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I n t r o d u c t i o n 

In a recent publication, henceforth referred to as A (we 
used common numeration in the formulas), some convergence prob
lems of Sturm-Liouville expansions were considered, with parti
cular regard to nuclear physics problems. In th1a paper, &Olle 
remaining questions .are elucidated. In order to understand the 
importance of the different terms in calculations of physical 
propertie.s, a knowledge of the shape of' the SL-functions, as 
well as of their eigenvalues, is necessary. This is provided in 
Section (Y). 

The solutions of three-dimensional. problems are -in (VI) shown 
to possess convergence properties for ,__ .-., , which are simi-
lar to those found in A for the one-dimensional. problem. 

The problems considered up to this point can be called obe
body problems with fixed potentials, or two-body problems in re
lative coordinates. In (VII) we consider the problems of more 

particles, for the special case, relevant to nuclear problems, 
that one is much heavier than the others. It is shown, that the 
asymptotic behaviour of this system is rather complicated, but 
that nevertheless, in some important eases, it is possible to 
approximate the tonn factor well by an SL-expansion. 

In (VIII) we give examples, suited to illustrate some of 
the statements of the earlier sections. 
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v. The Sturmian functions and eigenvaluee 

Since the pure Coulomb potential, used in atomic physics, 
has well known analytic solutions and eigenvalues (charges) of 
the SL problem, we shall here limit ourselves to consideration 
of the spherical Woods-Saxon potential. The case of combined 
nuclear attraction and Coulomb repulsion is ot equal interest, 
and is very similar to the pure nuclear case in all relevant res
pects. 

The fundamentals of the theory of the solutions and eigen
values of eq. (J) A is the Sturmian fundamental theordtn, which 
for our purpose can be stated as f9llows. 

Given two functions, r 1 and f 2 which satisfy 

- !,"(,)+{ti, - E)f,(r)=o (76) 

and 

respectively, and in a given interval 

R ,;. r ~ f , ~ (r) > ti,_ {r) • (77) 

'lben, between two consecutive zeroes of f 1 there will be at 
least one of f 2• 

This follows from 

f I rt. f't. 

[ f, f,_ - .f,, fi ] -:. f (ti, - «,,) f, f,, ",... 
r; r; 

(78) 

Let r. , r,_ be consecutive zeroes of t 1 and suppose that 
there is no zero of f 2 in (r1 ,r2 ), then we may, without lack of 
generality, assume both functions to be positive in cr,,r2>· 
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Then f1 1 (r,)~o, f,'(r-')<0 , ao the le:tt-hand aide of equation 
(78) is negative and the right 1e poaitive,1.e.,a contradiction, 
which is removed only because the assumption of no zero of r2 
was false. 

If we now consider equation (J) A with the boundary condi
tion 1'(0)• o,(f'(o/f:o) and let~ grow, we see that.the number 

of zeroes is a never decreasing ~ction o:t A , that all ze
roes move towards smaller ~ -values, and that new zeroes there
fore must start at infinity, when ,\ is an eigenvalue. A zero, 
born in an internal point would have to be born as double, but 
double zeroes are excluded by eq. CJ) A and the boundary condi
tions/2/. We can Sll7, that with larger ..\ the solutions become 
more and more oscillating. The eigensolutiona are of course oscil
lating only in the reg1one,where E - ,.\ V- V. .>6(lfow, looking 
onl.y at the radial equation, we will let v, include the centri
f'ugal barrier). 

It we introduce the new coordinate 

,.. ~' 

X = J ( - V(r•J} «r' (79) 

• 
we see, that with the potentials introduced here, the function 

11., 
1r.-= (- v) f.: 

will satiety an equation 

dL J, . .., (),.,. ur,J) "•= o 
II xl. i. 

and that the infinite interval 0 ~ ,.... 6 ~ 

(60) 

(61) 

is trans:tormed into 

a finite interval o ~ x ~ ~ the normalization becoming 

' j11,- lr/(,)=L. (62) 
, 

Using the proof of Ref. 2, we then see, that ~ is always below 
some limit, independent of i and x. The sB1p..e muat therefore be 
the case with 
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(83) 

independent of 1 and r. 
Sturm's ~undamental theorem can also be used to estiJ!l&te 

the eigenvalues. First, it is clear from the above, that with 
given .L.J;· , the nth eigenf'unction, corresponding to the 
radial .quantum number n, has n modes. In order to simplif'y mat
ters we shall neglect the spin orbit-coupling which anyway is 
not ver-y important. Now, the Woods Saxon potential (J) A lies to
tally below the potential 

IA,=""' for r > R- a.. 

..\ 
lf, = - = - O. ;>1 A for 

I -+ ""'f' (-1) 
,.. ~ ll-4.. • 

Por 
r " /( .t. 

,\ 
.e(.e+1) -+ +£,,== 0 

,.,.~ fl-.-!l I( .t. 
"-- "" 

the Woode Saxon potential (J) A lies above the potential 

U,_=-J. 
l..f1..= ~ 

for r >II e. , there are no zeroes of f ( ,\) . 

(84) 

(85) 

(86) 

Por L. •O, the solutions of the SL equation with u1 and u2 
are just sin ( .o;ie.""" ) with 

(87) 

and 

(88) 

respectively, 
so the number of :zeroes 111 .• n.t. is ~n the two cases given b;r 
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z,{fl.-o..)= (n, .. J,)r (89) 

(90) 

reepect1vel7, or 

(91) 

(92) 

We see from (91), that A has no upper limit. Since we know, that 
)t,, ia a monotonous :tunction of n this should mean, that we ·can 

find n-valuea, ·ao that A rt can be larger than any given number, 
e.g., .tE15 • llllt then wo soo from (91) and (92), that 

<J-L,,1.lf-~+ Ea<:: :;r.t.11'-(r<-+ o.. &, ( ~ .. -1))-':,_ E,. 

..:::. A. c.&r.t. (11+1;.t..r r<-o..r'-.,. Ea) /~n. C93l 

Por L '140 , an estimate of the number of seroea tor the two 
potentials u1 and u2 can be obtained from the relation between 
the seroee of J belonging to .£. and ~ -1 

J- '11 L-1 .:, /,.,.!. L in+t, e'-/ 

where J~ are Bessel functions, 
So , the poaition of the n'tb sero 
ties 

cfn,o ~d~.~ LJn+~D· 

(94) 

is aubjected to the 1nequal1-

(95) 

Consequently, for the number of seroes we have in the two cases 
corresponding to (84) and (86), respectivelyz 

n, > n > n,-.t! 

lit. > 11 > HL - e_ • 
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Since the number of zeroes is identical to 
number, n (or, according to another definition, 
for large n we have, in all cases, 

the radial quantum 
n-1), we see that 

(97) 

It follows directly from Sturm's fundamental theorem that 
the eigenvalues A 11 ~ for £ fixed and different n, are 

' non-degenerate,. 
As the radial equation with a Woods-Saxon potentia_l, in the 

case of I!. •O can be transfOrmed into a }Qrpergeometric equation, 
we know the spectum, which is actually similar to that of a 
square· well, also for small n-values .. So it is far from degeneracy, 
and the same is actually the case for £~o .. 

But the feature of being far from degeneracy is particular 
for the spectrum of the one-dimensional (radial) equation,. If we 
look at the many-particle case, we should,of course, expect the 
same degeneracies as with E-values, but already with one particle 
moving, e.g .. , in a spherical potential, we must expect that 
~ n, e. 1

8 belonging to different L -values can lie near each 
other, as we shall see in the next section. 

VI. Three-dimensional problems 

The radial equation of the Woods-Saxon potential, with or 
without a Coulomb term, must, apart from the above-mentioned 
case, be solved numerically .. Any additional radial potential 
would therefore most simply be included directly in the numerical 
calculation. 

The utility of the SL-method lies in its application to 
multi-dimensional calculations, and the one-dimensional examples 
given above, are only meant as illustrations of the problems 
met in the latter cases. 

We shall here concentrate upon the two cases met in the 
literature of nuclear problems, namely of one particle inte
racting with a static or oscillating deformed t1•14, and of 
several particles interacting with each other, as well as with 
the nuclear (+ Coulomb) potential. 

As mentioned above, one main difference with the one-dimen-
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sional case is that we must now expect degeneracy to exist. If 
we specially think of the spherical one-particle orbits, we must 
expect that for given E, ~"~ e... values corresponding to the same 
value of 2n+£ must lie near each other. The reason is evidently 
the similarity between the Woods-Saxon-potential and that of a 
banDOnic oscillator, where such a degeneracy is complete. The 
very similar near-degeneracy of I-values in usual shell model 
calculations is well-known, only we see now that with the A -
values, the same phenomenon is found with much higher quantum 
na.bera, too. 

Thie approximate degeneracy will, of course, exclude the 
general uae of perturbation theory to the problems we are consi
dering. At least, the degeneracy must first be lifted by direct 
diagonalieation of the Hamiltonian, including residual interactions. 
Only for small admixtures of SL components with Ar: veq diffe-
rent i'rom the A ot the Hamiltonian ( er •1 in equation ('O). etc.) 
perturbation theoq, such as sketched in section IV in A, is 
applicable/J,4/• This does not contradict the general arguments 
of that section, based on the smallness of coefficients of the 
order 

a.= • (98) 

f'or very high i-values. 
As for the special convergence properties, discussed in 

section III, they will in general be shared by the )-dimensional 
solutions, with very similar restrictions on potentials and 
interaction. The proofs are more complicated, and we shall only 
sketch how to find suff'icient conditions for the uniform conver
gence of the logari thqa. 

and f to be real, and let us define 

for { f,,(c!/ 6 { ffrJ/ 

If. rrJI >,I ffrJI N , 
i'or 

(99) 

We can now draw surfaces of constant P , crp and curves perpen
dicular to those a, following grad P(r) • The differential 
equations, satisfied by f and fn• ensure the possibility of 
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this construction. A closed curve, t, on a a- defines a surface 
segment eJcr- , and the e, intersecting U" in t, define the 
surface, 'l:" , of a "tube". Proceeding further away from q-, z: 
must either narrow down, ending at an e~remum point of P, or 
it may end in an extremal curve, or go to infin~ty. In the two 
latter cases, it is possible to close the tube by a surface, c::' 
on which !'1 ther, like on r:: , the surface integral 

j .t<J""(:f vf,,- .IN vf )= ! {, <>'<r;f:v P._ 
T: ' f d tr .fN 'f P< (100) ,,.. 

is exactly zero, or, in the case of t:' stretching to infinity, 
can be made arbitrarily small. It should be noticed, too, that 
the integrand obviously has no singularities. 

On the "tube", ·t, closed in this way, we can now uee Green's 
theorem 

f tl<J""(:fvf,,-fN vf)= J11v-(:fv:f,,-.fN vf) + lJ 
r+r'-+w w 

(101) 

where bw is defined as in (J3)A. We can now again make the as
sumption (J1)A and, proceeding ae before, we see that if ()6)A 
ie replaced by 

/ f dr /V(rJf '1rrJ/L C1, ftwr}K(w.-) ..>.- (102) 

we can prove the emalln~aa of 
cases on the surface segment 
P had one sign on it. Here 

function of space, say 

-r K(-'.-)=o r.., , <t ,., 

V PA.. or VP, in the respective 
WO""" if this was chosen so that 
~ (oJ.,..) ie a elowl;y var;ring 

(103) 

which ensures that also the curve integral 

/fdFypf~f 
( 1<>4) 
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for any curve, thus leading to the desired convergence. 
It is seen that with V being of the Woode-Saxon type (3)11~ 

and V1 being the deformation tel'lll. 1 given,e.g.,as 

V{r- R.(n.))- V(r-~) 

R (n.) = R ( 1 + I:. ~"M Ye .. (n.J) 
eM 

or any of the other expressions, which have been 
the literature/51, (J1) and (102) are fUlfilled, 
condition of £ ~ 4. < / 

(105) 

suggested in 
again by the 

What has been said here concerns, etricly speaking, the 
extreme adiabatic case, where the coupling to the deformed field 
is that to a completely inert core. Thia is to a high accuracy 
fulfilled in rotational states of dero:rm.ed nuclei. If we go to 
vibrational cores, the coupling is of the same type, but it con
nects states of differe·nt binding energy, which means that, in 
prinCiple, different Sturmianbasesmust be introduced for different 
components of the wave function/GI (but only one basis for each 
form factor). The important feature of finite range of the po
tential, as well as the residual interactions, is however still 
at hand, sO we must expect the convergence features to be essen-
tially the same as above. 

In the discussion above, we have made no assumptions con
cerning the. shape of the potential or residual tenns, even the 
number of dimensions could presumably easily be changed. In 
practiaal calculations we have, however, always resorted to the 
3-dimensional eqUation with V being spherical, the calculational 
advantages and applicability of this basis being opvious. 

VII. Problems with several particles 

In the case of more particles, not only the equations, but 
even the asymptotic behaviour is, as we shall eee below, more 
complicated than for one, and instead of reproducing it exactly, 
we shall discuss the possibility of obtaining a satisfactory 
compromise between this and the requirements for a simple wave 
function. 
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We shall ohly discuss the case·of two identical particles, 
interacting with each other and with an inert core. ~e guiding 
physical idea is here the relative weakness of the interaction 
between the particles, and particularly the fact that no bound 
system of two like particles exists. 

We shall consider the inert core as infinitely heavy, cor
responding, approximately, to the physical system of two identi
cal particles outside a very heavy closed shell core, like 208Pb. 

we shall· neglect spins and Coulomb forces, thus looking at 
the solutions of 

(106) 

The generalization to a genuine three-body problem with, e.g., 
three interacting nucleon is straightforward, and the SL expansion 
was actually shoWn in a numerical way, by J.P.Boieeon and C.Gig
noux/71, to converge rather fast for a number of such cases. 

However, already with the above-mentioned model, which is 
in a way the simplest possible many-particle system, we meet the 
problem of' the complicated structure of the wave function for 
large values of r 1 and r 2• 

The general asymptotic form of bound three-body-wave-fun
ctions was studied by s.P.Merkuriev/S/ and we shall, without 
repeating his proofs, lean on his results, which are simplified 
somewhat in the above-mentioned case. 

We shall make the further assumption that the state has 
parentage to one state of the sy.stem of core-plus-one particle 
only, this state having the binding energy 

-£,-= z/ c107) 

The binding energy of the two particle st.ate will be denoted 

L E.t.:=-E="'- • 

Now, we divide the 6-dimensional configuration space of our 
problem into three regions 

a) r,_'-(££,_-t:;)~ r;'-E, 
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Then tke asymptotic shape of the wave function in each of the 
) regions 

a) -
1 h><-f' (- Z 1 r;. - (..,_'-_.,._ ') ~} 

r'ft"',t. I 1 

b) rfJ"'/,t.. ~(--;;er) rL::= r;t..~r,,L (110) 

The apparent difference in dimensionality of the expressions 
(110, a), c)) and (110, b)) should lead to no confusion; 
it just correepon4s to the use· of dif'terent elements of space 
r 1 

2 dr1 r 2 
2 dr2 (JI' a, Kll.t,. and r5 dr d SL in the two cases. 

If a bound state of the two light particles had existed, 
there would have dominated the asymptotic behaviour in a fourth 
region, lying in the middle of region b. What is meant here by 
asymptotic shape, is the behaviour as a function of r 1,r2 , as 
r goes to infinity; in each region the function is further multi
plied by an innocent function of the angles and of rj /1',. • 

The fonns given by {110) are correct on five-dimensional 
surfaces of constant r; for surface of smaller dimensionality 
with r given, other shapes must be envisaged. Particularly, on 
the borders between a) and b) and between b) and c), the shape 
is an error function of r. For r 1 _,. o or rt. - o we get, in 
these variables, respectively, bound state wave functions in 
the potential v. A special interest is further presented by the 
surface r 1 ~ r 2 , which we consider more closely below. 

Even looking apart from these surfaces of ~easure zero, 
compared to the first ones, we see that the aeymptotics is too 
complicated for the construction of Completely appropriate SL 
functions. A simple SL basis could be found for each of the three 
asymptotic shapes, a) or b) or c), but no simple basis functions 
could share all three asymptotic fo1"1lle. 

In practice, however, we may use the fact that in the most 
imp~rtant caaee, the extra bindiilg energy due to the interaction 
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between the particles is positive, but much smaller than the 
total binding energy 

'X t.== f, ( z, l -r 'Je' '1 
0 L_ Z' .f.. <:£. ~.t... • 

( 111 ) 

We now introduce a set of functions with the asymptotic behavi
our given by 

(112) 

L zL :ie, -= r . 
Now the proportion between the asymptotics as given by (112) and 
the correct one 1s,approximately, in the three regions 

a) ct. ~~( ( ;VL 
. "- - r r,_ z,-;i<.i;)+ r, ((;i,L_ "",~-""i;l}:::: (113) 

~ ,.,_,L (r-r.) 
b) .f. ~ ' L 

a.,~ b><.f'(r-'rr,+ ... J+ (1..(r,<-+r,,')//'-J (oe.,'.,. .,,,'] v'J 

c) "-c~M<f>{r,(a:.,-a<;j+r,_{(z t._ ""'') ~ '"-1,))x.~ ~L{'L-r.) • 
.f: ~ I 

The form (11Jb) is valid, approximately, for 
,L 

I - .f. :I: < r,_ < I + 
?GJ '- r; 

.[,.~It. • 

--;;;--.: 
' 

(114) 

If we introduce r 1 = rt. - r, , the three proportions arie 

... ~ ~ b"f> ( ( ... :-... ,._' "; ~ J:!_ ,_)"" ,,,,, 
b><f (( :1:,L_,. Z'J 9l. ~~ 

.., .. 
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So we see that for small values of -;ic.
1 

, the tail wave function 
is overestimated by using (112), by a factor ..t!:~(,.';e''-/~~,J. 

In practice, say, looking at the overlap factor C20Bpb, 
210 )) Pb (g.s. , we get 

'%' t. -1 
- ..._.. t1. I J Z

1 
"- ,r ;f,., a., .. 

which means that for r'~ 10 fm, the overestimate is about 25%. 
It is not likely that any transfer amplitude should get appreci
able contributions from r' > ... 10 rm. ~or the simultaneous 
transfer the overestimate is even much smaller. 

The asymptotic expression (112) defines a set of SL functions, 
which are products of functions, satisfying 

( 116) 

We could, of course, also have chosen a product of two sets, 
satie:!ying 

(- A, ., Ai V- (,,_ 1.._ ~/)}-!,Jr,) =o 

(-AL-+ t· V - ;i:./) :£-(I~)= O. 
(117) 

Thia gives the corr~t __ asymptotic behaviour in region a) 
'bUt notin c). In order to have this also, and to construct pro
perl7 antisymmetrized wave-~ctions, we must then add a set 
of functions, satisfying the same equations with r 1 and r2 
pe:rmuted. Then, however, no orthogonality relation between tun
ctions belonging to different sets can be found, and still re
gion b) would require a set of functions of quite another t;rpe. 

Physic-al reasons will let some regions of space be more 
important than others, and in this respect, the above-mentioned 
regions of measure zero pla;r a certain role. In one particle
transfer we probe, e.g., the region ot Small r 2 and arbitrary 
r 1• ~or such a calculation the basis given in (117) seems ideal, 
still, however, properly antisymmetrised. The error of using 
(112) will a8Jlll]>toticall7 be 
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1 r =- r, or 'L 
(118) 

meaning in the above example that the proportion would drop by 
25~ when r increases by 10 fm. !for small values of r 1 or r 2 • 
where the oscillating part of the SL functions ia probed, the 
dependence on at- 1 is negl1g1bl•t particularly when the basis 
ie moderately large. 

Thus taking into account the possibility of the energies 
being different with the basis sets £ f ''Jfr2Jj given b7 

( H. + ;! "' v ft) "' ) f. (</ 01 11 - e1 ., = o 

( w.'- + ;.~JV f•I _ €. r ft/ 
,_) ., .. =o ' 

(119) 

expanding 

(120) 

and inserting this in (106), we may either multipl7 from the 
left by :f:')*~lfl"'and integrate to obtain 

(121) 

-(,1"1-).~'1) ,c.e.fn>,_ ;:,.,. - O''-!. ).:.t.)) t.i</,,,>, d..~Je,.,,=o 

or, before integration. multiply with v1v2r.it''r;21to get 

f;, [(l!.,+!.,_-E) ~ .. ;,;.,. + J-.:.i<e Iv rvvrtJv,L/., .. > 
(122) 

( I OJ I('}) ,- I f</ l.( (. ft) ft) - A - "~ ""-" < i< v .. »,- A - A.,'.);; .. < e ( v'"'IH~}~." 

where, by ~ .t:. /11 > the usual overlap .J' fe.~ /,. «'Z'" ,etc. is meant .. 
Now we meet the problem of choosing between the different 

d1agonal1zat1on methods. as described in section IV. 
Both equations can be put into the form 
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[ E 9 ... A ''1 ~, .. A' •111 ..... t !E ... ~ 3 g. = 0 

- -
(124) 

where ~· ~1 , 12 and ,g are Hermitian matrices. 
However, E. is Hermitian only with (121) therefore though 

..strong computational reasons should speak in favour of (122) the 
consideration of section IV le&dsus to prefer (j21), which can 
then, in 4 different ways, be considered as an eigenvalue problem, 
with eigenvalues E • A ftj • A(/..) or er . Starting with a truncated 
set [ f ri) fl'l)AI the diagonaliza.tion will in general give us a 
set of N independent functions 

r::.. -=- J!. e '•; r r ''f. r,; 
.... hf>t JH "" ... (125) 

so that we obtain in this way SL-functions for the two-particle 
problem, which again form complete sets. 

Even when all matrices .,!J etc., are Hermitian, the matrix 
which shall be d1&gonal1sed in order to obtain, e.g.1 E as an eigen
value is not necessarily so: 

(126) 

In some important cases, it is nevertheless possible to transform 
(126) into a straightforward d1agonal1zat1on problem. As an example, 
we may take the er eigenvalue problem, which ie important since 

I f')J I fL} d f di fl fl may be said to be etermined rom the correspon ng 

odd pro-blems. 
Consider£ given by (121), and let us write this as 

C -=-J.q fil"o f.t)J<. V1t. o t>I,, r•/ /r ""' = ,,x qt... V'<-'Vl'l -:t"" '" _, -t.. 
(127) 

Now, if v12 has only one sign, we may always assume this to be 
positive, the sign of the interaction will then be the sign of 

d'"' • v1v2 will, as usual also be assumed to be positive every
where. The (127) can,using the completeness relation for the 
g's, also be written 
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(128) 

and, instead of (126), or its equivalent for }"' , we obtain 

v, 
[ 

C. - Lr I M {/.} - fZ_ ~ 
~ 1E£.,,.. ~,+,( IJ.1.+,S}f +J-}{" ~)co, 

(129) 

The feature of v12 being positive or negative definite is shared 
by the important case of v12 (fr;-r,.1) being a Yukawa inte

raction. 
The SL-method, as most approximate methods in nuclear phy

sics, meets a problem , when the Pauli principle has to be taken 
into account for the following reasons. Whereas the solutions 
of the exact Hamiltonian, symmetric in all particles, must ne
cessarily be symmetric or antisymmetric in all particle coordi
nates, this is in general not the case for a truncated Ham.1.lto
nian, like the one we consider here, where the closed shell 
nucleons are represented by an inert oore. 

The best one can hope.for is then to find a wave tunction, 
which gives an extremum for the Hamiltonian in the apace of states 
orthogonal to the occupied core states. This waa done in rer.19/ 
by a method, which is similar to a procedure, suggested in 
ref.'21. 

We add1 to the Hamiltonian, a term which is a sum of pro
Jection operators on all occupied one- or two-particle states, 
multiplied by a constant 

H ~ H + TZ. /i><:i.[. , (1)0) 

If' now the constant T becomes very large if will have 
eigenfunctions, which are very near to Ii.> , with eigenvalues 
near to T 

H /l) ~ T{i.>. 
(131) 
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Other eigenvecto~ will be orthogonal to these, and in the limit 
of T going to infinity, these other vectors are the desired 
extremum states. We shall not here go into details of describing 
this method, since this was done in rer.191. 

VIII. Numerical examples 

The following numerical results are meant only as a brief 
illustration of some of the points given above. Application ot 
the wave functions to calculation ot physics quantities, like 
cross-sections of transfer reaction are to be found elsewhere. 

The first point, which we want to illustrate, is the ap
proximate degeneracy of A "',(,. for the spherical Woods-Saxon 
potential, when n and ~ form the same oscillator quantum number, 
lf = 2n + ~ • For high .£.. values, ,.\ gets smaller, however, in 
agreement with general expectations. The parameters of the poten
tial are given in table I, and ~ •s in table II. 

The second point is the perturbation admixture of small 
'components, corresponding to A,.tvalues :tar from the dominant ones. 
Aa an eX&Jllpl_e, we take the Pl/.£ amplitude, :tor the state with 

9nergy R--7.215 KeV in 186w. The result of a calculation with a 
quadrupole deformation as v12 are shown in figs. 1,2, which aleo 
contain a table ~:t the eigenvalues. 

•inally, we show the difference in wave functions found 
by two d~ago11&lisat1on methods, used 
truncation of the basis is given by 

parameters are found in table I, the 
particles 

-.Mr/ 
V,J. ~ j-' L /..Mr 

in the two-particle case. The 
table III, the potential 

interaction between the 

J- = - .1.'I./ lleV , ./"= 1!1.;/l:f•"' 

•aa fo'.tnd b7 tke proper diago.aaliaat1on prooedure and the sa•• 
Yalu• used in tk• prooedure fo find x. 

IX. Concluding remark& 

The investigation of the SL method, given here, is not 
complete. We think here not so much of the mathematical rigour:~ 
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where in some cases it is left to the reader to complete the 
somewhat sketchy proofs. What we have in mind , is the limita
tions to few-particle prOblems, to bound states and to non-rela
tivistic problems. 

The difficulties of extending the method to the case of 
many particles are obvious, but so are the difficulties of other 
methods, and the sim.ilari ty b.etween the SL basis functions and 
shell model functions may at least in some cases, together with 
their completeness properties, give them some advantages compared 
with oscillator states, plane-waves and other basis functions 
in use. 

The analogous method for unbound states is obviously the 
Weinberg expansion method, or rather aethod.a, since the ambiguiti
es for positive energies are even large·r than here, leading to 
di~ferent possible- choices of boundary conditions. The biorthogo
nali ty of'some of these basis states is a complication. However, 
with proper ge:nerali.satione, many of the properties of complete
ness and convergence are carried over to the positive energies also, 
see, e.g.1101. The Weinberg states have been used in nuclear phy
sics, but the above-mentioned features seem not to have thoroa.gh.17 
been exploited, and to do this may be one way of future develop
ment. Relativistic problems were not treated here, but, obviously, 
the Klein-Gordon or Dirac ~quati.ona .. 7 be treated in a aill~lar 

way as here the SchrOdinger equation. 
The authors wish to thank collaborators of the Joint Insti

tute for Nuclear Research, Dubna, the Biele Bohr Institute, 
Copenhagen, and the Institut des Sciences Nucl9aires, Grenoble, 
for valuable discussions. 
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grant, making it possible to stay at I.S.N. in Grenoble, where 
another part of the work was done, and J.I.N.R. for a stay at 
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Table I. 

Parameters used in calculating the LS baSis, corresponding 
to tables II rui'd III (I 1Il), ·~apectively. 

The spin-orbit force, proportional to ~ ~ ~-1 1 

was adjusted in each case to fit the observed apin
orbi t epli tting. 

R fm 

2 

1.36 

1.24, 

(186) 

(40) 1/3 

a fm E MeV 

0.73 -7 .215 

o.65 -19.98 

Table II. 

A-values !or different N and within the oscillator 
shell l'I = 6 

l'I = 6 B=5 B=7 

~,J· 0,1/2 2,3/2 2,5/2 4,7/2 4,9/2 6,11/2 6,13/2 1,1/2 5,11/2 

}.. (Mev)41.6 42.1 ·39.9 43.0 37.0 37.6 32.0 33 •. 0 44.4 
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Table III. 

SL coefficients tor the two-particle problem, obtained 
from equation (122) with E as eigenvalue (r) and equation 
( 121 ) with ,j- as eigenvalue (II), keeping E-Eexp• The 
values of E and E, corresponding to case I are given 
below the table, as well as the experimental energy 
Eexp' ,j- =-24.0847 

n1 11 j1 n2 12 j2 I II 

0 3 7/2 0 3 7/2 0.98438 0.98419 
0 3 7/2 3 7/2 0.00678 -0.00531 
0 3 7/2 2 3 7/2 -0.00716 -0.00506 

3 7/2 3 7/2 0.01609 0.01369 
3 7/2 2 3 7/2 -0.001)8 -0.00263 

2 3 7/2 2 3 7/2 0.00415 0.00376 
3/2 1 3/2 0.08483 0.09669 

1 3/2 2 1 3/2 -0.00308 -0.00531 
2 1 3/2 2 1 3/2 0.00733 0.00610 
0 J 5/2 0 J 5/2 0.09588 o.09206 
0 J 5/2 1 3 5/2 -0.00392 -0.00648 
1 3 5/2 3 5/2 0.00770 0.00746 
1 1 1/2 1 1 1/2 0.03604 0.04070 

1/2 2 1 1/2 -0.00199 -0.00336· 
2 1/2 2 1 1/2 0.00407 0.00356 
0 4 9/2 0 4 9/2 -0.09575 -0.08874 
1 2 5/2 2 5/2 -0.02503 -0.02745 
2 0 1/2 2 0 1/2 -0.00884 . -0.01035 
0 4 7/2 0 4 7/2 -0.02954 -0.02899 
1 2 3/2 2 3/2 -0.01285 -0.01483 
0 5 11/ 2 0 5 11/2 -0.04047 0.03761 
0 5 9/2 0 5 9/2 0.01539 0.01504 

E9xp•-19.84 E=-19.94 E•-19.84 
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. ' 

,, 
• 

·' 

1: 27264 47.253 

73.662 

5 106.461 

6
1
145.628 

Un1~2 {r.~.L.) 

STURMtAN RADIAL AMPLITUDES 

1. Radial wave functions and SL eigenvalues for a P 'l".t. Compo
nent of 182w, showing components multiplied with the proper 
c-values, the abso~ute values being adjusted to the normali
zation of the total wave functlon/111. 

E··6.48 MtV 
,, .ro·2 R.·7.09IO·R:!" 

a •• o.66ss·a·: 
Y:' •BMeV 

·' 

STuRMIAN RADIAL AMPLITUDES 

2. Radial wave functions and SL eigenvalues for a £. 1.9,4 component 
of 18"11. 
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