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I opu3onr coOGLITHI BOKPYI WACTHUbI, OKPYXeHHOH CTATHYECKHUM
AOTEHUHANOM 3aNHPAHKS

Pewaercs ypasrentte 3fiHuTefia ANA ciydas cdepudeCKH~CHMMETPHYHO—
ro MOTEHUMATA IANMPAHHE, 8 3aTeM O6CYXAAeTCH MONOKEHAE TOPH3OHTOB
cobLiTHIi B paMKax TeOpHH I'papuTauKH, & TaKKe B paMKBx “canuHol yepxol
apipbl”, npeamoxenHolt Pexamu ¢ KacrtopuHa.
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Event lorizons Around a Particle Surrounded
by & Static Confinement Potential

After solving one of the Einstein’s equations in the
case of a sphericelly symmetric confinement potential, the
locations of event horizons are discussed in gravitatio-
nal theory and in the "strong black hole" picture of
Recami and Castorina.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. In elementary particle physics, in
order to explain the confinement of quarks
in mesons and hadrons it is widely accepted
to take a two body "confinement potential"
in the form

-mr

e 2
Vi) . (ao +Kol' ). (1)
For instance, ref./V gives in the case of
the charmonium for the e-© interaction

a ==0,2, K :-—‘—zﬂ, a= 02fm, m=0.

0 al
In the cc(T¢) interaction the potential is
supposed to be repulsive;V =Vzz=- V.o ,
i.e., ag=+02. in eq. (1).

Our aim here is to investigate the space-
time structure around an object ( ¢ or ¢ )
which for the following arguments, tentati-
vely, is supposed to exist alone, surround-
ed by a field representing (1).

The relativistic considerations necessary
to carry out our program are quite straight-
forward, we quote ref.’? only, where simi-
lar calculations for, the Yukawa field have
been performed.

2. The total potential energy of an
object described by a distribution p



fe(xldx =1
self-interacting through (1) is

1 —m'!—x’]
W=2fp(x) p(x) o (a+K| =x"]2) B xd3x",
2 [ x=x"] (2)
Introducing
-m |x=x"|
@ (x) =fp(x')—e————(a+K[x-x'|2 yd¥x’,
[ x=x"]

% takes the form

W=l o oaix.
2

A direct calculation gives

AD— 2@ ==4drap +Ko,

¢=fp(x')e‘"‘l"" 2 _4myadsr.
| x=x"|

Substituting p into (2), after performing
the integration over x” , W 1is

1

ma

W=

[ ve | 2an’0? Ko g)ddx (3)

therefore the energy density in our case 1is
the following:

1

u(x) = (| VO |2 4 1f 0% 4K ). 4)

3ma



One might notice the non-definiteness of (4),
which from the point of view of field theory,
seems to be related to an indefinite metric
quantization/3:4/.

For a point source

e—mr e"’l’l‘lll
d = (a+Kr?), ¢ = (2-~4mr ),
r T
and
1 -2mr a2 2a’m  2d2m? 4a Km
= e [ + + - +
8ra r4 r3 r2 r
(5)
+ 3K+ 2 K -6 mr+ 2K m 2 ).
Writing
d82 =eu(r) 02 dt2 Mr) -r (lﬂ +8m 0d¢
one of the Einstein's equations giveym/
827G 1 ‘ 1
- ueet (— - 2o)- , (6)
c4 r2 r r2

where G is the gravitational constant. With
the notation

glr)=e M

eq. (€) reads
8nG

rg’+g =1- r u.

C
for which the solution is

g=1——2-n—1”— ——?E—frzu(r)dr, (7)
r cr



where m =GMc¢? is an integration censtant.
Substituting (5) into eq. (7) one gets

2 2,2
m_+§_ e-zm(—ﬂ—+£m—+2Kmr-—K—1-2+K T3 )'(8)

gr)=1~
r c rz2 r a a

gir)=0 gives the locations of the event ho-

rizons if there exp »(r) is finite. Note
that the metric tends to the Minkowsi's one
only if m#0.

Let us suppose, however, thatmr<<1l in
the whole relevant interval. Then

2 G K?
g 1m0y (-2 21D 9
r a (9)

c4 r?

and =0 leads to a fourth order equation.
For r>>a one immediately observes the possi-
bility of an even horizon (form (8) actually
two) around (a>0!)

s
l'2 ac

" gK?
with the above data for « and K(a=%lw)

1~5.540° cm

an enormously large value. The assumption
mr<< 1 leads to the ratio

I «<2,5x10719

wherg”nm is the pion mass.

It is quite obvious that the starting
formula (1) for the potential cannot be
extrapolated for such distances. Indeed, as
¢ and ¢ separate the energy grows until
a pair of light quarks is created, which
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together with ¢ and © form a pair of mesons,
therefore the whole former simple picture
breaks down.

Lonely lived quarks, therefore, in reality
do not seem to produce some type of '"exotic"
gravitational black holes.

3. Net we wish to discuss the ideas of
Recami and Castorina/56/ concerning the con-
cept of "strong black holes'" in our case.

According to the classical mechanics, two
particles with the same mass due to their
gravitational interaction move around each
other in a flat space-time as if they were
led by the force

F =-G——. (10)

General relativity tells us that the motion
is actually a geodetic one in a curved space-
time, the structure of which is described

by Einstein's equations. In an attractive
strong interaction, e.g., with

Fe=a.l g™ | a>0, (1)

for those distances where mr<<1,, at the
classical level one may say that the inter-
action is of a "gravitational'" nature, but

G is replaced by

a

G » M2. (12)

In analogy with the gravitational theory,
let us suppose now that the expression (11)
is just as crude a description of the reality
as (10) is in the gravitational case. Inste-
ad, the motion of a strongly interacting
particle (for attraction) is a geodetical



one in a (strongly) curved space-time, where
the (strong) space-time structure (measured
by pion or gluon signals?) is determined by
Einstein's equations, but according to (12)
G is replaced by aM™2,
Adopting this idea, introducing

Kem @ o, AuM%a G & |
a2 a u M2

the equation fin=0 , where f is given by (9)
takes the form

x4 A x% +28x-1=0. (13)

The value of A with the data of ref/V (M=

= M_= 1.6 GeV) is A= 8.5..With this value
of A from eq. (13) one immediately observes
that there are three positive real roots,

two of them lie close to A-!, the third one

in the immediate neighbourhood of A . Keep-
ing in mind the former picture this means,
that a lonely lived quark produces a 'strong
black hole'" for its antiparticle (attraction)

of the radius:

R~aA =L7fm.
then the antiparticle falls down to R ~ap"l=
= 0.02 fm. The condition mr<<1 gives for the
gluon mass

I«

Mgz

4, Apart from the above considerations,
one might notice that one of the Einstein's
equations (for the coefficient of d2 ) can
exactly be solved for those situations where
a particle is surrounded by a given field
representing a spherically symmetric static
potential v in the form

V = Yukawa times an arbitrary polyno-

mial inr .
8
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