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llepij>em, s.n .. KaaaKOB .a.H., illKpKOB .U.B. E2 - 10720 

YHKBepcallbHOCTb CKHrynJIPHOCTH no KOHCTaaTe CB513H B KBaHTOBOfi 
TeOpKK nonsi: 

11ccne.ctyeTCsi: CTPYKTYpa c1u1rynsi:pHOCTK $YllXUl!ll rp11Ha no KOHCTaHTe 
CBSl3K B ayne. OcHOBHOll: npKeM 38Kn~ttaeTcsi: B HCIIOru;.30BaHKH npeacTaB­
ne1uu1 <!iYHKUKOHanoaoro llHTerpana H npH6n11:me111i:oro aM'lHCne1nu1 nocne.ct­
aero MeTOAOM nepeaana B $yHKUKoaallbHOM npoc:rpaHcTBe. PaccMOt'pea 
Knacc nepeHOpM11pyeMbIX 11: cynepnepeaopMHpyeMb!X CKansi:pKblX MOJlenell: 
K ycTaHoaneao, 'lTO c11:Hrynsi:paoc:rc HMeeT y1ni:aepcaru,ao1ll: xapaK:rep, 
Ke3aBKCK"MO OT IJ8IlK'lH51 P8CXOllKM0CTell:. nonytteHHbie Bblpa}Ke}l:HSI npellCT&-

1 BHMbl B BHLte1 Oil9KTp81lbHOro HRTerpana JIO KOHCT8HTe CB.1!:311. CueKTpan1o­
H8H ¢iYHKUK51 p(g)_ (-g)-a exp(-Aig). 

Pa.6oTa 8bl0011HeHa B na6opa:rop11K TeopeTl!''l9CKOA: ¢1H3JIKI! OHHYf. 

IlpenpaaT 061.epaeaeoro -cTllTyTa •.11.epawx •ccne;11.0B&DI. lly6aa. 1977 
. '. 

Dorfel B.D., Kazakov D.I., ShirkoV D.V. E2 - H)720 

The Universality of Coupling Constant 
Singularity in QFT 

The structure of the Green function singularity near 
the origin of the co~~ling constant plane is studied. 
The method used explo.its the functional integral represen­
tation and the procedure of the steepest descent metqod 
in the functional space, ~he class of renormalizable and 
superrenormalizable scalar field models is considered, 
and the universality of the singularity is established 
independently of the existence of divergences. 

The obtained expressions are represented via the 
speictral integral over the coupling c'onstant. The 
spectral function is of the form p(g)-(-g)°-<l exp(-A/g). 

The investigation bas been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. Introduction 

Recent study of solutions of classical Euclidean field 

equations shed new light on the structure of the quantum-field 

amplitudes near the point !} = 0 , 9 being the coupling. 

constant. The method used exploits the functional integral 

representation and the procedure of the steepest descent 

method in the functional space. The saddle-point corresponds 

to classical solutions of the "inetanton" type and the integ­

ration reduces to the Gaussian quadrature in the vicinity of 

inetanton solution. 

Using this way L.N.LipatQv 111, starting from the £unc­

tional integral representation for k- th order perturbation 

term of the expansion 

. "'>' k c.< .... 3)=rs Gkc ... ). 
has been able to evaluate the asymptotic (for k large) 

expression of Gk(.··) coefficients. The calculations 

were performed for 11. -prong vertex in the· scalar model 

(1) 

considered in the (Euclidean) space of .J> = 2.11../01.-~) dimensions. 

His result is of the form 

G
.· "\' .kk k("-/2-<).t-Ch+j))/L 
(a)= QL _ _.( .. -~) bk 

<I • (2) 

Q, b being some numbers depending on rt. 
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The use o~ the steepest descent method for approximate 

calculation of functional integral-B was proposed a decade 

ago by Langer 121. In this paper th~ structure of singularity 

at the origin { kJ ;::: 0 ) was studied in a number of quanttun 

statistical problems. Here, the functional integral was 

considered as a whole without its series expansion. 

The expressions obtained there obey a singularity at 

the origin of complex !J -plane and a cut along the real 

negative semiaxis. Due to this they can be expressed via 

the spectral Cauchy integral. It is just the jump across the 

cut that can be evaluated b! the steepest descent method. 

Following the Longer procedure E.B.Bogornolny /3/ succeeded 

in finding the expression for G Ca) as a whole w1 thout 

using the power series over the coupling constant. The 

final expression 

() 

Gl~)=~) ()) 

has the following properties: 

(1) Its formal expansion gives the asymptotic series (2); 

(2) Is real for real positive g 
(J) For real negative ~ it has a cut with imaginary jump 

The function 6 (~), cannot be expanded in powers of 9 
and 11 leaves no foOt_prints" in the usual perturbation 

series; 
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(4) Corresponds / 4/ to tpe formal Borel summation of aeri­

es (2 ). 

The result (J) obtained for lo~rithmic massless models 

(1) with ;D = 2n./(i1.-2.) is very close to the Langer 

formulas for the quantum-statistical models. 

We show below that it is valid for models (1) with 

l> < 2 h../(11,-2) as well and discuss som~ consequences of such 

a univereality. 

for 

and 

2. Evaluation of Functional Integral bz Saddle-Point 

Meth.od 

The class of models (1)with 

]) ~ 211./(1-1-2.) 

integers . tL 

6 
and 

4 
consists of three models cp(2.,S;l.t) 

(fl(2,3) • We limit our analysis to even values ft =. 2 N 

Consider the functional integral 

where 

l ... 
J~) 

~ .2. m'l..2. ~ 2.N 
"'Cx) = -(?>Cf) - - cp - - co 
cl, 2. r 2. ~N)I 1 

and . . . stands for the possible product of V field func­

tions. After ·17ick rotation 11 we get the Euclidean analog of. 

the initial theory with 

(4) 
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Here the Hamiltonian 

is a positively defined for f" '> 0 and has the only stationary 

point <p;; c.o11s+~ 0 • Hencet the use of the steepest descent 

method for positive /j give$ noting more that the usual 

perturba'tion expression. 

Following Lariger we shall consider the Eq.,(4) as a basis 

for analytical continuation on complex ~ values till the 

negative real aemiaxis. For real 9 < 0 the Hamiltonian H 
becomes unbounded from below and at lj/_,,, 0 the corresponding 

quantum;rechanical problem has only quasistationary levels 

(see a more detaild discussion of this matter on pages 116-117 

of paper 121 as well as in 130 .. Due to this the analytical 

continuation of expression (4) can be presented as a function 

obeying a cut along the negative real semiaxis with pure 

imaginary jump .. 

Hence 

(5) 

(6) 

The functional integral 

Geo=~ i'I' \ ~ ~ l c~~ ~, :..@~)! 'f'"J .Ix J ... =GC~) <1> 
{ 1f = _ ~) should be evaluated by the saddle-point 

method. Changing the integration variable 
_i.-

<f(x.) = t<2r1-iJ! / 0}""'"') l/>Cx) 
we get 

.. ~ ) (8) 
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where 

(9) 

The saddle-point solution corresponding to KA= 0- is defined 

as a solution of the Euler equation 

with finite action (9). 

It can be shown using the method of paper /5/ 

logarithmic theories ( D = N2.-1:_ ) such solutions 

for m~ 0 • It was obtained in paper /l/ and has 

~ t• 12.rw i l '-~ 
1/'(><)= A' "lf.()Jx-o.)), lfo(:><.) = LrH. ·4+-x'_J°". 

(10) 

that· for 

exist only 

the f o:rm 

( 11) 

On the co.ntrary in the superrenormalizable case ( .l> < Zf'l/JJ-L) 

such solutions are possible only for m + a • They were obta­

ined numerically in papers /6,71. 

At the same time in the nonrenonnalizable case 

there are no solutions with finite A. 

To calculate integral (8) by the saddle-point method 

first of all we have to find the action A ("\/J) corresponding 

to the classical solution {f • Substituting ?f-~"f in (9) 

and taking into account eq.(10), we have 

( 12) 

Ir equation (10) has several different solutions r{fi 

one has to sum the contributions from all of them. In the 

limit of small 9 we should be interested in the solution 

(or solutions) with minimal value of A (1{1) • 
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Consider now the integral over amall fluctuations around the 

stationary solution. For this purpose put 

and expand the Hamiltonian H 
quadratic terms we have 

over 
,,,r 
r • Keeping only 

H Ci') "'" H cof~ + 
where 

(13) 
. . . I 

For evaluation of the integral over 1f' it is necessary 

to solve the eigenvalue (e.v.) problem for the Hamiltonian 

(1J) and to expand '?.p
1 

over the eigenfunctions 

11' 1 
= {: ch <f" . 

Then the problem reduces to the ordinary integrations over. 

c ... /2/. 

There exist (see 11 ,s,?/> only~ negative e.v. E
0 

< 0 

and one or two zero e.v. The first leads to, the rotation of 

the integration contour over [ 0 on 90° in integral (8) 

which becomeapure imaginary. The appearance of zero e.v. 1~ 

connected \Vith additional invariance of action. In the cpf>) 
theory with Jn -:/::- D we have only translational invariance and 

consequently .2E:,!(D-fold degenen.ted)zero e.v.u.d i~. the cr,!
1
ana 'ft~) 

theories with "'1 = 0 there exists additional dilatational 

invariance and one more zero e.v •• Th_is l:,eads to the -existence 

of free parameters in the solution of equation (·to) (see,. for 

example, and Q. in (11 )). Integration over· these ,para-

meters leads to the additional dependence on the coupling 
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constant of the type 

- l>1:z_ 

a.n cl 

for translational and d.ilatational invarianc~, respectively. 

These calculations are analogous to those in the 

original paper by Lipatov 111 (For ~other v~rsion o~ this cal­

culation see paper /S,9~. We write only the final expression 

(A reader interested in details is refered to papers / 1 ,S1 

( 14) 

where for logarithmic theories and J.. ... ])+\/ 

for auperrenormalizable model., Cv is the independent of 

Q function of other parameters. 

Substituting expession (14) into eq. (5), according 

to (6,7) we have 

( 15) 

J. Discussion 

i) Formula (15) just represents the de:iired result. For N=-2. 

it coincides with eq.(J). Being expanded in powers of g 
it leads to the aaymptutic series 

. -Cv (>l-1) k -\<{,.,-1) ~-i 
Ge~) N A"'' I.l::fiA Lk.CJ\/-ill! U<<,.,-i)J <16> 

:Jr " 
obtained for the logarithmic scalar theories in papers/1 ,8/ 

~d· for ·~ ~3.) ·,roo.de·1 in paper 18/. 
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ii) By changing the integration variable, formula (15) 

can be reduced to the form close to eq •. (7) from pape./41 

obtained there by Borel summation of the series (16) .. 

Thus, treating of the functional integral as a whole 

validates the Borel summation of asymptotic series of 

perturbation theory. This gives additional arguments 

(to thos.e of refs(10, 111) in favour of this sumnlation. 

Of course, while examining formulas of the type (15), 

one should take into account that they are correct only 

for fl<<! and give mainly qualitative information 

about the structure of singularity at the origin. They 

cannot be source of the quantitative information about 

the Green functions, for g- !. .. (see the discussion of 

this question in /4/). 

iii) There is a view point (see, for example /12/ that a 

functional integral par definition is only a compact· 

from of perturbation series. Tlie Langer procedure of a.p-

proximate evaluation of the functional integral by the 

saddle-point method, as we have verified, gives something 

more than the divergent perturbation series. It gives the 

sum of this ~eries, i.e._ 1contains the way o~ summation. 

iv) A characteristic feature of formula (15) is its univer­

sality. The cut along the negative axis exist.a for all 

(renormalizable and superrenormalizable) nonlinear scalar 

interactions of. the type (1) for .It = 2. JV 
V:) The physical 17 important conse.quen_?e of the mentioned 

universality consists in t~e independence of ~onanalyticity 

at the origin of the character and the veey fact of exis-

tence of UV divergences in perturbation theory. 
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Thie fact, in" its turm,allows one to hope that 

for properly formulated rionrenOrmalizable models it is 

poesbile to carry out the analysis by the functional saddle­

-point method, and to get the formula analogous to (15). 

The authors express their gratitude to B.B.Bogoaol.DJ', 

A.A.VladiairoT~ O.I.ZaTjalov, L.I.l.i.patov and V.G.V.kQ•nkov 

for ueetul diBCUBBiODB. 
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