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J1accHep f., J1accHep f .A. E2 · 10764 
0 Henpepb!BHOCTH 3HTpOITHtl 

noKa38H0 1 lil'O LIJIH KB8HTOBO-MeXBHU'-l:€CKOi1 CHC1'8Mbl C KOH€1.£HOi1 

creneHh'Ko cBo60Llbl npu y'4ere HeorpaHH't:u~aHbiX Ha6monaeMblX nony1.£aeM 

¢11:3H1.f€CKHe TOITOI10f'HH Ha CU:Cl'€1\1€ COCTO~HH}J-Ha611!0Ll88Mb!X 1 OTHOCHT9J1bHO 

KOTOpOi:f 3HTpOITH5I 51BfiSl€1'C5I HenpepblBHOti QyHKUHei:f. 

Pa6oTa BbinOJlHeHa B fla6opaTopuw reopenr1.£eCKoi1 ¢u3HKH OYUU1. 

OpenpHHT 06..,eABHeHHoro BHCTBTYTa R,llepHwx accne.aosaaail. ,lly6Ha 1977 

Lassner G., Lassner G.A. E2 • 10764 

On the Continuity of the Entropy 

In the paper it is shown for a quantum-mechanical 
system with finite degree of freedom that taking into 
account also unbounded observables one gets physical 
topologies on the state-observable system with respect 
to which the entropy becomes a continuous function. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. The Physical Topologies 

For infinite dimensional density matrices ! >..- O, tr S • 1, 
the entropy S( !j} '" -tr S ln ~ is not always finite /10/. More
over, S ( S ) is uncontinuous with respect to the metric 
d(~ 1)4) = llJ-,..u--111 , naturally given on the density matrices by 
the trace norm 1/.f H 1 = tr I fl • In this paper we shall show that 
taking into account also unbounded observables in the case of a 
quantum mechanical system with finite degree of freedom one will 
be let to a strong topology an the set of density matrices with 
respect to which the entropy is continuous. 

Let us begin with a general definition of the physical topo
logy. For that we assume that the states f of the physical system 
are normed positive functionals on the _.-algebra with the unity 
I, i.e. j'(A.A) ~ 0 for A € A and s<I>- 1. We call ./1: 
the observable algebra of the physical system. By 2 we denote the 
set of states and by ~ the complex space of linear functionals 
on A generated by ~ • Further we assume that the states separate 
the observables, i.e. for every A£~, A; O, there exists a 
~ £ r nth _rCA> 1 o. 

( .fJ , A; } form a dual pair in the sense of the theory of 
linear spaces with respect to the bilinear form (!,A) • S(A). 
We denote by fJ • = {J ( -t', .!l ) the strong topology in -6 and by 
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the strong topology in Jt (/8/, V.7). 

defined by the system of all seminorms 

qor.(f} = sup I p (A) f 
''"fk ..) ' 

Definition 1 

By -{( 
1 

( J) ) we denote the set of all opera tors J € J. + ( Jl) 
for which A f B is a nuclear operator in 1C. for all 
A , B E: t_ +( .JJ ), We call the ! E -('1 (d)) d) -nuclear 

operators and if J 7, 0 and tr ~ " 1 • so we call j 
dD -density matrix. The set of all dD-density matrices we 

denote by 2. ( JJ ) • 

( i""'1< J) ), ;!. +(J)) ) 

linear form ( g, A} = 
A e: ;t, +c~ >. 

forms a dual pair with respect to the bi

J(A)= tr~A, j E-(; 1 (~), 

If .J is a d) -density matrix, then ~ (A) = tr ~ A is a 
normal state on the *-algebra ;f.+((]) ), In ·Nt,at follo.vs Ne 

re~trict Jurselves now to the s~ecial state-o~serv~tle 
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sytem ( 2 ( J) ) , t_ +( .P ) ) • Let us remark, that the physical 

topology ,P* is automatically defined on -t'1 < c1J) ::> ~ ( <lJ ). 
A more general description of the so-called ~ -topologies on 

operator systems is given in /7/. 
The special case dD s at is the up to now mostly regarded 

case in the algebraic approach to statistical physics. Then 
i. +( J) ) " ':h ( (Jl ) , the Woc:-algebra of all bounded operators 

on 'Jt /4/, and -6 
1 

( J) ) = -f" 1, the ideal of all nuclear opera

tors on ~ • Now -~he topology f is the usual uniform topology on 

..B ( ae ) defined by the operator norm ,, A II and f3Jf on {1 
is the topology defined by the trace-norm II ! /1 1 = tr / f / /9 I. 
These both uniform topologies on the bounded operators and on the 

density matrices are the most applied topologies on observables 

and states • 

2, The Continuity of the Entropy 

In what follows we only regard domains (JJ C dt:- of the form 
JJ = no d) ( T ..,. ) where 'l 9 I is a selfadjoint operator 

"f\0. 
in 4t with nuclear inverse T-1 • dD (TO) is the domain of defi-

nition of the operator ~. CD is then a domain of type I in the 

sense of /6/. The {3ii" topology on -61 ( <P ) has some interes-

ting properties, 

Theorem 1 
i) The topology {!> • on -fi 

1 
( J) ) is given by the denumera-

ble system of norms 

II ~ H1< == II it f rrk II , k=O, 1 , 2, ••• 

where II Tk y Tk // is the usual operator norm of the bounded 

operator rrk J Tk , f € ,.{; ( J) ). 

ii) -t' 
1 

( J) ) is a Frechet * -algebra with respect to the 

topology {!>* and the norms If • II k are multiplicative, 

IIJA' ·J/17< ~ IIJil/1( 1/f/17< J)f- €{,tJJJ )k=o,1,2, ••• 

and symmetric, /1 f•//k = // ~II k" 

The proof of this theorem and some other important properties of 

~ 
1
(dD) is given in the next section. Here we will discuss an 
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intPresting application of this theorem 

Theorem 2 

The entropy S( f ) = -tr) logS is a finite function on 

the set ,(; 
1

+( .Il) of positive J)-nuclear operators, 

_) E {; 1( :tl ), S' ~ 0 7 and S(!] ) is continuous with 

respect to the physical topology j3"' on IJ 1+ ( JJ ) • 

Before we prove this theorem we want to give a special,more phy

sical formulation of that theorem. We can say, that for a quan

tum-mechanical system of finite degree of freedom generated by the 

Schrodinger operators Qn = xn' Pn = t ~x-.,' n=1, ••• ,3f, the 
entropy is finite and continuous with respect to the uniform 

physical topology on the set t of all density matrices !} which 

hr.ve finite expectation values f] (Qn) = tr 3 Qn and ') (Pn) = 
tr ~ Pn for position and momentum operators. Namely, the natural 

domain ;:j) of defini Hon for the operators Qi, Pi is the Schwartz 

space f = f (R3f) of rapidly decreasing functions cp (x) 

in 3f vari~bles. As a dense subspace of L2 CR3f) J is of the 

form d' =,fl., .. 1 (Tl) where we can take for 1' the operator 

'I' = ( N+1 ) 2 , N = ~ A + A the number operator, 
+ .:1 . J n n :1 .4 ) 

An = rE' ( \YJ- ~'") , An= ~ ( ,<'Yl t ~lk'n (see /8/,V3). 
Then Qn' Pn e: .;~ +( j' ) and the density matrices S with 

finite expectation values for the position and momentum operators 

Qn, Pn are exactly the :f -density matrices .f c 2. ( f ) . 
Let us now remer~ that the applications of Theorem 2 are 

not restricted to the Schwartz space f .For many quantum mecha

nical systems (a.e. Harmonic oscillator, electron in c~ntral 

potential /1/) the operators are defined on a domain of type I 

(nuclear space) and Theorem 2 can be applied. 

Proof of Theorem 2: To prove the continuity of the entropy S( S ) 
with respect to the physical topology f3 ~ we show S( 5' ) --
S( ~' ) if 1/ f - f' H-6-- 0, where 1/.f 11 2 = II T2 f T

2 If is one of 
the norm of Theorem 1 defining (Y'' • 

Let A 1 ~ >- 2 7t A 3 ~ , • • be the eigenvalues of T and 

:5 1 -:? ~ 2 ~ .) ' :;:y ••• the eigenvalues of ) E: {; 1+( J)) 

then from ~ = T-2 (T2 ~ ) we get the estimation (/2/ II
1
§2.1) 
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~ ,, 

\1 

1 

, ~ A - 2 n ·r•2 P II ~ A - 2 fl P II 
.l n - "1 · .) n .) 2' 

II T2 3 U" If) I~ holds as a consequence of T2 :,. 1. Let P 1 e: t (Jl) 
_) 1t 

be fixed, First we can choose a natural number L so large that 

for n > L >-n-2 II sll2 "- t for all $ with rr r- ~'112 ~ 1. 
Since -xlnx is monotonically increasing for 0 <. x .c. ~ we get 

for these S the following estimation 

R { P) = ~ - J en_s "-. L J~!L (). tn>.n- £.tt ll!ll.d. 
L ..) 'n:>l 'n-1 "fl. 'ri':>L '1'\. 

Let £ > 0, Since Z: A-n.' ""', we can yet take L so large that 
[ -n. ' RL ( _j ) ~ 3 for all S with I f - ~ U 2 ~ 1 • 

From this we also see that S( S) is finite. 

Further we get the following estimation for the entropies 

' s< ~ > - s< ~· > t ~ 1 t, (ron en l'-n - ~~ en ~~ 1 + ~ t 

Since l3 n- ~~~~· ~- ~· 11 2 , n=1,2,3, ... we can now find a 
0 £. .f ' 1 so that also the first part on the right-hand side 

of the .estimation is less than f for U .f- ~·1 2 L cf'. For These S 
we have then IS(~)- S(f') I£. ~ • 1-1 

3. The Ideal of ~ -Nuclear Operators 

The main aim of this section is to prove Theorem 1. As a 
preparation of that we derive some important properties of a)
nuclear operators. 

Let us recall that we regard only domains J) C de of the 

form described at the beginning of section 2. For any real s 

- <><> ' s L + oo we define on J) the norm I 4 Is = R Ts~ I and 

denote by de the completion of J) with respect to M • M • 

Then [ <fe s j sis a scale of Hilbert spaces with d) • iflooo ==s _f},~s' 
aeo·-;J(. 

Lemma 1 

1) ~ is a nuclear Frechet space with respect to the topo-

logy t given by all norms U • K , - oo L s L +oo • 
ii) Any operator A C t:(aD) rs a continuous mapping of 
~ ( t) into itself and there exists an r > 0 depending 

on A so that T-rA, AT-r are bounded operators on dl • 

Proof: i) Jj [ t J is the projective limit of the Banach spaces 

"""ii( Tl) with the norm 1/ .P lin • II~~~~ n•0,1,2, ••• 
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and therefore a Frechet apace. Since T-1 is a nuclear operator 

~ [ t] is a nuclear apace. 
ii) Every operator A E: 't- +( .D ) is a closed operator of al 

into J:l with respect to the norm Jl. I 
0

• Thus A is also closed 

as an operator of J) [ t] into J) [ t] • Since Jl rt l is a Frechet 

space, A is continuous. 
Especially, we get that II A <1> 11 ~ C \l<\11~ .. C ~ Tr 41 # for cer

tain C, r>O ,1\>e:A'l. Thus ftAi'-r'*'' ~Cft<t>l , i.e. AT-r is 
bounded. From the relation (A+T-s) = T-8 A we get that also T-8A 
is bounded for a certain s • f---1 

Lemma 2 

~ 1 ( ~) is the set of all bounded operators ~with 

~ J( c J) and ~* J( c g). 
if 

~For the proof we can restrict ourselves to symmetric$ =g. 
Let us suppose that S df. e ,f) • It follows from the closed graph 

theorem that _f is continuous from Jt into d) [ t) • Let s ?' 0 

be arbitrary, then II! cl> .2 = II T
2

s 3 4> II ~ c uq,u with a 
S 2 * 2 certain c > 0. Further, from ( T s 3 ) = ~ T s we get 

U ~ T2s 4' II fo c 114>11, i.e. 8 S'cj> H ~ c U T-tsc\> II= C U<PU-:zs 

Thus S is continuous from <ft'
0 

into ~s and also from ~_28 
into 1£

0
• By the interpolation theorem /3/ we get that ~ is 

also continuous from '"Je_ into df_ • Thus H P4> II ~ c II 4> II -s s ~ s -s 
i.e. II Ts ~ Ts~l !:c c U+U for all f E: J). Hence T8 ~ Ts is 

a bounded operator. Since T- 1 is nuclear, from Ts J Ts 
= T- 1 ( Ts+1 ~ Ts+ 1 ) T- 1 we get that Ts ~ T8 is nuclear for 

all s • Now let A,B e: ;e+c J) ) then 

A _5' B = ( AT-r) ( Tr J Tr ) ( T-rB). 

Tr r -r -r Since ~ T is nuclear and AT , T B are bounded for suf-

ficiently large r (Lemma 1 ) , A ) B is nuclear. Thus ) E l'; (~). 
The opposite direction of the Lemma was proved in /5/. 

Proof of Theorem 1: First we prove that t-'1 ( ~) is a Frechet 

space (complete) with respect to the topology f defined by the 

semino:rms 1\ j Ilk = II Tk ) Tk II , !.:=0,1,2,3,... • Let j'.._be a 
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Cauchy set in +.~1 ( .:V ) with respect to f . Without lost of the 

generality we may suppO<Je .f"" = ,5'~. Then, for ~E 1C ~"'cp 
is a c.,ne>hy set in dl [ l J and therefore f..._ 4> converges in ,D [t 1. 
Hence, S' 4> • lim f"'-~ def'inea a symmetric opera tor on (/(_ map-

ping Jf. into JJ • By Lemma 2 we get _f E: fJ 1 ( J) }. 

We have yet to prove j' ... ---S with respP.ct to the topology 

f . Let 4> E: -ae , /jq> U,;;, 1, an arbitrary vector of the unit 

sphere in df • Then 

n~<c~-g ... >T'-1' 11 fc UT~ c~(3 -f)oc.>T~/1 tilT'-<~ -~rlT"-1>1/. 
Now the first p~rt on the r1ght-hand side is less th~n <t~ for 

{'! > D(_ ;c<.tfJ ~nd the second part becomes also lesCJ th~n th for 

large {J • Thus IJ Tk( ~- 5'o<) Tk 4> // L £ for rx > <X0 J IJ~JI !c 1Ji.e. 

n.f- .).._Hk c: r for 0( ;,o(0 ,t.e. So...-f with respect to f . 
Since th~ topology _f is given by a countable system of norma, 

,[-1( J)) [ rJ is a fo'rechet spa~e. 
Now we have yet to show (3 '" J . Then the theorem is comple

tely proved. 
Let A e: f_+( J:l ) , then FA ( 5' ) • tr j' A is a continuous line,tr 

functional on r{-
1 

( ,D ) L fl. In fact, we have for sufficientl.Y 

large k 

1 r A ' S' > I ~ 1 tr- c r r. "' r '- JC r '- A ) r ~ I ~ liT -'- A tl 111 I; lit, II ~II k. ~ 
where II r-k qtr is the trace norm of T-k. Jince t1 ( D ) [ fJ 
is a Frechet apace, '1nv we~kly bounded set OL (' t +( ·IJ ) is 

equicontinuous with respect to the dual pair ( ·i\1Cll ), £ +(1-J) ) 

and therefore q 01.< ~')=sup I j' (A ) I is continuous with respect 
" 4" l1t to f , i.e. (" is weaker than f . To do this, ·1:e show that for 

a certain bounded "let <Jl the set~inorm q ct ( f) is equal to 

H ~ J Tk H • In fact, if we denote by P~.'t the operator 'f+,i SL: 
"' ~q, 

1
St) i- and by_()[ the set of all operators A = ~F.f,.P ~, 

¢ "f E ::K c [ 'P E ,tJ 1 li•PH ~ 1 ~ then we get 
I k _Jc 

q ( _f ) = sup I tr f T P <t i r· I = sup ,. I 
ot <1>,1-"l<. k ' k +,fc;:~IC = sup l (_ •p , T S' T i > = ft T P 

,.,-H: K J 

tr{~s· ~> P .•. tl 
rk 11 =llfllk. 

Now the theorem is completely proved. 
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