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1. INTRODUCTION

The motivation of this paper comes from
quantum field theory and the study of the
algebra of test functions$gThis paper
investigates the topologies on dg. The al-
gebraical structure of 8g defines two topo-
logies, firstly the topology of the direct
sum rgand secondly the topology rgwhich is
the restriction of the topology of the di-
rect product to $g.We study some properties
of the locally convex topologies situated
between rg and rp . Such topologies are, for
instance, 7, 1 "'studied in refs. /%816/ In
section 4 we investigate the normality of the
cone K of positive elements with respect
to these topologies and construct a lot of
normal topologies. The results of this paper
show that the topology rg is a '"'good" one
from view-point of the topological struc-
ture but a '"bad" one from view-point of the
order structure. In picture 9 we collect
the results of sections 3 and 4. The topo-
logies between rp andrg give a possibility
of classifying the Wightman functionals
with respect to the continuity in such to-
pologies (section 5).



2. SOME NOTATIONS AND DEFINITIONS

The algebras of test functions in quantum
field theory was introduced in refs. /1, 13/
and studied for instance in refs./215/ The
elements of 58 are finite sequences of the
form

f= (f of ,...,f ,0,00)

n
with foG(D fi(xq,.m X)) © cSm®™)y, where d is
the space-time dimension, &R is the Lau-
rent=-Schwartz test functlon space /12/ 1t is
Xy = (xf ,xkl ,...,xg—1)= (xf,;k.), k =1,2,... . We put

dk )
$,=8@R . 8®:nio 5, is the topological

direct sum of the spaces §_,8, =C
For f,g ¢ 8g one defines the N-th compo-
nent of f*g by

(f*g) (x e X)) = X fn(x ey X )g (x

“ey

n+l *°
and the N th Component of AM+g by WMf+g)ly=
= MK, en X)) FENX e X)), AEC. Thus &g be-
comes a *-algebra with identity 1=(,0,...).
K={3 @ ¢ c§ o is the cone of

n+m

i<oo
the positive elements. Some properties of K
are investigated in/3.9,16/, Now there is the
question about the topologies on §g. All
considerations of this paper are restricted
to the case of locally convex topologies.
let v be the well-known Schwartz space
topology on §_ , for instance, defined by
j
n d-1 o d "
Hf 1l =sup max [ I H (1+GDI——=)  (x,00x )
X Lieq i=lj=0 ! dx ) " "

i~ i (1)

The algebraical structure of Se defines two
topologies:

1) The topology of the direct sum :, defi-
ned by the following system of semi-norms

p(}’ NGO )(f) =3 }’ Hf H (2)
n >0

for all sequences Wu) of positive numbers

and all sequences (v, of natural numbers.

It is [Ifgll =Ifyl, m=01,.. .

2) The topology rp 1is the restriction of the

topology of the gzrect product of the

spaces § to &g 19 is defined by the fol-

lowing system of semi-norms

9m (f) = anHm, nm=0,1,2,... . (3)

If we restrict the set of sequences (y ) or
the set of (v,) then we get a lot of topolo-
gies weaker than rg. LetI" be the set of

all sequences (y,) of positive numbers and N
the set of all sequences (v ) of natural num-
bers. For each I';cl', N,c N we define the
topology «(I',,N) by

ip(yn)(,, ) ) = X Yn”f,,an?(yn)GFP w)eN}. 4)
Let

lb=§0/)@1*; y #0for a finite number of
! " nonly i, (5)
= tlv)) eN; to every sequence (v))
there is a constant m
with vy <m, n=0,1,...}.

A simple consequence of tlie above given
definitions 1is



Proposition 1: Let be
i) r(FO,N)=r ,r(F,NO) =7 ,7(,N) =7

?

?
ii) +(0),NP=r(Cy,N,)  for Il I',N;N,CN
and T ,cl,, N CN,.

(r 3 means that the topology r, 1is stron-
ger (finer) than =, ). r_  is the important
topology introduced in/%.

Let us define a generalization of the to-
pologies (4) which will be of some interest
in section 4. Let M be the set of all mat-
rices of natural numbers with enumerable
infinite many rows and columns, i.e.,

M=t 1,0, m; 1s a natural number)
and let
2 "nl Mann 3 g H
HEIl  =sup max [(l+x ) ..(Q+x) I 11 (—=) f |
IR " erj=0 ox "
1— ni 1 (6)

be for all f &3d,n=12,..
We define the topology x(°;,M,) , '/'c I ,Mch
by the following system of semi-norms

ip(yn)(mn])m:ngo y HE I . Py el ), ( o € L (7)
Ity 1l =161
0j
If mnl =mn2=...=un ,n=1,2,..., then p(yn)(mnj) (f)=p(yn)(V n) (f).

Let be

W0=Kmu)eﬁﬂ; to every mﬂ) there is
Y a constant ¢ with (8)
mij'<‘ c, i,j=1,2,.. 1.

In analogy to Proposition 1 we have
Proposition 2:

Let be
i) Ay, =rg, ML, M) =1, A, M) = 14,

ll) /\(Fl,?ﬂl) - )\(Fz,mz) for Fl,FZCF ,?ﬂl,)ﬁzcw
and [,cr,, M ch,.

Another important topology is the topology T
introduced in/'"”. % is the strongest topology
on 8g such that the multiplication on g is

a jointly continuous bilinear mapping m:

S®[r®] ><5®[r ®J > 5®[fﬂ].

3. TOPOLOGICAL PROPERTIES

In this section we study the topological
properties of §glr] with r9<r<r g . The
known results o? "o TT g /28,15, 17/ settle
down in the results of this section. We state
the results in four lemmas. Further let r be
locally convex.

Lemma 3:

i) The restriction of any topology r with
rg <r<rg to the subspaces S, m=12,...)
of Sgis the well-known Schwartz space
topology v, -

ii) r9 is the weakest topology on dg
with this property but r_the stron-
gest. ®

The proof follows from the theory of the di-
rect sum and the direct product /10/,



Let s, be the projection from Sg onto the
subspace ¢1981 e ® &, i.e, _ N () =
= (f5,00 fy, 0,..), N=0,1,. and 1etN4 be the
closure of some set M w1th respect to the

topology . he state

Lemma 4 :
Let r$p <r<r® M C 8 and SNM CM, N=0,1.....
Then M °-M" -w ©.

The proof of thlS lemma is in analogy to
that of Theorem 6 of /17/,

Remark: After Lemma 6 we give an example
of a set M with SM ¢ M, N=0,1,. and
M7 £ "® for some r e

Lemma 5:

Let r_=r—<rg.

i) If there is a filter-base () of 0
of the topology r with SUCU, N=0,1,.
for all UcUG), then S [rJ is complete.

ii) The r-bounded sets are the same in
all topologies r. To every :-bounded set
there is a natural number m with
MCCod,0 .0 & .

Proof:

i) Sglrgl 1s an LF-space and thus is

/5/ i
complete. Sglr,] is complete too’” Let
3 be a r-Cauchy filter in § 4. Then ¥ 1
a - -Cauchy filter in &, ,too, and because
of the completeness of $glr 1 therc is an
element fc8g with ¥ - f inr, . Now let V
be in U() with Sy ¢V, N=0,1,... .Then ¥ contains
a set B small of the order %V For any ele-
ment g of B,BCg+%V.Because of SyV Vv |

N=0,1,..., and Lemma4 V is r_-closed.

From the facts that f is in the r_ -closure
of B and V is r_ -closed we get that f is

o0

an element of g+ %V. Then g is an element
of £+ WV and BCf+ %V + ¥V =f + V. So we

have ¥-f with respect to the topology r, too.
This completes the proof of i).

ii) We prove that the bounded sets with
respect to the topologies rg and r_ are the
same. Then the assertion is true for all
topologies r with r_ 27 <rg. Let M be
r,, -—bounded. Because there are sequences
(yp,) € T' which grow arbitrary quickly there
must be a natural number m with McCe..e§
We get by Lemma 3 i) that the restrictions
of ro and r  to Ce..e$ are the same,
thus M is rg -bounded, too.

Now let us give an example of a topology
r* with - w 7T R g and S[rﬂ is not
complete.

Example:

Let T be a rg-continuous linear functio-
nal on 8§, that is not r __ -continuous. The
existence of such functionals will be stated
in Remark 8 1iii). Let r* be the topology
described by the following system of semi-

norms {p( n)(Vn)(f) (yn)GF (v, )eNg and
pp(f) = ITGH (Ng 1is def1ned in (5)). We
have r_ 41*?78. But §,Uc U, N=0,1,.

for LJ—{fétgl[GH < 13. does not hold
Let H=1I{fcdg; T = 1}. H 1is dense in
Sglr ] because T is not r_ -continuous.
Thus there is a net (fm)) , A is a di-
rected set of indices, w1th fﬁ)eli and
£@ o with respect tor,. It 1s easy to

see that (@) 1s a Cauchy net with

a& A

94



respect to r* If §glr*] is complete then
there should be a gc§g with fla) - g in

+*. Because of r* »r, it should be 1@ g

in r_,too, i.e., g=0. But this contradicts
T“(53 =1, acA. Thus Sglr*] is not complete
and U=df@6®; IT(H} <11 is rg-closed but
not r*-closea.

Lemma 6:

i) S glrgl is a barrelled space, but
§glrl is not a barelled one for all
topologies rp<r <rge

ii) §glrg]l and "§glrgl are bornological,
but " Sglnl is not bornological for all
topologies r <75 grg. Further there are
topologies ¢ with rp<é<r and 9 ol¢]
. A P+ F o ®
is bornological.

Proof:

i) Sglrgl is an F-space and thus Sglr gl
is barelled.

.1J(r®) ={U C‘S®; U=if;n§.O yannHVng 1,(yn)GF,(Vn)€N”

is a neighbourhood base of r, containing

r g ~barrels only. It is 3, UC U, N=0,1,...,Uc U(r g)
and thus U is r -closed by Lemma 4. Hence the
sets Uclilrg) are r -barrels too. Because

of r<rg there should be a set Ugc Ulrg) which
is not neighbourhood of 0 with respect

to r. Hence there are r -barrels not being

r -neighbourhoods of 0 and thus dglr] is

not barrelled.

ii) Sglrgl, respectively, $§glrgl are borno-
logical because rg¢ is a metric, iespective-
ly, because Sglrgl is an F-space/19/. §gl]
is bornological if r is the finest topology
in the set of all topologies with the same

10

bounded sets. This proves that 3J§glyl,

" w<1¥ 7@, is not bornological and that
there are bornological topologies ¢ with
ri{"i T oo *

4. NORMALITY OF THE CONE K

In this section we discuss questions
about the normality of the cone K in some
topologies. We understand the concept of
normality of a cone in the sense of ref. 19/,
For instance the normality of K is of some
interest in the theory of A0* -algebras/7.8,1V/
and for the decomposition of linear functio-
nals into positive ones.The normality of
with respect tor_ and)l was proved in refs:
and the non-normality with respect to rg
in ref. /%,

In the following lemma we will construct
a lot of topologies in which K will be
normal, respectively, non-normal. We say I’
has the form (A) if

i) rycr,

ii) to each (yp) eI'y there is a (6,) eI’}
with &, > n? Yn» D=01,..,

iii) to each (y )T, there is a (e)eT | with

5,17/

(Bs-De, ). <epo Bscy) <y ps 8= L2
M, has the form (B) if
i) ®ycm,

ii) if (mlj )Gm 1 then mi] =1 k] fOI‘ l,] ,k= 1,2,".,

mi2=mi2s—1’..",mi5=mis+l (S=1,2,oon) and 1f
(m;; )& M) and i=2s+1 then

M =M0047 Wi = Miggseenr Mg 1M1 (s=0,1,...)(B)

1



iv) m <m, < (=12,
and W, has the form (C) if
i) Wy W,

ii) there is an (m;;)eM, such that to every ‘
constant ¢ thére are indices i,j with ]
j<i and c <my;

We state %
Lemma 7:

i) If I} has the form (A) and W; the

form (B) then the cone K is Al W) -
normal.

ii) N is the strongest topology weaker
than r,in which K is a normal cone.

1ii) If Tecl and M, has the form (C) then
K is non-normal with respect to
AT, Tg)

Proof:

. 4, Th
i) Because of / corem 1/ we have only to

prove that each seminorm pb/)_m.) of a sys-

tem describing the topology (T, M ) fulfils
the relation

y ok 14
(Ef( (k))\ (E"(')ff_k))/z (9)

p o P
(I¥m ij k< B {])(m ) r
*, (k) %
Py (56 TS
with any f(k):(fiy."”fik)o,..)ec ®. By the
Cauchy-Schwarz iuaequality and (A) we have
) (k) * s‘
p Sy Wy ,
(1)(mij' k<o T s ’

12

r+s E
=sup max | [I (1+x ) Trts D is f(k) T | <
x ejsmr+sl i=1 Ve : B
r+s ?
< sup max {2 |0 (1+x ) Tebs D j f(k)(x ver X )l2x
x ijmr+S] k<o j=1 r
r+s m . f %)
2y r+sj i o(k) 2
Xk%wljgl+r(1+xj) Dj o pprenx N =
-H E f(k) (k)H i HE f(k) (k)H
(m2 2 (mg ?
3 9 A
x(D? = 1l \———~)2 , 0 =(EQ.“,23).
LD ) ax

j
But this is (9) and thus we have 1).

ii) we give the proof in the concept of
0* -topologies/”®. Let n be the strongest
topology weaker than rg in which the
cone K is gp-normal. Then » has to be the
strongest 0* -topology weaker than g because,
on the one hand, K is normal in each 0* -
topology /8,11/  and, on the other hand,
the corresponding uniform operator-topology
rqg of the universai representatlon to a nor-

mal topology 1is strOﬂger/811/ But N 1is

the greatest 0*-topology on §g, weaker than
8 .

r too’®, Thus we have 5 =X. A direct

proof of the fact =N 1is also possible.

iii) The proof is in analogy to the proof of
ref. /6, Theorem 5/

Remark 8:

i) . 1s a special case of Lemma 7 i) and
r@ of Lemma 7 iii). Thus we have
again the r_-normality and the rg -
non—normallty of K.

13



ii) Because of Lemma 5 ii) we can describe
the topology Nt by the base of neigh-
bourhoods

UM ={U=1V]; VeUly)

with [V] = (V+K)n(V-K),the K-saturated hull
of V, and Urg) is a base of neighbour-
hoods of r g

iii) Let T=(Ty,T;,Tg,..) be a linear func-

tional on 8g defined by T f = f

Tt = BR e M D1 dx oty
nn_f"'fV=1A=o + 7 JOx L edx
By a simple estimation we get that T

is rg -continuous, but, for instance,
not r,, ~continuous. Further examples show
that between rp and rg there are a lot
of several dualities.

We collect the results on the foregoing
lemmas in the following Picture 9. This pic-
ture shows that rg has ''good'" properties
from the point of view of topological spaces
but it 1is "bad" adapted to the order struc-
ture induced by K.Conversely r_, N1 and the
other normal topologies are ''good" ones
from viewpoint of the order structure but
'"bad" ones from viewpoint of topological
spaces.

5. CONTINUITY OF WIGHTMAN FUNCTIONALS

In this section we prove the continuity
of Wightman functionals of scalar fields
with respect to some topologies. Let 7,
be the topology defined by the norm

- 2
.pG)—ngon anH2. We have r?<r{< T

14

Picture 9:

Let 7 be alocally
convex topology on Sg

The restriction of r

to S,
The closure of a set
M C ‘S@

Is ’58 [r] complete ?

The 7~bounded sets
Is ‘58 [7] barreled ?
Is'® glr] bornological ?

Is K r—normal ?

(+ means '"yes'",

Lemma 10:

M =M =M , ifM fulfils
SMCM, N =01,..

Yes, if there is a
Foedtetoedtoitodtot.t

filter base 1Kr) with

'SNU CU,N=0.1,..., Le U(»)

the same bounded sets

e

no

but . means 'no').

i) The Wightman functionals are N -conti-

nuous.

ii) The Wightman functionals of the free

fields are

rf-continuous.

15



iii) The Wightman functionals of the Wick
polynomials to the powerf =2 in the
free fields with mass m>0and their
derivatives are r_-continuous.

Proof:

i) The Wightman functionals W of the scalar
fields are hermitean linear_functionals
on §g and have to fulfil w& ® ) 0. But

each such functional is N -continuous
ref. /17, Theorem 5/

ii) The Wightman functionals of the free
~ fields are of the form W=(W, W, ...
with

=0, s=0,1,...,
3 ip(xpx)
Woxpx)=@m fe' T 20(p)s(p %-mdp,
x =(x% xLx2x H=(,%),i=1,2, p=° pLp2pd=p°p,
1 1 1 1 1 1 1
dp = dp°dpldp2dp3, dp = dpldp2dp %,

4 1
V;={pGR : p°=(p2+m2) /él

W, = X II W, (x, X ) and the sum runs

2s (i,jv=1 2 v
over all part1c1pations of the indices
1,2,..., 2n) in tupel(ll,]1 (injn)

i <j_ ,8=12,u,v=1,u.,n
v v

We estimate for some f,€$, and mass m> 0

16

. -3 - ~ 1, d g 1 - >
W, (f )= 2m) ™ 277 g £,3%m %, p-p? %, Dap)
R

~1 -3 2.2~ -2 2. -1 »2-2 -
<2 (27 " sup [(1+p) folp~p) [ (p +m) /h’(1+p ) 2dp
pGV; R3

_ _ -~ * %k
*<27H@n Psup |(1+p?) 2, (p,-p)| < E
P

*follows from S P2Hn) =% Q+p2)r2dp<a.
R3

** follows from sup|(1+p2)2f?2 (p,-p) <

-8 —i( + : 3
<sup 12 S e IR (1,9 )R f,(x,.x Jdx dx |

, i=1 j=0 Ox J
PPy : i

3
< (2078 sup ;n 1l (1+(x’))(1+(———-))f(x x|

XX, i=1 j=0 ax]

iy 2,-1
X J A+ xD D dx dx, < £l

Then we get for f, €S,

‘ = H cee d
lW2 )l > W (A X )f2(x1, ,)(Q)dx1 dx | <

(i,j) v=1 1, 1, +4n n n

§2n2HgJ|fThis proves ii).

17



iii) At first we describe the structure of
the Wightman functionals of the Wick polyno-

from O and k,
in the v -th row.

the number of the elements 1

mials in the free fields. We have
al a? ag (n)
:D® ¢D” ¢ ...D" & :(gP) (cfl ,...,rfz) =
/2 ¢ ¢ ) n -
”2 ) s o '+2’ fu f(Hdﬂ) T
(217)2( -1 =0 n! =1 ] k <kg-]~l
ol e Lo
xz P((-in ) (-11} )¢ (if ) L GE ) g( b n.- E f )x
kl k —] r=1 r=1 r
(n—-g+2j)/ A A
x \nl,...,r)j,fl,..., & _kl,....,fk o s n) ,

where g is the Fourier transform of g ,

- =4 —l/ﬁ .
de=dr,j(m2+nj2) ., m is

corresponding free field,

over all permutations of
-1y (f =& )

the mass of the
the sum % is

the variables

0 ~j and * over a symbol

means to omit it /14/.If nt/9

then R ; denotes the set
matrlces R with elements
every row are ! numbers
in every column 1is exact

is an integer
of all (n, nf/2) -
1,-1,0 only and in
not equal to O and
one 1 and exact one

Let o
(@ ,eensa
defined by
o) (1) e Mg =

®n
) g):mngxsl > R be a map

Yn/z n ~( ) fn/2
=C, [/l WY gV (Y
nl IVJ w1 on o B (#zl FouX ) X

4
x> (I Gr x )< )
ﬂGngzl vV kY

k k
. ®n .
with 9 =Sl @61“. @Sl (n -times),
-1
Cg=n 0 %ot -y k! n (=2 =2k =10
n v=2

9, dx (m 24 % 2)—/2

and Py, is the group of permutations of the
numbers {1,2,..., 1 . There it follows

Proposition 11:

The Wightman functional of the field
:D* ¢ ...D* ¢$:)is W (f)= o
" ReRy (@l
Let W, ., =0, s=0,1,..., for odd . (o(,) is
defined by continuity for all f_e 9 ).

Now we prove the Lemma 10 iii), i.e., f =2,

éR,fn),n=1,2,... .
a

-1 and the -1 stand over the 1. Let

=1,.0.,j0/2 /
R= e, b )0 K k= L2, O denote
the numbers of the columns which the f ele-

ments of the »-th row stand which differ

18

in the case (a;,ay) =(0,0).

logous in the other cases.

(n) (D

The proof is ana-
We have to estimate

n n
o, Reg Mg =2 .l d0 a2 I gW3 ¢ x)
(0,0) n2V; V; 1 Dyol o=l VHOH
with R=G, )& R . Because of X r. =0 for

j=1 IH
19



we get DettR)=0. We define the matrix R=(, )
<~ vp
by Top = T oup ,v=1,.,n-1, p=1,..,n, and

F = ,t =0, for j #K;) and a linear

nc§ okd B .
transformation of variables by

3 X1
£ =R x

é’n xn
Let Det(R) £ 0. We estimate
(n) (D
(R, e )| <
'"mp) & & |5
<2’ swp JET G +x 20ex D7
x x EVH S <7
PR m
1 2
—n - - - 2.—-2
X m gg...ngdxl...dxn(l+(xKn) ) %
n—1 ~() n 2 L9 Y% D R
xIIgV((Er(m+x),Erx)<
y=1 p=1 v M p=1 vpop —

< 2m7C_, (et sup [(1+x 3% g M)
xcR4

X Joifd . dE [+ EHTEN

n—1
- 22 %
ot #8076 <

v=1

20

- -1 2 -~
<2'm™"C_, (Det®) | M sup (+(£) ) g MUTRRE

S Tl s
4 @ﬁa
- - I —»2 _9
oS o df T AEDT < (11)
< 2nn2nm_nCn2(Det(R))_1H g(n)...g(l)ll 5
2 3 A2 -9 3 A2
(£,) stands for AE (¢, and ¢, forAEIG?)
=0 =

Because (11) is also right for sums of
elements of S?“ and these sums are dense
in § , (11) holds for arbitrary f €S .Ap-
plying Proposition 11 this proves Lemma 10

iii) in the case a,=a,= 0. The index 2 of
the norm || g®...gM||, 1s a consequence of
a =a, = 0. We get other indices for other
Gy, ag .

Lemma 10 demonstrates how one can classify
Wightman functionals with respect to the

continuity in the topologies g = r'*r@.
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