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0 cynepCHMMeTpH'leCKOH MOJJenH sin,-Gordon 

Moaenh sine-Gordon ,KaK reopHH 6eaMaccosoro CKanHpuoro rronH 
B OIJHOH rrpocrpaHCTBeHHOH H OIJHOH speMeHHOA pa3MepHOCTH, o6o6maeTCSI 
JJnH cnyqaSI CKanS!pHOI"'O cynepnonH. noKa38HO, 'ITO pemeHHe SIBnHeTCSI 
"cyrrepcOnHTOHOM". nony'leHbl HOBbie ypaBHeHHSI, CMemHBBIOmHe $epMH-
H 6oae-nonH, KpOMe TOI"'0 1 B OIJHOM cnyqae nonyqaeTCSI M8CCOB8SI MOIJenb 
THppHHra. 

Pa6ora BhmonueHa s IIa6oparopHH reopeTH'leCKoll ljJH3HKH OH.RH. 

Coo6WeHBe 06WJUIHeHHOrO BHCTBTYT& •.11epHWX BCCBe.llOB&HHi. ,lly6H& 1977 

Hruby J. E2 · 10753 

On the Supersymmetric Sine-Gordon Model 

The sine-Gordon model as the theory of a massless 
scalar field in one space and one time dimension with 
interaction Lagrangian density proportional to cos8~ 

is generalized for sca~ar superfield and it is shown that 
the solution of the su~ercovariant sine-Gordon equation 
is the "supersoliton", it is the superfield, which has 
all ordinary fields in two dimensions as a type of the 
soliton solution. We also obtain the massive Thirring mo­
del and the new equation of motion coupling the Fermi 
field t/J and the Bose field ¢.The notice about supersym­
metric "SLAC-BAG" model is done. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. INTRODUCTION 

The soliton theory introduced a new ap­
proach to the study of field theory of ex­
tended particlesi11.An instructive example 
of a single scalar field in one space and 
one time dimension is determined by the 
Lagrangian density /2/: 

1 . p. a 
L = - a ¢a ¢ + _!!_ ( cos fJ¢- 1 > . ( 1 1 ) 

2 tJ. (32 • 

Here a o-and f3 are real parameters where the 
physical meaning of these parameters is the 
following: a 0 is the "squared mass" of the 
minimum energy excitations and f3 is a para­
meter which measures the strength of the 
interaction between these small oscillations. 

From the Lagrangian density (1.1) the 
equation of motion is the sine-Gordon equation: 

ao- . 
0 c/J=- fl S10{3cp. (1. 2) 

The static solution of the equation (1.2) is 
the soli ton /3/: 

4 -1 -
¢={itg exp( y'a0 x). (1.3) 

In such a theory the very surprising 
equivalence was shown by S.Coleman (see 
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ref. 121 ) : the sine-Gordon equation is equi­
valent to the massive Thirring model in 
a sense that the perturbation series for the 
massive Thirring model is term-by-term iden­
tical with a series for the sine-Gordon 
equation, if the following identifications are 
held between the theories: 

4rr · g 
-- =1 +-

{3 2 7T 

.11 f3 (J.V a ¢ = J -:r-;;f v 

ao , 
-- cos {3 ¢ = - m a . 
{32 

(1. 4) 

(1. 5) 

(1. 6) 

The s ym b o 1 s in Eq s . ( 1. 4 - 6 ) me an : g 1 s 
the coupling constant in the Thirring model 
with the Lagrangian density 

L=i(f~t/f- ~ gj
11

j
11 

(1. 7) 

and i =~ Y t/f. The symbol a means a renormal ized 
fJ. d /1 • scalar ens1ty 

a=Z~t/f, 

where Z is a cutoff-dependent constant. The 
massive Thirring model is formally derived 
by adding a term proportional to the Lag­
rangian density (1.7): 

L-oL-m'a (1 . 8) 

and the symbol m' is a real parameter: it is 
not to be identified with the mass of any 
presumed one-particle state. . 

This equivalence holds when {3
2 is less 

than Srr. \-\hen {3 2=4rr, Eq. (1. 4) implies g = 0 and 
the sine-Gordon equation is equivalent to 

4 

a free massive Dirac theory is one spatial 
dimension. 

In such a way S.Coleman established the 
close connections between fermion (massive 
Thirring field) and soliton (sine-Gordon 
field). Of course, it is surprising to see 
a Fermi field appearing as a coherent state 
of a Bose field, but fortunately there is 
no spin-statistics theorem in two dimensions 
(general remarks on spin and statistics in 
two dimensions are given in ref. / 4/). Never­
theless the curious equivalence between fer­
mion and boson raises the questions: ~hat is 
the Fermi-Bose symmetry for solitons in two 
dimensions? \At'hat is the "supersoliton"? Do 
we obtain the solitary fields in the super­
multiplet assuming the generalization of 
the sine-Gordon theory for the scalar super­
field? 

The §olution of these questions is the 
main goal of this paper and the procedure 
is the following: In Sec. 2 we shall start 
from the four dimensional superspace where 
we use the technique of superfields in two 
Bose and two Fermi dimensions by straight­
forward adaptation of the usual technique 
in eight dimensional superspace. In Sec. 3 
we construct the supersoliton theory. We 
generalize the sine-Gordon model for the 
scalar superfield and using the validity of 
the sine-Gordon equation for the ordinary 
scalar field in two dimensions, we obtain 
the special form for the Lagrangian density of 
Fermi fields. We show two independent ways 
for t/f ~0; the first gives the massive Thirring 
model and the Fermi field is identified with 
the sine-Gordon soliton; the second gives the 
special nonlinear Lagrangian density and 
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from this the coupled set of nonlinear 
equations follows, one solution of these 
equation having the form as the soliton so­
lution of the sine-Gordon model/5/.In both 
cases we get the Fermi and Bose fields as 
solitons in a certain sense. So, we obtain 
the solitons from the supersymmetric point 
of view - the supersoliton theory. 

2. THE TWO DII\IENSIONAL SUPERS'11v1METRY THEORY 

We shall now describe the formalism using 
the references/6/. We suppose 2-dimensional 
vector space V (over the complex field), 
generating a 4-dimensional Grassman algebra 

AV=A 1V + A2V, 

where we define V =A 1V and W:=A2 V. Since the 
Grassman algebra is graded commutative, the 
elements of_ V anticOmmute, and we shall 
denote ea(a:l,2) the elements ofv. We suppose 
ea E V to be Maj orana spinor. The two di­
mensional quasi-Minkowski coordinate xa 
(i.e.,(xa)n+I=0,a=1,2) is the element of the 
space W and is constructed from two ele­
mentsO,O'EV: 

X a= () 'ya () ' 

where 

y 0 ( 0 1 ) ' 
1 0 

(2 .1) 

0 1). yl=( 0. 
-1 

. The two dimensional superspace is as a mat­
ter of fact a fibre bundle E=V@ W with the 
basis V and with the fibre w (for a detailed 
description see the last reference in 

.6 

., 

-

ref. 161 ) • The super symmetry transformation 
has the form: 

xa-+ X a + ;-a r a ' 
a 

ea ()a ' a -+ + l ' 

r a . ( a) b . . where a = 1 y ab 0 1s the connect1on form 
in the fibre bundle E and (a E V is the 
infinitesimal change in the basis V. The 
covariant derivative and the scalar super­
field are given by the usual expression/6/ 

D =a -ra a 
a a a a (2. 2) 

- 1 -S(x,O) =¢(x)+i01jf(x)+-00F(x). 
2 (2.3) 

The supermultiplet 1¢(~,1/J(~,F~)l contains 
the Fermi field (Majorana spinor) ljl(x) and 
the Bose fields ¢(x) and F(x). Using the cova­
riant derivative on the scalar superfield 
S(x, e) one can construct the multiplet 

; DDS(x,O)=F(x)+iO~I/J(x) +; ffeoq,(x) (2.4) 

and obtain the free massless equation 

DD S(x,O )x 0. (2. 5) 

The usual massless free-field Lagrangian is 
the coefficient of ee (see Eec. 3) in the 
following expression: 

i S ( 0 )-DDS ' ) . - 1- 1 2 i - . 2 x, \x,e z ••• 100(y¢o¢+"2F - 21/J/~Ijl). (2.6) 

Now we shall construct the supersoliton 
theory. 
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3. THE SUPERSOLITON THEORY 

From the relation (2.3) it follows that 
the scalar superfield S(x, ()) is equivalent to 
a set of ordinary fields in two dimensions. 
From this point of view we shall define the 
soliton superfield: 

we shall call the scalar superfield s~.e) 
as the soliton superfield ("supersoliton"), 
if the supersymmetric generalization of 
the sine-Gordon equation for the scalar 
superfield will be fulfilled and if all 
ordinary fields in two dimensions will 
be as a solitary fields, exactly as 
a type of the soliton solution from the 
sine-Gordon equation. 
We shall advance in the following way; 

at first, we construct the supercovariant 
sine-Gordon equation for the scalar super­
fieldS~.m using the supersymmetry Lagran­
gian technique. By analogy with the Lag­
rangian density (1.1) the dynamics of the 
supersoliton theory will be determined by 
the Lagrangian density, which is the coef­
ficient of 7Je in the following expression: 

2..s(x,())DDS(x,O) + V(S(x,O)), 2 . (3 .1) 

where 

V(S(x,()))= -:
2 

(cosbS(x,0)-1) 

and a,b are parameters which will be specifi­
ed later. 

We recall that the Lagrangian density 
is obtained from the expression (3.1) ap­
plying the covariant operator Da twice on 
a general superfield because in the four 
dimensional superspace E the power series 
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.. 

.. 

in e is finished for two e. Such a construc­
tion of the Lagrangian density is in agree­
ment with the construction of the supersym­
metric Lagrangian in the work of A. Salam /6/. 
There is shown that the action is invariant 
under supersymmetry transformation (up to 
a variationally insignificant surface term) 
if it is independent of e. 

The supercovariant equation of motion is 

L DDS(x, 0 )= V' (S .(x, 0)), 
2 

where 

V ' (S (X , (} )) = - ~ sin b S ( X , () ) • 

(3.2) 

It is the supercovariant sine-Gordon equation. 
Now we shall show that the solution of the 
supercovariant sine-Gordon equation is the 
"supersoliton" in the sense of our definition. 
At first, we use the Taylor expansion of the 
cosine in the express ion for the V (S(x, O)): 

V(S(x,O))= __!!_ (cosbS(x,0)-1) "" 
b2 

= ~ (- _b
2 

S
2
(x,02 + b

4 
S

4 
(x,O) 

b2 2! 4! 

(3. 3) 

6 6 
b S (x,il ... ). 

6! 

From the superfield theory 161 we know that 
the product of superfields is again a super­
field and therefore can be expanded in 
Taylor's expansion in 0, which is finished 
forn=2,because the 0-elements anticommute. 
Using this specific characteristic of the 
superfields, it is easy to express the co­
sine in the relation (3.3): 
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~2[ - ~ ~ ( ¢ 
2 

+ 2 i e r/1 ¢ + i e e F ¢ ee~rjJ) 

+ ~; < ¢ 4 + 4ier/f¢3+2ieeF¢3
- 6ee~n/J¢ 2 ) (3.4) 

6 b 6 .- 5 .- 5 -- 4 
-6!(¢ +6IOrjJ¢ +3I00F¢ -1500r/lr/J¢ )etc.] 

where we use Or/l=r/10 and the symbolic expres­
sion for the fields. In the Lagrangian den­
sity, which is obtained from the relation 
(3.1), the elements with two e only will 
play the role in the supersymmetric Lagran-
gian. So we get for ordinary fields Lagran­
gian density in two dimensional space the 
following expression: 

1 1 2 i- a ·-L=-¢0¢ +-F - -r/!Jr/J--(F¢+1r/Jr/J 2 2 2 2 

b2 2 
3 . I) 2 

- -F ¢ -t-i{lr/J,~.. 
3! 2! 'P (3. 5) 

b
4 

5 b4 

+S!F¢ +i4!~rjJ¢4 )etc.= 

-
1 1 F2 i -~ a · b i - b =-¢ Df/J+- - -r/J v¢- --F sm ¢- -arjJ '/J cos ¢ 2 2 2 2b 2 . 

There is no kinetic term for F; hence this 
field can be eliminated by using the equa­
tion of motion which includes 
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.I 

' 

t 
J 

F- 2- sin b¢= 0. 
2b 

(3. 6) 

Using Eq. (3.6) we get the Lagrangian densi­
ty 

1- i - ~ 1 J . 2b ia :7. b 
L~-¢o¢--r/lvr/l---sm ¢--'f'rjJcos ¢ 2 2 8 b2 2 (3.7) 

and from this we obtain two basic equations 
of motion coupling the Fermi field r/1 and the 
Bose field ¢ : 

( i ~ + i a cos b¢) rjJ = 0, (3.8a) 

2 . 
D¢ - .L ~sin b¢ cos b~+_!_ ab;j; rjJ sin b¢ = 0. 

4 b 2 (3.8b) 

We can see that if we have no spinor.field, 
i.e.,r/f=O, then the equation (3.8b) is equi­
valent to the sine-Gordon equation (1.2) 
if these relations are held: 

a2 
0= o¢ -- sin2b¢ 

Sb 

f3 = 2 b 

a 0 a2 
f3 --Sb 

In this case we obtain the following expres­
sion for the parameters: 

b = ~' a = 2 i y'a . 
2 0 

Equation (3.8b) also will be equivalent 
to the sine-Gordon equation (1.2) if the 
relation 
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1 a2 i - · ao . (--cosh¢-- abtfrtfr)smb¢,. --stnf3¢. 
4 b 2 f3 (3. 9) 

is held. 
Now we have two independent possibilities 

to fulfill the relation (3.9): 
a) We suppose b =f3 and we obtain from the 

relation (3.9) the expression for the 
cosine: 

2 

cos f3 ¢ = - 4 : ~ + 2 i : Iii 1/1 • ( 3 • 1 0) 

From Eq. (3.8a) the Lagrangian density 
follows: 

L =1.._ (i~~ 1/J + iacos b¢~1/1) 
2 

and using the relation (3.10), we get 

L,., ~ ~ (/ 1/J- 2 i :o ~ t/F _ f3 2 ( ;j; t/F ) ~ 

(3.11) 

(3.12) 

The Lagrangian density (3.12) will be the 
Lagrangian density (1.8) of the massive 
Thirring model, if the following condition 
will be satisfied: 

ao - , 2i-I/JI/J = m a, 
a 

f32=l_ 2 . 

(3.13a) 

(3.13b) 

From the condition (3.13a) it follows the 
expression for the parameter a: 

2ia 
a =--~0-

m'Z (3.14) 
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The massive Thirring model is equivalent to 
the sine-Gordon model (when {3 2 is less than 
Srr and identifications (1.4-6) are held) 
and in this sense our Fermi field 1/1 of the 
multiplet is connected with the sine-Gordon 
soli ton (see also Sec. 4). In such a way 
both fields~ and 1/1 are solitons and the 
scalar superfield S(x,O) is really the "super­
soliton". 

b) ~e suppose 

1 a 2 . ab -
4 b- cos b ¢ = - 1-2 1/1 1/1 ( 3 • 1 5 ) 

I, 
-"t_·· ' .. 

and from t.he _ _retati-en- {3. 9) the expression 
for the cosine follows: 

b2 ~ 
cos b ¢ = - 2 i -;;-!/! 1/1 ( 3 • 16) 

and it formally looks like S.Coleman's con­
dition (1.6). Using Eq. (3.15) in the rela­
tion (3.9), we obtain from Eq. (3.8a) the 
sine-Gordon equation: 

1... a2 . a . 
D ¢ = 4 b- Sin 2 b ¢ = - ff Sln {3 ¢ ( 3 , l 7 ) 

and from this equation the parameters 
follow: 

a=± iy'2a 0 
f3 

b=-
2 

If we put the expression (3.16) into 
Eq. (3 .11) , we get the special nonlinear 
Lagrangian density 

- 2 

L= ~ (i.fd!/1+: ((i;!/1) 2
). (3.18) 

13 



Then the equation of motion has the form 
2- . 

( id'- {3 t/lt/1 )1/J = 0. 

u 
Writingi/J=(,. ), we get static equations 

. 2 2 a 
u =-{3 (u -v JV 

. 2 2 2 
v =-{3 (u -v )u. 

In terms of polar coordinates 
equations (3.20) become: 

2 3 
• 23. f3r. 
r =- {3 r stn 2 w cos 2 w = --- sm4 w 

2 

. ~ 2 2 
w =-- p r cos 2 w . 

1/J jr c~s w l 
~ stn w 

(3.19) 

( 3. 20a) 

(3. 20b) 

the 

(3.2la) 

(3.2lb) 

The solutions of this couples set of the 
special nonlinear equations are amazingly 
simple (see ref. /5/ ) : 

2 2 2 2 )] r = r 
0 

cosh[+ {3 r 0 (::~rx 0 (3.22a) 

-1 2 2 1T 
w = ± tg exp[;f3 r

0
(x-x

0
)]-

4
. 

(3.22b) 

The formula for w is readily recognizable 
as the soliton solution for the sine-Gordon 
equation. In this sense the connection bet­
ween fermions and solitons exists and the 
scalar superfield is really the "supersoli­
ton". 

In such a way in both cases we have ob­
tained the supersoliton theory. 
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4. COMMENTS 

We have discussed how in two dimensional 
supersymmetry theory the soliton Fermi-Bose 
symmetry is realized. Using the sine-Gordon 
equation for the scalar field ¢ in the su­
permultiplet, we have obtained the new non­
linear equation foi fermions like solitons. 

The theory for 1/J f, 0 and with the condi­
tions (3.9) gives two ways in which the para­
meters a and b are determined. In both the 
ways the parameter a has mass dimension and 
the parameter b has the same dimension as 
the parameter (3. In every way the parameters 
are different. 

The first way gives the massive Thirring 
model from the supercovariant sine-Gordon 
equation for the scalar super field S(x, e). 
The connection in this first way between 
fermion and soliton is not only due to mas­
sive Thirring model, but also due to nonli­
near equation of motion which follows from 
the Lagrangian density (3.12): 

i ~ 1/J + 4 ( i ~ + (3 2 0" 1/J ) 1/J "" o. 
a ( 4 .1) 

Using the same procedure as in the second 
case on the equation (3.19), we obtain 
the following solutions: 

r2 = r 2 cosh [ 4 ( .l. m 'Z + {32 r j( x -x ) ] 
0 2 0 0 

w= ±tg- 1 exp[4(1.m'Z+(3~ 2 )(x-x )]-!..... 
2 0 0 4 

where we used 
. an 

a >= 2 1 ----r- . 
mZ 

( 4 • 2a) 

( 4. 2b) 
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We can see that the formula for w is again 
readily recognizable as the soliton solution 
for the sine-Gordon equation and in this sense 
we have again the supersoliton theory as 
in the second case. 

Of course in both cases the Bose field ¢ 
is not equal to the Fermi field ~.The rela­
tions between ¢ and~ are given via Eq. 
(3.10) and Eq. (3.16), respectively. From 
the relations (4.2a,b) and (3.22a,b) we can 
obtain the field¢, or using the expression 
(1. 3) for the soli ton we can get the field ~. 
Finally we want indicate briefly a possible 
physical interpretation of the supersymmet­
ric sine-Gordon model. For this purpose from 
the aforesaid we have to use only the deri­
vation of Eq. (3.8a,b) - the most interes­
ting part of this paper. If we shall now 
study small oscillations about the ground 
state ¢=0, we can expand the cosine and the 
sine in power series in Eq. (3.8a,b), and 
we obtain: 

. b2 
. ~ . ta 2 1 t/J + ta~ = -

2
-¢ ~ . 

. 2 2 2 
1 2 a b 3 iab -

o¢- -a¢+-¢ =--¢~1/J. 
4 6 2 

We denote 
iab2 

8=--
2 
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2 
2 a 

p. ""- --
4 

a2b2 
A:--

6 

(4.3a) 

(4.3b) 

t 
I 

and from Eq. (4.3a,b) it follows: 

. 3 2 
lv~- 2p.~ =8¢ ~ , (4.4a) 

2 3 -Dc/J+p. ¢-A¢ =-g¢1/J~· (4.4b) 

These equatiDns are the starting point of 
the supersymmetric "SLAC-BAG" mo.del, descri­
bing stro~gly bound quarks in a simple two 
dimensional example. The fields of this mo­
del consist of a colourless quark field~ 
of only one flavour, a Higg' s field¢, but 
no gluons. The supersymmetry invariance 
changes the "SLAC-BAG" model described by 
the field equations /7 I: 

i(f~ ~g¢~ 

2 3 -Drf>+p. ¢ -A¢ :-gljJ~. 

(4.5a) 

( 4. Sb) 

The realization and the physical aspects 
of the supersymmetric "SLAC-BAG" model is in 
preparation. 

In such a way we have obtained the sur­
prising metamorphosis of fermions into be­
sons from the two dimensional supersymmetric 
point of view. 

The author wishes to thank Professor 
V.Votruba for useful comments. 
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