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Introduction

-+

In a recent publication, henceforth referred to as 4 (we
used common numeration in the formulae), some comvergence prob-
lemg of Sturm-Liouville expansions were considered, with parti-
cular regard 1o nuclear physics problems. In this paper, some
remaining quastions are elucidated, In order to understand the
importance of the different terms in calculations of physical
properties, a knowledge of the shape of the SL-functions, as
well as of their eigenvalues, is necegpary. This i provided in
Section (Y).

The solutions of three-dimensional problems are in (VI) shown
{0 possess colvergence properties for r-¢ «=, which are eimi-~
lar to those found in A for the one-~dimensional problem,

The problems considered up to thie point can be called che-
body problems with fixed potentials, or two-body problems in re-
lative coordinates. In (VII) we consider the problems of more
particles, for the special case, relevant to nuclear problems,
that one ie much heavier then the others. It is shown, that the
agynptotic behaviour of this system im rather complicated, but
that nevertheless, in some important cases, it ia possible to
approximate the form factor well by an Sl-expansion,

In (VIII) we give oxamples, suited to illustrate soms of
the atatements of the earlier sections.



¥. The Sturmian functions and eigenvalues

Since the pure Coulomb potential, used in atomie physics,
has well known analytic solutions and eigenvelues (chargeas) of
the SL problem, we ghall here limit ourselves to0 coneiderstion
of the spherical Woods-35axon potential. The case of combined
nuclear attraction and Coulombd repulslon is of equal interest,
and is very similar to the pure nuclear case in all relevant res-

pectsa,

The fundamentals of the theory of the éolutions and eigen-
values of eq. (3) A is the Sturmian fundamental theordm, which
for our purpose can be stated as fgllowa,

Given two functions, f1 and f2 which satiefy

_5::”(")"" (u;"'E)ﬁ(r-}-_.-a (76)
and

"'fif(;) + (Up-E)ftr)= o

respectively, and in a given interval
Rarss , wulr) > uem. )

Then, between itwo consecutive zerces of f1 there will be at
least one of f2.

This follows from
t ¢ LR LD
[ff-Ff] = [(u-9)Ff, < (18)
ton

Iet 1, be consecutive zerces of f, and suppose that

there is no zero of f, in (ryyr5), then we may, without lack of
generelity, assume both functions to be positive in (ri,ra).



Then f'(n) 30, f,'fn) <o , 80 the left-hand side of equation
{(78) is negative and the right is positive,i.®.,a contradiction,
which ls removed only because the mssumption of no zero of f,
was Talae,

If we now consider equation (3) A with the boundary condi-
tion £(0)= O,(f%o/# 0} and let A grow, we see that the number
of rerces is a never decreasing function of A , that all ze-
roea move towards smaller I -values, and that new zerces there-
fore must start st infinity, when A is an eigenvalue. A zero,
born in an internal point would have to be born as double, but
double zZerces are excluded by eq. (3) & and the boundary condi-
tiona/ 2 + Wo can say, that with larger ) the solutions become
more and more oscillating, The eigensolutions are of course oscil-
lating only in the regions,where £ - AV-V. >2(Fow, looking
only at the radisl equation, we will let Vg include the cemtri-
fugal barrier).

If we introduce the new coordinate

- :
x= [ (-vei) e (19}
L]

we see, that with the potentials introduced here, the function

e

b= (-v) £ (80)
will matiefy an equation
L
a4 b+ (di+ ut))by=0 (81)
#xt
and that the infinite interval ¢£F & - is transformed into
a finite interval oscr=z & the normalization becoming
£ . .
flx 4 ()=1. (82)
’

Using the proof of Ref. 2, we then see, that h, is always below
pome limit, independent of 1 and x, The same muat therefore be
the case with



s
g:=C-v) “%=rv) ’/"4,; (83)

independent of 1 &and r,

Sturm's Tundamental theorem can also be used to estimate
the ejigenvalues, First, it is clear from the above, that with
given 4 # /,' s the nth eigenfunction, corresponding to the
radial gquantum number n, has n modes, In order to simplify mat-
ters we shall neglect the apin orbit-coupling which anyway is
not very important, Now, the Woods Saxon potential (3) A lies to-
tally below the potential

U = o for r > F-a
Y =- A = -2 224 for rek-a. (84)
/4 erxpfas)
For r ¢ Kg
- A + L&) _ (85)
ttonp Re-R 7 +Eg= 0 (Ep=-&55)
a
the Woods Saxon potential (3) A lies above the potential
U, = - ) .
ui: ] (86)

for F >#, , there are no zerces of F(A) .
Por £ =0, the sclutions of the SL equation with U, snd U,
are juet sin ( %&r ) with )

b—' -
%= a22A- £, (87)
and
L
x-& = A - Eﬂ (88)

respectively,
8o the number of zerces #, , #, is in the two cases given by



2, (R-a)= (n+v,) % oed et {89)

’

%, Rezoy= (”&*“”b)r / 55-‘4."

(90)
respectively, or
F L o)t (Rwae)bs Eg = @22 oD
e AL A__.n& =
(ne+ .r.) (de-&v(z_—; :}) l"f.Eo—fl . (92)

We see from (91), that A has no upper limit. Since we know, that

/\.. is a monotonous function of n thie should mean, that we can
find n-values, so that /\,, cen be larger than any given number,
e.g.,L 54 . But then we see from (91) and (92}, that

Frntete Eg <1 (R0 b (4 -1)) % £,
LA, (7t (nei)e(r-ay "2, g,) foris. (93)

Por £#e |, an eatimate of the number of seroes for the two
potentials Uy and U; can be obiained from the relation between
the zerves of G‘ belonging to £ and £Z-/

J’n,f-f <4 ne < tfn-pf, LV | (94)

where dé_ are Bespel functione,
80 , the poeitlon of the n'th gzerc is subjected to the inequali-
ties
a‘;ﬂ.o Adln e < .n-odo-
: ’ Frse, . (95)
Consequently, for the number of zerces we have in the two cases
corresponding to (84) and (86}, respectively:

n,>nz»n-&

by >n > Ml (96



Since the number of zeroes is identical {o the radial gquantum
nuuber, # {or, according tc another definition, n-~1)}, we see that
for large n we have, in all cases,

Moo= Cent +omm). (97)

It follows directly from Sturm's fundamental theorem that
the eigenvalues Aﬂ, ¢ for £ fixed and different n, are
non-degenerate.

Ag the radirl equation with a Woods-Saxon potential, in the
cage of £ =0 can be transformed into a hypergeometric equation,
we know the spectum, which is actuslly similar to that of a
square well, also for small n-values., So it is far from degenerscy,
and the pame is actually the case for éﬂﬁa .

But the feature of being far from degeneracy is particular
for the spectrum of the one-dimensional (radial) equation., If we
look at the many~particle case, we should,of course, expect the
game degeneracies as with E-values, but already with one particle
moving, e.g., in a spherical potential, we must expect that

Ane's belonging to different £ -values can lie near  each
other, as we shall see in the next section.

VI. Three-dimensional problems

The radial equation of the Woodas-Saxon potential, with or
without a Coulomb term, must, apart from the above-mentioned
case, be solved numerically, Any additional radial potential
would therefore most simply be included directly in the numerical
calculation.

The utility of the SL-method lies in its application to
multi~-dimensional calculstions, and the one-dimensional examples
given above, are only meant as illustrationa of the probleme
met in the latter cases. :

We shall here concentrate upon the two cases met in the
literature of nuclear problems, namely of one particle inte-.
racting with a static or oscillating deformed field, and of
peveral particles interacting with each other, as well as with
the nuclear (+ Coulomb) potential.

" As mentioned sbove, one main difference with the one-dimen-



sional case is that we must now expect degeneracy to exist., If

we specially think of the spherical one-particle orbits, we must
expect that for given B, } n, £ values corresponding to the same
vaglue of 2n+f must lie near each other, The reason i1s evidently
the gimilarity between the Woods-Saxon-potential and that of a
harménic oséillator, where spuch a degeneracy ie complete, The
very similar near-degeneracy of BE-values in ususl shell model
calculations im well-known, only we see now that with the A -
values, the same phenomenon is found with much higher gquantum
numbers, too, : :

’ This approximate degeneracy will, of course, exclude the
general use of perturbation theory to the problems we are consi-
dering, At least, the degeneracy must first be 1ifted by direct
diagonalisation of the Hamiltorlan, including residual interactions.
Only for small admixtures of SL components with )\,_- very diffe~
rent from the A of the Hamiltonian ( } =1 in equation (50), etc.)
perturbation theory, such ss sketched in section IV in A, is
applicable 3.4 + This doea not contradict the general arguments

of that section, based on the smallness of coefficients of the
order

. s -
¢ = YUY (98)

for very high i-values,

As for the specisl convergence properties, discussed in
section III, they will in general be shared by the 3-dimeneional
solutions, with very eimilar restrictions on potentials and
interaction, The proofs are more complicated, ahd we shall only
pketch how to find sufficlent conditions for the uniform conver~
gence of the logarithy,

Let us assume all f, and £ to be real, and let us define

- FAr)

Pa= i/

p= 7oy tor | futo)] £ [£00)] (99)
Fe= %%} for ljcﬂ(f)l ?/IJC(E')'

We can now draw surfaces of constant P , 0p and curves perpen-
dicular to those s, following grad P(r) . The differential
equations, satlafied by f and fn' ensure the possibility of



this construction. A closed curve, t, on & ¢ defines a surface
segment el , and the s, intersecting ¢ in t, define the
gurface, 2 , of a "tube", Proceeding further away from ¢, Z
must either narrow down, ending at an extremum point of P, or
it may end in an extremel curve, or go to infinity. In the iwo
latter cases, it is possible ic close the tube by a surface, =’
on which gither, like on L, the surface integral

‘ [ acfton
.tr(fv - = ‘ ~
-Ef' Fu=Fu75) _fzdc‘f” 7 or (100)

is exactly gero, or, in the case of T siretching to infinity,
can be made arbitrarily small. It should be noticed, too, that
the integrand obviously hea no singularities.

On the "tubem™, t, closed in this way, we can now use Green's
theorem

.( I (E V= Fu Vf) = fa"""ffvgﬁ, ~FeVF)+ 5

THL -+t
{(101)

=S A (F9d- £, of )= for (b V-f 0) £,

where by is defined as in (33)A. We can now again make the as-
gumption (31)A and, proceeding as before, we see that if (36)A
is replaced by

/;fa’!:‘ {vic)! ?&-}/4 Cy F Cor) 4 wr) o (102)

we can prove the smallnees of V Fa. or VP¢ ir the respective
capes on the surfsce segment «/ 1f this was chosen so that

P had one sign on it, Here () 1a a slowly varying
function of apace, say

Kloe)= rg ¥, ¢ 71 | | (103)

which ensurea that also the curve integral

|faFer] <y

(104)
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for any curve, thus leading to the desired convergence.
It is seen that with V being of the Woods-Saxon type (3)4,
and V, being the deformation term, given,e.g.,as

Vir- R{a})- V(ir-g)

(105)
R(a)= R {1+ £ﬂ¢n Yem ('Q‘))

or any of the other expressioﬁa, which have been suggested in

the literaturels « (31) and (102) are fulfilled, again by the

condition of £ wa <}/ . ' -

What has been sald here concerns, stricly spesking, the
extreme adiabatic case, where the coupling to the deformed field
is that to a completely inert core., Thim is tc a high accuracy
fulfilled in rotational states of deformed nuciei. If we go to
vibrational cores, the coupling ims of the same type, but it con-
nects states of different binding energy, which means that, in
principle, different Sturmianbages must be introduced for different
components of the wave funciion 6 (but only one baais for each
form factor). The important feature of finite range of the po-
tentiel, as well as the residual interactions, is however still
at hand, sc we must expect the convergence features to be easen-
tially the same as above.

In the discussion abeve, we have made no aspumptions con-
cerning the shape of the potential or residual terms, even the
number of dimensiong could presumably easlily be changed, In
practical calculations we have, however, slways resorted to the
3=dimensgional eqﬁation with V being apherical, the calculational
advantages and applicability of this basis being obvious,

ViI. Problems with geversl particles

In the case of more particles, not only the equations, but
even the asymptotic behaviour is, as we shall see below, more
complicated than for one, and instead of reproducing it exactly,
we shall discuss the poseibility of dbtaining a satisfactory
compromise hetween this and the requirements for a simple wave
function.

11



We shall ohly discuss the case of two identical particles,
interacting with each other and with an inert core. The guiding
pbyeical idea is here the relative weakness of the interactien
between the particles, snd particularly the fact thet no bound
syatem of two like particles exists.

We shall congider the inert core as infinitely heavy, cor-
reaponding, approximately, ito the physical system of two identi-
cal particles cutside & very heavy closed shell core, like aoa?b.

We ghall neglect spine and Coulomb forces, thus lovking at
the golutions of

(Ho+ A“vin)+ AYvm)+ ¢ Vi (1551 ) <E) Y=o, 06y

The generalization to a genuine three-body problem with, e.g.,
three interacting nucleon is straightforward, and the SL expansion
was actually shown in & numerical way, by J,P.Boisson and C.Gig-
nouxlT/, to converge rather fast for a number of such cases.

However, already with the above~mentioned model, which is
in a way the simplest possible many-particle system, we meet the
problem of the complicated structure of the wave functiom for
large values of r; and Iy.

The general assymptotic form of bound three~body-wave-fun-
ctions was studied by S.P.M&rkurievfs/ and we shall, without
repeating his proofe, lean on his results, which are simplified
gomewhat in the above-mentioned case.

We shall make the further sssumption that the siate hes
parentage io one state of the aystem of core-plus-one particle
only, this state having the binding energy

-£,= 2% (107)
The binding energy of the two particle state will be denoted

— w2
E,=-E=%", {108)

Fow, we divide the G6-dimensional configuration space of our
problem intec three regions

8) ntle,~5)< g

E4 L < .
B) TE < EmE ), nPE <N (E,-5) (1092

12



0) r[&(EL"&-‘,)< rLLE-!_

Then the agymptotic shape of the wave function in each of the
3 regions

L ~ P %
a) ,.‘,,&’/"'f’( ® - (et )
TR L () 5 rEentent (110)
: _
—— expl-xr _ ve
A 4 ! (K’L"“%ff )

The apparent difference in dimensionality of the expreseions

{110, a}, ¢)) and (110, b)) should lead to no confusion;

it just corresponds to the use of different elements of space
r12 dr, r22 dr, o %, A2, and r° dr 457 in the two cases.

If a bound ptate of the two light particles had existed,
there would have dominated the agymptotic behaviocur in a fourth
region, lying in the middle of region b, What ig meant here by
apymptotic shape, ie the behaviour ss a function of Xy4Tp, 88
T goes to infinity; in each region the function ig further multi-
plied by an innocent function of the angles and of G/? .

The forms given by (110) are correct on five-dimensional
surfaces of constant r; for surface of smaller dimensiornelity
with r given, other shapes must be envisaged. Particularly, on
the borders between &) and b) and between b) and c), the shape
is an error function of r. For = ¢ or r,~»¢ we get, in
these variables, respectively, bound state wave functions in
the potentisl V., A special interest is further presented by the
surface ry = Ty, which we consider more closely below,

Even lockirg apart from these surfaces of measpure zero,
compared to the first ones, we see that the aaymbtotics is too
complicated for the construction of completely appropriate SL
functions. A simple SL basis could be found for each of the three
asymptotic shapes, a) or b) or ¢), but no simple basis functions
could share all three asymptotic forma.

In practice, however, we may use the fact that in the most
important cases, the extra binding emergy due to the interaction

13



between the particles is positive, buil much smaller than the
~total binding energy

LA
2= g (et ., *r"’)
{111)
04 2o mt,

We now introduce a set of functions with the asymptotic behavi-
our given by

~ A a&kﬁ — 76.
qfr Py ( (r‘+ t,))
LA _ z"’—
Lc oz
Now the proportion between the aaymptotica as given by (112) and
the correct one 18, approximately, in the three regiocns

a)
o, ~ e (1, (m- 2141 (% 2 ,)—z,,))~ (113)
&xﬁ De.’ - ~1;) '

~ mp((—(r-a-r‘.]-e-(a(r' “nY) %) (e 9 Y
O Aentrp (1 (w2 4) ey (e %, v”-zx,))zwf (s -

’

(112)
2

b)a_

The form (1131;) is valid, approximately, for

- 22t ne g, szt

= 7 =< (114)

If we introduce r'= 1, -r; , the three proportions are

a— A ~n hf zl""
o e enp .E__.)

£

— 1y Ve &
Lo o (2T )
!
%

{115)

op ((Fer®) Tt Loy leL
! / 2, & E—t)“‘m’b(rﬁ,)

14



So.we ses that for smell values of 2’ , the $ail wave function
is overestimated by using (112), by & factor £ Lacp( +x! trg 0 %),
In practice. gay, locking at the overlap factor (208Pb

210Pb {g.q.)), we get
z!“ -
e~ or, % ~ 05 fm

1
which means that for r‘> 10 fm, the overestimate iz about 25%.
It is not likely that any tranﬂrer amplitude should get appreci-
able contributions from r’ = 10 fm, For the gimultaneous
transfer the overestimate is even much smaller, :

The asympiotic expression (112) defines a set of SL functioms,
which are products of functicna, satiefylng

(-a+dv-2)t 20, (116)

We could, of course, aslsc have chosen a product of two seis,
satisfying '

(-8, +Acv-(n2*)) £ (r)=0
(~dg+ AV - z,"):g.ﬁ_r&)—_-.-a,

This gives the correct apympitotic behaviour in region a)
but notin ¢). In order to have this alsc, and to comstruct pro-
perly antisymmetrized wave-functions, we must then add a set
of functions, satiefying the same squations with ry and Ty
perzuted, Then, however, no orthogonality relation between fun-
ctions belonging to different sets can be found, and still re-
glon b) would require a met of functiona of quite another type.

Physicnl reascns will let some regions of space be more
important than othera, and in this respect, the above-mentioned
reglone of meapure zerc play a certain rocle., In one particle-
trangfer we probe, e.g., the region of amall r, and arbitrary
r,» Por such a calculation the basis given in (117) seems ideal,
stlll, however, properly antlsymmetrized. The erxror of using.
{112) will asymptotically be

(117)

18



B 118
m(—i??; r} ; r=ror ( )

mesning in the above example that the propertion would drop by
25% when r increases by 10 fm, For small values of Ty OF Tp,
where the oscillating part of the SL functione is probed, the
dependence on &’ is negligidble, particularly when the basie
is moderately large.

Thus taking into sccount the possibility of the energies
being different with the basis sets [ £ f™] given vy

(Ht’f *A;’}V “_ g ) ﬁ-ﬁéa

@ (119)
Ho A cel o/
( L+~V‘-€6)fm=0,
expanding
&) [
Villir,)=Z Cus Fr £ (120)

and inserting this in (106), we may either multiply from the
T

left by £, J"’énd integrats to obtein
(€ +E,-E)sullmm> 4 Jencl|lyymn>
no (121)
"(J’;/—):}) d&/”)& 5;»' - (A(EJ.A:J)) 4K’M>‘, E;c](fm”:o

.or, before integmti_ﬁn, multiply with V1V2fkm fe(zi to get

»z-—_; ((e+e -£)5, bne+ ¢ <KLy Dy y, fmns
{(122)
) [} Y
= (N AL )5, ek | v s~ (AN 5, celv ™ mylese

”

where, by Z4Z [ny the usual overlep /fe,‘ﬁ " ,etc., is meant.
KNow we meet the problem of choosing between the different
diagonalization methods, as described in section IV,
Both equations can be put into the form

16



£E£'*'Amg.+ﬂ")§¢_+d’§ ‘*55_&:0 : {124)

where é, 51 » B> and € are Hermitian matrices.

However, R is Hermitiap only with (121) therefore though
strong computatIonal reasons should gpeak in favour of (122) the
congideration of gection IV leadsua to prefer (121), which can
then, in 4 different wayse, be considered as an eigenvalue problem,
with eigenvalues & , A, A7or } . Starting with a truncated
set { f (')Jf“)j tha diagonalization will in general give us a
get of N indeplndent functions

F. ZI e, “’ £ ' . (125)

vy

so that we obtain in thie way SL=functions for the two=particle
problem, which again form complete sets,

Even when all matrices é, etc.yare Hermitian, the matrix
which ghall be diagonaliszed in order to obtain,e.g.,;E as sn elgen~
value is not necessarily so: '

Ect __@nl(,\(”g’-fAfbjél_-k*_gq-g)g:g. (126)

In some important cases, it is nevertheless possible to traneform
(126) into a straightforward diagonaligzation problem. As an example,
we niay take the J/ elgenvalue problem, which is important since
)\n} : /\{‘) may be said to be determined from the corresponding
oddé problems.
Consider G given by {121), and let us write this as

0t % o, e
fé‘x {::f:;/a) Fm Fa Ao (127)

Now, if V.'z has only one sign, we may aiways assume this o be
positive, the sign of the interaction will then be the sign of

a’ . V1v2 will, as usual also be assumed to be positive every-
where, The (127) can,using the completeness relation for the
g's, alpo be written

17



fe) F I /L 1)
C=7 Ve wpfv;
= o f‘( j(— V""'V“” gJ’ ft c{f‘f"'./a?‘r (128)

% . %

and, instead of (126), or its equivalent for 4 + we obtain

Y )
(¢ (eg+0"8,+4%, +2)c % “tj (e %o, (129)

The feature of V.m being positive or negative definite is shared
by the important case of V,, (/fi-r,!) being a Yukawa inte-
raction,

The SL-method, as most approximate methods in nuclear phy-
eice, meets a problem , when the Pauli principle has to be taken
into account for the following reasons. Whereas the solutions
of the exact Hamiltonian, symmetric in all particles, must ne-
cegearily be symmetric o1 entisymmetric in sll particle coordi-
nates, this iz in general not the case for a truncated Hamilto-~
nian, like the one we conslder hers, where the closed ghell
nuclecns are represented by an inert core,

The best one can hope for is then to find a wave function,
which gives an extremum for the Hamiltonian in the space of atates
orthogonal to the occupied core states. This wae done in ref.,9
by a method, which is similar toc a procedure, suggested in
ref, ) :
We add, to the Hamiltonian, a term which is a sum of pro-
jection operatore on all occupied one-~ or two-particle states,
multiplied by a conatant

H = H-f-T.bZ_[l'.?{t-l. (130)

If now the constant T becomes very large H will have
eigenfunctions, which are very near tc {L> , with eigenvalues
near to T

H tes ~ Tl
(131)

18



Cther eigenvectors will be orthogonal to these, and in the limit
‘of T going to infinity, these other vectors are the desired
extremun states. We shall not here go into detalls of describing
this method, since this waa done in ref, ° .

VIII, Fumerical examples

The following numerical results are meant only as a brief
illustration of some of the polnts given above, Application of
the wave functione to calculation of physics quantities, like
eross-sections of transfer reaction are to be found elsewhere.

The firat point, which we want to illustrate, is the ap-
proximate degensracy of A, ¢ - for the spherical Woods-Saxon
potential, when n and £ form the same oscillator quantum number,
‘N=2n+& . Por high £ values, A gets smaller, however, in
agresment with general expectations, The parameiers of the poten-
tial are given in table I, and Ate in table II,

The second point is the perturbation admixture of small
'componanta, corresponding to Ayzvalues far from the dominant ones.
As an exsmple, we tske the p/42 amplitude, for the state with
energy Ew~7.215 MoV in '%6W, The result of a calculation with a
quadrupcls deformation as _V12 are shown in figa. 1,2, which alse
contain & table of the eigenvalues.

Finally, we show the difference in wave functions found
by two dlagomaliration methods, used in the two-particle case. The
truncation of the basis is given by table III, the potentlal
parameters are found in table I, the interaction between the
particles —hry ’
Vo= g JAn

G =2t MV o0 fm!
H

was found by the proper diagonalisation procedure and the same
value used iz the proosdure £o find E.

IX. Concluding remarks

The investigation of the SL method, given here, is not
complete, We think here not ec much of the mathematical rigoury
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where in some cases it 1s left to the reader to complete the
aomewhat sketchy proofe. What we have in mind , is the limita-
tions to few-particle problems, to bound states and to non-rela-
tiviatic problema,

The difficulties of extending the method to the case of
many particles are cobvious, but ac are the difficulties of other
methods, and the aimilaerity between the SI basis functions and
shell model functiowme mey at least in pome cases, together with -
their completeness properties, give them some advanteages compared
with oscillator states, plane-waves and other basis functions
in use,

The analogous method for unbound statee is obviously the
Weinberg expansion method, or rather methods, since the smbiguiti-
es for positive energies are even larger than here, leading to
different possible choices of boundary conditions. The biorthogo~
nality of some of these bmeis states is a complication, However,
with proper genmeralisations, many of the properties of complete-
ness and convergence are carried over to the popitive snergiee also,
Bee, €., 10/. The Weinberg states have besn used in nuclear phy-
slca, but the above-mentioned features seem not to have thoroughly
been exploited, and to do this may be one way of future develop~
ment, Relativigtic problems were not treated hers, but, obiiously,
the Klein-Gordor or Dirac squations may be treated in a similar
way as here the Schrodinger equation.

The authors wish o thank collaborators of the Joint Insti-
tute for Muclear Research, Dubna, the Niels Bohr Institute,
Copenhagen, and the Inatitut des Sclences Nucleaires, Gremoble,
for valusble discuseions.

One of the authors, P.A.G., wants to thank the Niels Bohr
Inatitute, where a part of this work was carried out, for
hespitality, the other, J.B., wants to thank C.N.R.S. for a
grant, making it poesible to stay at I.S.N. in Grenoble, where
another part of the work was done, and J.I.N.R. for e stay at
Dubna, where the work was completed. -



Table I,

Parameters used in calculating the L3 bagls, corresponding
to tables TI . add ITI (I,ID, respectively:.
The gpin-orbit force, proportional to -}; %{f £-5 ,-
was adjusted in each case to fit the cbsérved spin-
orbit eplitting, '

R fm a fm E MeV
1 1.36 ¢ (186)'77 0.73 -7.215
2 1.28. + (40)1/3 0.65 -19.98
Table II,
A-velues for different N and within the ocscillator
ghell N-= 6 '
=6 B=5 B=T

JLJ. ¢,1/2 2,3/2 2,5/2 4,1/2 4,9/2 6,11/2 6,13/2 1,1/2 5,11/2

A(Mev)4t.6  42.1 39.9 43.0 37.0 37.6 32,0 33.0 44.4
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Table IIT,

SL coefficients for the two-particle problem, obtained
from equation (122) with B &s eigenvalue (I) and equation
(121) with al as eigenvalue (II), keeping E’Eexp' The
values of E and E, corresponding to ¢case I are given
below the table, as well as the experimental energy
Eexp' & =-24.0B47

n, 1, 4 n, 1, s I II
0 3 7/2 0 3 7/2 0.98438 0.98419
0 3 /2 1 3 7/2 0.00678 ~0,00531
0 3 7/ 2 3 1/2 ~0.00716 -0, 00506
1 3 172 1 3 7/2 0.01609 0.01369
1 3 7/2 2 3 7/2 -0,00138 =0.00263
2 3 7/2 2 3 7/2 0.00415 0.00376
1 1 3/2 1 1 3/2 0.08483 0.09669
1 1 3/2 2 1 3/2 -0,00308 -0, 00531
2 1 3/2 2 1 3/2 0.00733 0.00610
0 3 5/2 0 3 5/2 . 0,09568 0,09206
0 3 5/2 1 3 s/2 ~0, 00392 =0, 00648
1 3 5/2 1 3 5/2 0.00770 0.00746
1 1 1/2 1 1 1/2 0.03604 0.04070
1 1 1/2 2 1 1/2 ~0.00199 -0,00336.
2 1 12 2 1 1/2 ©. 00407 0.00356
0 4 9/2 o 4 9/2 -0, 09575 ~0,08874
1 2 572 1 2 5/2 -0,02503 -0,02745
2 0 1/2 2 0 1/2 -0,00884 . -0,01035
o 4 T/2 o 4 7/2 ~0,02954 -0,02899
1 -2 3/2 1 2 3/e -0.01285 ~0,01483
0 5%1/2 0 5  11/2 ~0, 04047 0,03761
0 5 9/2 o] 5 9/2 0.01539 0.01504

E ,_ =-13.84 E=-19,9%4 E==19,84

exp
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1. Radial wave functions and SL eigenvalues for a PYL Zompo—
nent of "BZW, showing components multiplied with the proper
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zation of the total wave function/ﬁl
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2. Radial wave functions and SD eigenvélues for a £ /%4 component
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