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On the Supersymmetric Sine-Gordon Model

The sine-Gordon model as the theory of a massless
scalar field in one space and one time dimension with
interaction Lagrangian density proportional to cosgg
is generalized for scalar superfield and it is shown that
the solution of the supercovariant sine-Gordon equation
is the "supersoliton", it is the superfield, which has
all ordinary fields in two dimensions as a type of the
soliton solution. We also obtain the massive Thirring mo-
del and the new equation of motion coupling the Fermi
field y and the Bose field ¢.The notice about supersym-
metric "SLAC-BAG" model is done.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

The soliton theory introduced a new ap-
proach to the study of field theory of ex-
tended particles/! An instructive example
of a single scalar field in one space and
one time dimension is determined by the
Lagrangian density /2/:

1_ ] a
L= 5360 ¢ +-é‘l2(cos3¢-1)~ (1.1)

Here a jand B are real parameters where the
physical meaning of these parameters is the
following: e, is the '"squared mass" of the
minimum energy excitations and B is a para-
meter which measures the strength of the
interaction between these small oscillations.
From the Lagrangian density (1.1) the
equation of motion is the sine-Gordon equation:

O ¢=- %}sinﬁ(ﬁ. (1.2)

The static solution of the equation (1.2) is
the soliton/3/:

d,:%tg'l exp( \/a_0 X). (1.3)

In such a theory the very surprising
equivalence was shown by S.Coleman (see



ref.’?/ ): the sine-Gordon equation is equi-
valent to the massive Thirring model in

a sense that the perturbation series for the
massive Thirring model is term-by-term iden-
tical with a series for the sine-Gordon
equation, if the following identifications are
held between the theories:

47 8B
Sz o (1.4)
» z
_Z—B;ew}agb: (1.5)
a ;
-Eg—COSBqS:—-m'o. ‘ (1.6)

The symbols in Eqs. (1.4-6) mean: 8 is
the coupling constant in the Thirring model
with the Lagrangian density

Leiddy - Lok :
1y dy 28] ]# (1.7)
and | =Zyu¢- The symbol ¢ means a renormalized
scalar density
c=Z7y,

where Z is a cutoff-dependent constant. The
massive Thirring model is formally derived
by adding a term proportional to the Lag-
rangian density (1.7):

L-L —-m’o (1.8)

and the symbol m” is a real parameter: it is
not to be identified with the mass of any
presumed one-particle state. )

This equivalence holds when 82 is less
than 8~. When g8 %4~,Eq. (1.4) implies g=0 and
the sine-Gordon equation is equivalent to
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a free massive Dirac theory is one spatial
dimension.

In such a way S.Coleman established the
close connections between fermion (massive
Thirring field) and soliton (sine-Gordon
field). Of course, it is surprising to see
a Fermi field appearing as a coherent state
of a Bose field, but fortunately there is
no spin-statistics theorem in two dimensions
(general remarks on spin and statistics in
two dimensions are given in ref./4/ ), Never-
theless the curious equivalence between fer-
mion and boson raises the questions: What is
the Fermi-Bose symmetry for solitons in two
dimensions? What is the "supersoliton'"? Do
we obtain the solitary fields in the super-
multiplet assuming the generalization of
the sine-Gordon theory for the scalar super-
field?

The solution of these questions is the
main goal of this paper and the procedure
is the following: In Sec. 2 we shall start
from the four dimensional superspace where
we use the technique of superfields in two
Bose and two Fermi dimensions by straight-
forward adaptation of the usual technique
in eight dimensional superspace. In Sec. 3
we construct the supersoliton theory. We
generalize the sine-Gordon model for the
scalar superfield and using the validity of
the sine-Gordon equation for the ordinary
scalay field in two dimensions, we obtain
the special form for the Lagrangian density of
Fermi fields. We show two independent ways
for ¢y £0; the first gives the massive Thirring
model and the Fermi field is identified with
the sine-Gordon soliton; the second gives the
special nonlinear Lagrangian density and



from this the coupled set of nonlinear
equations follows, one solution of these
equation having the form as the soliton so-
lution of the sine-Gordon model ’3/.In both
cases we get the Fermi and Bose fields as
solitons in a certain sense. So, we obtain
- the solitons from the supersymmetric point
of view - the supersoliton theory.

2. THE TWO DIMENSIONAL SUPERSYMMETRY THEORY

We shall now describe the formalism using
the references/6/. We suppose 2-dimensional
vector space V (over the complex field),
generating a 4-dimensional Grassman algebra

AV =AlV 1 A2y | ‘

where we define V=A'V and w=A?v. Since the
Grassman algebra is graded commutative, the
elements of V anticOmmute, and we shall
denote 6,(a=1,2) the elements of V. We suppose
,€V to be Majorana spinor. The two di-
mensional quasi-Minkowski coordinate x@
(i.e.,(x@)™ -0,4=1,2 ) is the element of the
space W and is constructed from two ele-
ments 6,0 e V:

x%= 97y, @2.1)
where

0 1 0 1
= ( , [ .
4 1o 74 o
- The two dimensional superspace is as a mat-
ter of fact a fibre bundle E=V® VWV with the
basis V and with the fibre ¥ (for a detailed
description see the last reference in

ref./6/). The supersymmetry transformation
has the form:

a a -
X X +e2a
a

’
a a °
0% 0% +e®,

where TI's =ihﬂ)550b is the connection form
in the fibre bundle E and ¢*eV 1is the
infinitesimal change in the basis V. The
covariant derivative and the scalar super-
field are given by the usual expression’/%.

9 (2.2)

S(x,0) =¢ (x)+ify (x)+7i50F(x)- (2.3)

The supermultiplet {¢(x),y(x),F(x)} contains
the Fermi field (Majorana spinor) ¢ (x) and
the Bose fields ¢(x) and F(x). Using the cova-
riant derivative on the scalar superfield
S(x,#) one can construct the multiplet

4 DDS(x,0)=F(x)+ifdy (x) + 50086 () S (2.8
and obtain the free massless equation

DD S(x,0)=0. (2.5)

The usual massless free-field Lagrangian is
the coefficient of 66 (see Sec. 3) in the
following expression:

ZLS(x,e)bDS(x,o)z... iéo(é—¢u¢+% F2-23,80). (2.6)

Now we shall construct the supersoliton
theory.



3. THE SUPERSOLITON THEORY

From the relation (2.3) it follows that
the scalar superfieldS(x,6) is equivalent to
a set of ordinary fields in two dimensions.
From this point of view we shall define the
soliton superfield:

we shall call the scalar superfield S(x,6)

as the soliton superfield ("supersoliton'"),

if the supersymmetric generalization of

the sine-Gordon equation for the scalar

superfield will be fulfilled and if all
ordinary fields in two dimensions will
be as a solitary fields, exactly as

a type of the soliton solution from the

sine-Gordon equation.

We shall advance in the following way;
at first, we construct the supercovariant
sine-Gordon equation for the scalar super-
field S(x,6) using the supersymmetry Lagran-
gian technique. By analogy with the Lag-
rangian density (1.1) the dynamics of the
supersoliton theory will be determined by
the Lagrangian density, which is the coef-
ficient of 66 in the following expression:

-2i—S(x,0)_DDS(x?9)+V(S(x,9)), (3.1)

where
V(S(x,6))= -E-z (cosbS(x,6)~1)

and ab are parameters which will be specifi-
ed later. :

he recall that the Lagrangian density
is obtained from the expression (3.1) ap-
plying the covariant operator D, twice on
a general superfield because in the four
dimensional superspace E the power series

in 6 is finished for two 6. Such a construc-
tion of the Lagrangian density is in agree-
ment with the construction of the supersym-
metric Lagrangian in the work of A.Salam /6/.
There is shown that the action is invariant
under supersymmetry transformation (up to
a variationally insignificant surface term)
if it is independent of 6.

The supercovariant equation of motion is

_;_ DDS(x, 0 )=V* (S (x, 6)), (3.2)

where
\ ’(S(x,G)):--E—sin bS(x,6).

It is the supercovariant sine-Gordon equation.
Now we shall show that the solution of the
supercovariant sine-Gordon equation is the
"supersoliton" in the sense of our definition.
At first, we use the Taylor expansion of the
cosine in the expression for the Vv (S(x,¢)):

V(S(x,0))= %(cosbS(x,e)—l) = (3.3)

6_6
_a _ P?xg, Bstxe b8 (x0)
- b2 2! 41 6! :

Y

From the superfield theory/6/we know that
the product of superfields is again a super-
field and therefore can be expanded in
Taylor’s expansion in @, which is finished
forn=2, because the 6-elements anticommute.
Using this specific characteristic of the
superfields, it is easy to express the co-
sine in the relation (3.3):



2 - - — -
%-2[—;—!(¢2+210¢¢+i0017¢ - 860y

b* 4 A Ty 3 TaT 2
+Z'—(¢ + 4104 ¢ +2100F @™ — 6004y ) (3.4)

6
b 6
—Eﬁ4¢

where we use 0¥=¢0 and the symbolic expres-
sion for the fields. In the Lagrangian den-
sity, which is obtained from the relation
(3.1), the elements with two ¢ only will
play the role in the supersymmetric Lagran-
gian. So we get for ordinary fields Lagran-
gian density in two dimensional space the
following expression:

1; - A
L=a¢0g++F2- El—w v -2 (Fg+ify

b2 3 -b2
Y b 12-!-§5l/l¢ (3.5)
b4

+S—'F¢ +1—-—(/u/,¢ Jetc. =

1 1 g - . ‘
=5-¢ Op+ 2— —;—¢J¢——2%Fsmb¢—§l—a¢;//cosb¢.
There is no kinetic term for F; hence this #
field can be eliminated by using the equa- }

tion of motion which includes
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+6i0_1//¢5+3i50F¢5—1550(/7://¢4 )etc. ] ]

F— -2 sinbg=0.
oh @ (3.6)
Using Eq.

(3.6) we get the Lagrangian densi-
ty

1 i-. 1 &£.2  ia
L=7¢D¢—2—lﬂﬂ¢——8‘—g§sm b¢‘——2"$l//c°5b¢ (3.7)
and from this we obtain two basic equations

of motion coupling the Fermi field ¥ and the
Bose field ¢ :

(id+ iacosbg )y = 0, (3.8a)

06 —La—zsmb¢cosb¢+lab$ sinbgp=0
£ D 5 v . (3.8b)

We can see that if we have no spinor field,
i.e.,y=0 then the equation (3.8b) is equi-
valent to the sine-Gordon equation (1.2)

if these relations are held:

a? .
0=p¢ - -éFsm2b¢

B =2b
aO a27
B 8b

In this case we obtain the following expres-

sion for the parameters:

B I
=7 a=2iva,

Equation (3.8b) also will be equivalent
to the sine-Gordon equation (1.2) if the
relation

1



1 8% osbo b abT ay .

(Z-.T_cos ¢—?ab¢;¢;)smb¢,=-—‘8—smﬁ¢. (3.9)
is held.

Now we have two independent possibilities

to fulfill the relation (3.9):

a) We suppose b= and we obtain from the

relation (3.9) the expression for the
cosine:

2

COSB¢=—4%+2i:i¢7¢I. (3.10)

From Eq. (3.8a) the Lagrangian density

follows:

L=%la¢a¢+iaamb¢¢¢) (3.11)
and using the relation (3.10), we get

L=4-0 dy-2i203y_p2(jy)2 (3.12)

The Lagrangian density (3.12) will be the
Lagrangian density (1.8) of the massive
Thirring model, if the following condition
will be satisfied:

a
i—Q 7y =m’
21a Y =mg, (3.13a)

Bz=§-- (3.13b)

From the condition (3.13a) it follows the
expression for the parameter a:

12

2ia

m’Z

a=

2, (3.14)

R e

}

The massive Thirring model is equivalent to
the sine-Gordon model (when B2 is less than
87 and identifications (1.4-6) are held)
and in this sense our Fermi field ¢ of the
multiplet is connected with the sine-Gordon
soliton (see also Sec. 4). In such a way
both fields ¢ and ¥ are solitons and the
scalar superfield S(x,6) is really the "super-
soliton'.

b) We suppose

2

—41— —%—- cosbg= ’- i—%—b— Y
and from the relatien- (3.9) the expression
for the cosine follows:

(3.15)

.b2m
cosbe =- 21—y (3.16)

and it formally looks like S.Coleman’s con-
dition (1.6). Using Eq. (3.15) in the rela-

tion (3.9), we obtain from Eq. (3.8a) the
sine-Gordon equation:
2 a
=L 3 g = - —0 sj
D¢ 4 b stqu B SlﬂB¢ (3‘17)

and from this equation the parameters
follow:

a=+1= i\/2a0

B
2

b

4

If we put the expression (3.16) into
Eq. (3.11), we get the special nonlinear
Lagrangian density

- g2

L=;—<iw¢+2—<¢7¢>2>. (3.18)

13



Then the equation of motion has the form

B 9 — .
(1d - B Yy)y = 0. (3.19)
Writingtﬂ=(: ) we get static equations
i =-g* (u%v By (3.20a)
- 2 2 2
v == @ -7 )u. (3.20b)
i I COSw
In terms of polar coordinates y¢=| the
equations (3.20) become: [ smo
2 3
. r
r=—/32r 3sin2wc082w =~ sind (3.21a)
& =~ r%os2,, . (3.21b)

The solutions of this couples set of the
special nonlinear equations are amazingly
simple (see ref./5/ }:

r2=rgcosh[¢32r20(x-xo )] (3.22a)

-1
o=t eply p¥rixxy)]- 1. (3.22b)

The formula for o is readily recognizable
as the soliton solution for the sine-Gordon
equation. In this sense the connection bet-
ween fermions and solitons exists and the
scalar superfield is really the "supersoli-
ton",

In such a way in both cases we have ob-
tained the supersoliton theory.
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4., COMMENTS

We have discussed how in two dimensional
supersymmetry theory the soliton Fermi-Bose
symmetry 1s realized. Using the sine-Gordon
equation for the scalar field ¢ in the su-
permultiplet, we have obtained the new non-
linear equation for fermions like solitons.

The theory for¢ #0 and with the condi-
tions (3.9) gives two ways in which the para-
meters a and b are determined. In both the
ways the parameter a has mass dimension and
the parameter b has the same dimension as
the parameter 8. In every way the parameters
are different. . ~

The first way gives the massive Thirring
model from the supercovariant sine-Gordon
equation for the scalar superfield S(x, 9).
The connection in this first way between
fermion and soliton is not only due to mas-
sive Thirring model, but also due to nonli-
near equation of motion which follows from
the Lagrangian density (3.12):

. . a
idy + 4(i -2+ 25y ) y = 0. (4.1)

Using the same procedure as in the second
case on the equation (3.19), we obtain
the following solutions:

r2=r(2)cosh[4(;—m’Z+Bzr02)(X—xO)] | ’(4.23)
= itg—lexp[4(§1-m'z+B?"f))(x—xo)]-f‘ (4.2b)

where we used
. a
a=21—J—.
m’Z

15



We can see that the formula fore is again
readily recognizable as the soliton solution
for the sine-Gordon equation and in this sense
we have again the supersoliton theory as

in the second case.

Of course in both cases the Bose field ¢
is not equal to the Fermi field ¥.The rela-
tions between ¢ andy are given via Eq.
(3.10) and Eq. (3.16), respectively. From
the relations (4.2a,b) and (3.22a,b) we can
obtain the field ¢, or using the expression
(1.3) for the soliton we can get the field ¢.
Finally we want indicate briefly a possible
physical interpretation of the supersymmet-
ric sine-Gordon model. For this purpose from
the aforesaid we have to use only the deri-
vation of Eq. (3.8a,b) - the most interes-
ting part of this paper. If we shall now
study small oscillations about the ground
state ¢=0, we can expand the cosine and the
sine in power series in Eq. (3.8a,b), and
we obtain:

. 2
o b
la¢+1a¢=-‘;—¢2¢. (4.3a)

— 2. 2 P
0¢— 21_a2¢+%"¢3 =—“2‘b PUY - (4.3b)

We denote

1ab2
8=3
2
2__a
# 4
aZh2
IS
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and from Eq. (4.3a,b) it follows:

idy - 2uyp =galy ‘ (4.4a)
06 +ulp -Ag 3= —go Py - (4.4b)

These equations are the starting point of
the supersymmetric "SLAC-BAG" model, descri-
bing strongly bound quarks in a simple two
dimensional example. The fields of this mo-
del consist of a colourless quark field ¢

of only one flavour, a Higg’s field ¢, but

no gluons. The supersymmetry invariance
changes the "SLAC-BAG" model described by
the field equations/7?/:

idy =gy (4.5a)
0g+ule ~Ap® =-gyy. (4.5b)

The realization and the physical aspects
of the supersymmetric '"SLAC-BAG" model is in
preparation.

In such a way we have obtained the sur-
prising metamorphosis of fermions into bo-
sons from the two dimensional supersymmetric
point of view.

The author wishes to thank Professor
V.Votruba for useful comments.
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