a nuclear space.

) ii) Every operator A € £ 9D ) 1s a closed operator of &

into 4 with respect to the norm | uo’ Thus A is also closed
as an operator of  Lt) into It . Since JItl is a Frechet
space, A 1is continuous,
Especially, we get that W AdN = C W4l = c y1"¢ll for cer-
tain C, r>0 ,9e®. ™us HAT TPl <cclbl , t.e. AT 38
bounded, From the relation (A*T™) = T™°A we get that also T °A
is bounded for a certain s . K

Lemma 2

4 4 ¢ d ) 1is the set of all bounded operators ¢ with
f}CC@and S"JfCQ.

Proof : For the proof we can restrict ourselves to symmetric 3‘= £
Let us suppose that gxc CO . It follows from the closed graph
theorem that ¢ 1is continuous from X into dHCt) . Lets » O
be arbitrary, then “gq’ u2s = | T2sg dil « cldl] with a
certain ¢ > O, Further, from (T2SS > = € 28 e get

e 2Pl < clidll, 1.e. Bodlec HT7* 50 = e lidlag
Thus S is continuous from B’fo into ?fzs and also from ?C_Zs

into ?€o. By the interpolation theorem /3/ we get that ¢ is

also continuous from JI_, into ¥ g+ Thus HS‘PHB < ¢ “¢"—s

lee 1% ¢ 1oHl ¢ o It for a11 Y€ . Hence T° ¢ T te
a bounded operator. Since 1 is nuclear, from T° s ™ =
_om=1 s+1 8+1 -1 8 8

=T (T © T )T we get that T T is nuclear for
all s , Now let A,B & LY D) then

AeB=(ATT) (¢ ™ ) ( 7TB).

Since 1% < ™ is nuclear and AT'r, T"TB are bounded for suf-
ficiently large r (Lemma 1 ), A I3 B is nuclear, Thus se @'1(9).
The opposite direction of the Lemma was proved in /5/.

Proof of Theorem 1: Pirst we prove that {'1(@) is a Frechet
space (complete) with respect to the topology f defined by the

seminorms M o= | 'I‘k * H , %=0,1,2,3,... . Let pbea
k § 5«(

Cauchy set in '(\~1( L ) with respect to f . Without lost of the
generality we may suppose §. = S o Then, for de e.d
is a Canchy set in J [t] and therefore ©.P converges in Dsl,
Hence, g"b = 1im j’gﬁb defines a symmetric operator on X map-
ping # into O . By Lemma 2 we get €€ 6\"( =V
We have yet to prove @ -——> ¢ with respect to the topology

f . Let ¢ € 3 ,lipfl < 1, an arbitrary vector of the unit
sphere in 4 . Then .

(T G- TEP I < ITR (8p -8 TR+ TR (g -5 0 TR,
Now the first part on the right-hand side is less than €/, for

> & ;d,(t)énd the second part becomes also less than €/2 for
large /?’ . Thus } ’l‘k(jl - €.) ¢ 43"(- £ for x>, 4] 51)1.6. )
“f”g&“k c g for o >a, ,i.e, g‘x———,g’ with respect to f .
Since tha topology f ig given by a countable aystem of norms,
$1( N)CL§] 1s a frechet apace. o

Now we have yet to show ﬂ = f . Then the theorem is comple-

tely proved,
Let A€ LY d)), then F‘A( © ) =+tre A is a continuous 1inear
functional on {1( &) LTI In fact, we have for sufficiently
large k ¢ e ’~l .
Fato = Ite (TR TR) (T2 ATH e T ST Pl g
where || Tk Htr ig the trace norm of K, Since ({'1( Dl fJ
is a Frechet space, any weakly bounded set Ol € e D) is
equicontinuous with respect to the dual pair ("}('{) ), £1(4))
and therefore :]m( ) = Elélgllg (A )} 1is continuous with respect
to f , L.e. /5 is weaker than f . To do this, re show that for
a certain bounded set I the sewinorm q, ( ¢) is equal to
i Tky Tkﬂ . In fact, if we denote by Pg. the operator ?#d—ﬂs
= LCPISL?"{’ and by (O the set of all operz;tors A = ’l'kP,,,A,Tk,
¢ Ne K- fhed, il 13 then we get

a,(g)=gup | tre T:Pcv.w'}i:fl) - :%’k‘ ;i(ﬁ’kg‘ _Tk) IPH'
=gup,led, Tg T2 T g lg e

Now the theorem is completely proved.
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