COOBLWEHWA
OBBbEANMHEHHOTO
MHCTUTYTA

MCCAEAOBAHUN

e i Z/S/W/—J/JZ
B-Y] E2 - 10668
e e
¥t vy
V.B.Belyaev, J.Wrzecionko
APPROXIMATE FEW-BODY EQUATIONS
FOR PION-NUCLEUS SCATTERING
19929




E2 - 10668

V.B.Belyaev, J.Wrzecionko*

APPROXIMATE FEW-BODY EQUATIONS
FOR PION-NUCLEUS SCATTERING

* Permanent address: Institute for Nuclear
Research, Warsaw.



Benses B.B., Bxenuonko E, E2 - 10668
[Mpatnuxesnrtie 4=4aCThYHLIe YOABHEHHH ONA 7 —gaePHOTO PACCESHMA

Ha oczoBe meToda MHOMOMEPHOIO CENapaAGeAbLHOrO DABNCHMEHHH MOHY4eMs!
pasApNHble  BAPHAHTH MHTETDAILHLIX YPapHeHu# ANA AMOIHTYA YAPYIoro
HeyHpYrorc paccesHnd B cHcTeMe ueTmpex Tred {7+ 3N) , B xauecTee =xoo-
HEIX JAHHBIX HCIONB3YIOTCH t =MAaTPHNE], ONUCHIBAIWEE PACCETHHE HACTRU KA
AAGDHEIX MOACHCTeMaX € GUKCHPOBAHHRIMA NEHTPAME, 3AMBHA TAMUALTOHHAHOB
sifeprbiX hogcucTesm (Knacrepos) omepaTopaMm XOReYHOIQ paHra NPUBOAET K
MOHUKEHAN PABMEDHOCTH HCXOOHBIX HeTHpeX4acrauubix ypabHedud. [Tpumensd
¢EQEEEBCKy[O TEXHAKY, MOHHO IOMYYATH NpOCTYX CHCTeMY ¢pEﬂl"0HbMDBbe
YPasHeHHH, KOTOPhE¢ endHblM 06pasoM OMHCHIBAIT YNPYroe K HeyHpyroe pac—
CofHHe 7 -Me30HOB Ha Neryafwrmx anpax. B ciaysse YIp¥yroro paccefdHud O0-
nydedakl NpoCTEl2 OQHOMERHBIE YPAaBHeHHS, pPRIIeHHHT XOTOpPLIX B 0BIaCTHE BhLICO=
KEX aHeprufi » -=Me30HOB AAOTCH pelleHMeM MOAeNE PACCesHHS HA CHCTeMme
GUKCHPOBAHHLIX LEHTPOB.

PaGora Bomonuena g JlaSoparopus teopermueckoli dmawku CHUAUW.

Cootmerne O0LeanHEHHOT O MHCTHTYTA ANePHMX HEcclenopaluli. JyGua 1977
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Approximate Few-Body Equations for Pion-Nucléus
Seattering

Using mgny-~dimensional separable expansions, several
kinds of integral equations for the elastic(n+3He4#+3Hﬂ
and inelmstic fw+ JHe +m+ Nad) amplitudes have been
obtsihed., 4s an unput, these equations include the matri-
ces, which describe the scattering of pions on the nuecle-
ar subsystem with fixed scatterers. For inelastic proces-
ses the Faddeev-type equations have been obtained.

The jnvestigation has been performed at the
Laboratory of Theoretical Pkysiecs, JINR.
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I. Introduction

Two aspects of the problem nec#saarily arise, when one
considers the pion-nucleus interaction. The first concerns the
nucleon dJdegree of freecdom. Here we are dealing with the many-
body system, description of which is difficult by itself.
Neverthelees, at least for few-body systems, we heve refined
mathematical formaliam, which silows one, in principle, to solve
the corresponding, dynamical equationsfl/. The second aspect is
related to mesonic degree of freedom in nuclei., We mean the
following processas: the excitation of nucleon isobars,
reactions of one and double exchange of pilons, pion capture by
nuclei, mesic currents 7 -condenaation and others. It is obvious
that studying of theese effecte is now very important. However,
the extraction from experiment of even rough information about
the mentioned effecta, (8s has been pointed out in literature)
is complicated by uncontrolled model assumptions on the
pechanism of the corresponding procepmes. Indeed, to deseribe the
scattering of pions on nuclei for A 4, the exact many-body
dynemical equhtiong‘are not still formuleted even. Therefore it
is difficult to say, in which sense the model sclution (for
example, given by.optical/zf, or Glauber’ 3/ theory) could
approximate the exact cne.

Revertheless, there is a achame/‘/, in which the dynemice
of the many-particle system ia taken into account in a definite

senasa. We mesn the theory of scattering particles on n fixed



centerz, It has been successfully applied/S/ to acattering of
pions on lightest nuclei. An attractive feature of this approach
is a consistent treatment of the mnltiparticie character of
scattering pions on nucleons in nuclei. Moreover, this theory
permits one to £ind a solution for the separable pion-nucleon
interactions in explicit analytical fornm.

It is e¢lear that the model) of scattering on the system of
fixed scatterers should be walid in the high energf region and
small momentum transfer, since one could neglect the kinetie
energy of the scatterers. For low 8and medium energy region the
applicability of the model ia.questionable. Therefore, in this
region it is desirable to de%elop & acheme, which containa the
above advantages of {he fixed center model, and also takes into
account the motion of nucleons in necleus in & consistent way.
Such & possibility appears if one uses the method of multidi-
/8/

mensionsl separable expansion which has been applied in the

three-body bound state problem.

Below we shall derive one-dimensional integral equations for
the pion-nucleus elastie scattering amplitudes. Inhomogeneona
terms of these squations coincide with t—matfix for the fixed-
center model.

Using the Faddesv technique, in the fremework of the apprcach,
developed in this paper, it is also possible to include inelastic
proceases of the type T+ Hg > T+ Mtd.

In section II we shall present physical arguments in favour
of the developed method. We shall give alao the formal acheme

for deriving eguations for the smplitudes which describe elastic
scattering pions by the aystem of 3 bounded nucleona. In agction
III this scheme is extended to deacribe in & unigue way the elaas-

tic and inelastie processes of pion-nucleus interaction.
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For definiteness we reatrict our consideration to the 4-body
system 1+ 3/ , Ite Hamiltonmisn cen be written in the form:
H=hot he +Vy +V

A

3 i
Vv = & _ M V.

Y w

3 ¢ (1.1)
=3V s
=L

where V,:'/a is the nuclecn-nucleon potential, \f;;ve is the
pion-nucleon potential, h/o is the kinetic energy of the
relative motion of pion and center of mess of nucleus, hc_ ia
the kinetic energy of nucl’eons.

In the center of mass 4-body system, the scattering vave
function of pions on the 3-nucleon bound state, fulfils the

boundary condition:

-y oy - e T v B TR .y
<."€-.z,?-5,3‘[‘4’.>:':'.'f’zfz,ts,?)"Q(ﬁ‘n,@;,?)‘{'

+T-X("£’:z'€;)£i-£g o ('r?[‘b oa) , (1.2}
Y (2, ,35,8)>0 (1Tl | 5)>=) .

P T T
Here Ty )1:; ;@ are the Jacoby coordinates of particles,
= — pion= E 1
xx. 2_/1,,-E 5 /“‘lr pion-nucleus reduced mass, is the.
total energy of the system,T is the elmatic acattering amplitude,
> o> = Y ;
PRI 2 ('zn_,%)lﬂ the ground atate wave function
of the 3N-system.
Due to (1.3) the following comdition takea place:

- e S 2 -3
Stg(t"”?’h?)l M, ATy < M, (1.4)
i,e., Q( is square-integreable with reapect to nucleon variables.

Under these circumenstances, it is possible to approximate

the nuclear part (i.e.,h«,*’ Vv } of the Hamiltonian (1.1) by the



finite renk operator. For example:
(ho +Va > TIPSRV 0> Q1Y > 5 5

where ('Z:L)'{; | > i the auxiliary function with finite
norm. If |U7> {s the normalized eigenstate of the nuclear
Hamiltonian, then <¥/h -+, [f7=£& is the binding eneray
of the 3-nucleon system. The overlap integral (‘-ﬂg_’? is
unknown _function which depends only on variable j? . Approxim-
ation (1.5} permits one to find simple integral equation for
the elaatic scattering amplitude.

In a more general case, if the considered syatem conaistas of
a few subsystema (cluaters) one can replace the parts of the
total Hamiltonian, corresponding to theae clusters, by finite
rank operators. Such & procedure, permits one to reduce '
significantly the dimension of integral equations.

To use a procedure of the type (1.5), we shall write the
equation for the 4-body (T + 3N )} amplitudé, separating the
i‘:’amiitonian of the bounded 3N subsystem.

Let us introduce the folliowing set of Qreen functions:

G(EJ=(H"EJ—L; G (€)= (hethc +V, - E)‘i;
Gu(e)=(hiBY . GfEI=(hyth -] GUE)=(hy+ -] " (L)
The 4~body trensition operator can be defined as uauélly:

T=Ve- Ve GEV (1.7)

We introduce an auxiliary operator

T Ve Ve G (€N =Vr=Va G ()T °, (1.8)



For the total Green function, one can find the equation:
G(E)= G (E)-6,()Ho G(E), where H.=h _+ Vi - (1.9)

Substituting (1.9) into (1.7) snd using (1.8), we derive the
equation for the transition operator:
—_ [ ] ) —
T=T+T G EJH, G (BDT =
(1.10)}
=T+ T LG (E)—G ()T,
It is easily seen, that eq. (1.8) determines the scettering
smplitudes of pions on 3 fixed centers (nucleons), In the

momentun representation, it has the form:

<RIT (’le,t_s IK} j‘(K K’ 7—|z, 5)<kf ,r“?'?"

2 227 CRIVRIR"S o 3. (1.11)
gﬁ:;s f@R B S RIS DR -
2/111'

where =

<K, T, BITOR 2 B> = 8«51 2385 CRIT (2}, )R>

‘LJ - N -
$RRT, Ta)= explidRiR)( t'l 2 expli®R)-3 4 2 VT (12
+ expliK-0)% ;,],
It is known, that the &bove equation ¢an be easily integrated
for the aeparabl'e T -nu¢leon intersction,
Besring in mind for the elastic scattering of pions on the
bound state of the 3 particles, for the nuclear pasrt of the

Hamiltonian we assume the following approximation:

(1.13)
Expension {1.13} of the nuclear Hamiltonian implies a different

N
H ~H'=Z Z, lJfJ v <Jvl

verients of replacement of M. by finite rank operator H(_N .
Each veriant corresponds to a definite choiece of metrices Guv

and "state vectors” Iir\7 ., We sgaume that the functicns



(-’2;,?311/«7’ 'Ej)M ('_{:L'{;) form an ortonormal set of
functions with finite norm, sma  Ju (’?.“’?3) corresponds to
the ground state of 3-nucleon system.

Hence, _
G}w’ = (-va]i‘ilc,mvl> y G}cizf- S/“i ’
where &£ is the binding energy. For Hc given by (1.183) the
Green function G (&) has the form:

R, D6 (BT, T > =y S(R-RILS (2%, )5 (25 85 ) —

(1.14)
2 NCAN WIS MCHEDE
Wheli:.f (K E‘)‘SZ"‘T%“" K ~E 1’-3’_:5‘:[_,1 L=<XlX,7
ViR TS KW_E 2 AV MY {1.15)

Hence, in this approximation eq. {1.10) in mixed representation

cen be written: .
e e T s 1 B PR S 8 2] N > E‘ED s |21>+
<R BITIK 2 20 > = 8(2,~23) B (25 -2 ) KIE (2,23)

- {1.16)
dk_' T o - oo~ I T ] g Pl Bcd
ﬁg(mssl?—.;_d?s ‘x/“(z”-rzs) l/:" (K,t)JV(Z.L}?3)<K,2,,_,23”']}(:2,,” (Y T

r A< RITH (T, D) 1KY >

Introducing the amplitudes
= o A i T
(Klq’:}w 1K'> :30[1,,_&;‘1:30\&.‘,_01/"-3 X,M (22,2,)<

o I N Y
UITIK, 2,25 7+

x 'xv('z—",‘f: 2_:'5‘))
SRITL IR D 2 dily g, By<RIE(E, BYR > (D)

—y -
Xy (22,2)

¢ CiL

we derive the system of the one-dimensional integral equations

froa eqg. (1-016): AE‘" - o tp
<RIC K> = <RIEaR> +[5om Z <SKITIN K> <
s @n)
AC . {1.18)
X e (K E)SK TEarvi k> -



If we keep in eq. (1,13) only the first term, the equation for

the elastic scattering smplitud of pions on the bound state, is

aa follows: - - S
AT RI> FRIEIRD = <K€K +

A-‘K’”; AT AL It QZHJEJII> e e
- L9 @ ‘k ) " " ’
+£§(?JT)B< ‘ (_'S__l_.g_ (L‘.ﬁl.—éﬁg' (1.19)
Zf"n’ Z/Vr

where <E”I~T~?‘i -i':‘ g is the scattering amplitude of pions on
three fixed centers averaged over the wave function of the
ground state of the 3d-nucleon system.

It is known that in the traditional theory based on the
optical potential, the kernel of the Lippman-Schwinger equation
for elastic scattering of pioms on nuclel, 1s given by the two body
t-matrices, averaged over the ground-state wave function of nuclei.
The higher order terms in the Wataon ezpﬁnsion for the opticﬁl
potential are always, nsglectsd. On the other hand,in eq. (1.19)
inhomogeneous term and the kernel are given by the 4-body
scattering matrix pions on fixed nucleona. It means that all
regeattering effects are autometically included into the kernel,

Thia also means that equation (1.19) represents the real

extention beyond the optical model approach.

) IIT

¥We consider now the inelaatic processes of the type:
T+He{T)> ~V+d +T.
Bearing in minde the three cluster character of the final atate
the total Hamlltonian (1.1) of the system can be divided in the
following way: H=H, +HL+U+U, + Uy )

Ha= b+ Van, Ui Viows 5 Up =VawtViews , Us = Vi + Vivans, 30



where I1c is the kinetic energy of the relative motion in the
system N+d+® s h4q is the kinetic energy of the relative
motion of nucleons in the deuteron, Viw, is the interaction
potential of the pion with i-th nucleon, \/NL NJ is the
nucleon~nucleon potential. .'
Let us introduce the Green functions: .
gee) - (- &)t ] (8) = (He~EY

3

G(e) = (Hrte Ey"

-1
G (e ria®), (2.2)

Following Faddeev’/l/, one ca&n introduce the operstors Mo(fﬁ
and Mir, (o, = 1,2,8):

Map = Tty - TG Ty,
_— y T, ?(E)UP‘

IV\EF* K‘MP

(2.3)

It can be easily shown that they satisfy the following squations:
<
Lt = L Jal®IZ My
Q "v*‘* (2.4)
[ © c
MK = fx t g(E JLF)
f 1:,tr>(
¢
where the "channel" t-matrices f‘,( and Z%Q( are given by the
aclution of the Lippman-Schwinger eguations:
taz V= UG ) 4y
© = Ty — T Qe (B) €2
The second eq. (2.5) for & =2,3 gives t-matrices for
scattering on two fixed centers.
The cperatora M“P and Mi?‘ define the four~body trensi-

tion operators T ama T

10



ZM‘P : T Z_Mmp (2.6)

~p
It is easy to see that the followzng equatlon holds

T-T + 7T g &g (T (2.7)

The last equatlon is & generaliretion of eq. (1. 10) in whlch
breake up channel is included explieitly since the operator 7“
is the three-cluster amplitude, while T 4in eq. (1.10) is the
two-body emplitude, The ﬂq.‘(2 7) has non-fredholmian kernel,
becouse it contains dlsconnected parts prcduced by the 1nh0m0-
geneousg tern qﬂ «Applying Faddeev procedure, one can obtaln the
system of Fredholm eguations. To this end we introduce a new
operator \szg (by formulsa)

e 3
M = e dap + Wi

{2.8)
*p ) (2.9)

Inserting (2.9) into (2.7) ard introducing
Tia= tat i G (E)Ha ﬁd(E)(’T‘dﬂ] y TaT = T
T T T @Y g (T T, )  (2.10)
T, = Te + Te ‘GLE)H%(E)(THTJ,
we derive finelly the demirable system of equetions:

Ti.oc = fd -+ tﬂ. 3°(E3 Hd%q(E)Ti'}' to( go(E)Hqﬁd(E)Z TL'I
Ny
= Te + T, % AE)Hg %d(ex 7 )} ) (2.11)

x) It is essy to see that in the lower order of iteration for¥@

oo oy A= r» .

(\J“P & )the emplitude 7}- does not conta1n
. to( <LE) {'. 143

the disconnected pagks. That means, kernel of the second

eq. {2.11) is fredholmian,

Lh|



Formulae {2.11) are the exact four-body equations presented in

the form suiteble for epplying the approximations of the (1.3}
type.

From the definition of W

we gee that it is smmll

when all three clusters do not approach to each other closely.
In this cese, we put:

LN
M:\'[s ~ tx 'm(s& (2.12}
ard the equotions are simplified considerebly. Instead of (2.11},

we have &n enalog of Faddeev equations but for four-particle
amplitudes 1, :

W= by vt Qe (Y M gsl2) )2 ”i
5 S (2.13)
| = ET )—T‘iEC,
X_i
Now we would like to show that eq.

(2.13) within the approxim-~
ation:

= : X th 7('\’ R
F‘d —.{% qu/“‘> )i < |, (2.14)

{(compare with (1.13)) is reduced to the systex of two-dimensional
integral equations,

Let us introduce the mixed Jakobisn variasbles
—_ . —
k =

(", 'P’sv - g l? ¥ %«1 thng) E)- ; Fd /

L"?- = ({W\x Fd A PT)/(.?"IH-(* Mgz | | 1 'PN ( |
i a1y 2.15
ko= (2mpn= ““f’“/%'m X fr

"7_”3 = ’\";_‘._ :

’J:J_+P3‘ P,V_.C.

In this representastion, for the Green functjion gd

in
gppr011mat10n (2 1) we have . ., o~ | AW s
CRegih |3 E)licy E;:i?'>-(m éﬁm—k& e (Gege [C‘l“"“ )
(2_;&,{&;: t:) Z 7(,“(’7) > (ke 4) Ky (7 J] (2.16)

12



/AAV
j[/_v = UMKy _ (2.17)
4oL.r /—t it i
L
/T 4 + 4 . i— = L. A ;
fu T dam T T M Al
I _ 3 4 . i = L -+ L
ST ) e e

3
The oézrators {-x in the space of the four-body atates have

the form:
BRTIEICETY = @PAGRREFTGIT,

It is easy to show that for matrix elementa of the operetors ?;

there takes place the equation

<KFITQaIRT = c?(*r PR A TETK > +

(zm (ke d¥ AT Kul®) oy (kG o
T, ) <o 7T g TRV

(2.19)

T e —77,
aimilar to (1.,16). Here (k*. / lx(q )H(“> is the amplitude of
/47

scattering on two-fixed centers

Let us denote ST X ;
SRS Hu>:—:fcffr9</dcw</<x/am(-w/k{> ()

<k¢ﬂ;/w ke >3 be’“fﬁ’ (FIET I T g R D (72200

mhen from (2.19) there follow the one—dimemsional integrsl

lquat i ona

(kg(flx 2 ()1 k=<> <k | xo-,\fk*>+

4 — . T [—; 1—1:'('!-(;!'4 (;( }CC(J,N(‘J/E)Q.&)
+@T,ﬂ3}% J‘dki <k I o ;17A1< >/-x ?) Ee

13



With the help of (2.20) the eguations (2.13) for |, can be

written in momentum representation explicitly. Using abbrevi-

ation

<R ] "'I\if“v KLy = [ddad? '?;(47’) Che§er T e 375 Xz 22

from (2.13), it is emsy to write the system of Faddeev-type
. R
equation for the amplitudes |, :

RITS IRGy = @< Ty e =
s (aks kel /AFHJ;‘> r:,.;‘(k:,q.x)x

e5) k ct >
NN ]
[Z<Q )l\,:‘fb 7,{_<C }(.,{'*'C‘P“Iq}ljvla )({n(! p JB g
J:?'X.
2 Y :of .rﬁ
aﬁ“‘:df ; CE:‘CL3bﬁ:ﬂb°‘ (2.23)
1 _ dm L. 2
Q2= Wyt Qy;=-3,
Cki-:‘h.mx J C\‘,‘;:-%"
AV
5. mx , PRI
eGSO s T
beo mr (e plo. DMTME
5 =

)
(g (@ms ws) 3 (it g

SR GULE I
) 3 {'10\.9{'-1-2_4“)

C;:: C3: i—_i) J()P:d'2|3
The phyaical amplitudes for the breske up and elastic scattering
can be found by integrating the amplitudes (2.22) with appfo-‘-
priate esymptotic initiel and final wave functions,
In conclusion we should like to note thet the "relativietic

effects” in pion motion for equetions (1.19) and (1,20) can

14



eagily be taken into mccount passing from the Lippmen-Schwinger
to Logunov-Tavkhelidzeﬂor Kadyshevsk"ygiequations. The developed
formalism can be applied to the processes involving hyperona
{for instance, K "'ej:’fL‘L/\(Z-)fﬂ and the process of deuteron

knocking out from nuclei by high energy pions.
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