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1. Int roducti,on

Since the Sturm-Liouville expansion method in atomic’ 1~%/
and nuclear /9-18/ phyeics has recently obtained some spreading
we find i1t eppropriate here to discuss some of the properties,
which make it useful. These are tacitly assumed in other pepers,
where the main eim is to use it for calculation of principal
properties or numerical comparison with other methods whercas a
more mathemsgtical démongtrltion of its convergence properties,
etc. ,heas earlier been given only in very genersl terms .

The term SturmeLiouville problem is used for a wide class
of eigenvalue problems of the type

- ;. V . ’
oo Fhosledize (1)

where de satiafy certain boundary conditione, or more gpeci-
fically for the one-dimengional problem of this type, some -
times even more ppecifically for the probles in & finite interval.

Even then, the concept is sufficiently general to include,
®,.g., the one dimensional Schridinger eigenvelue problem,

In physics, however, the ferm Sturm-Licuville problem is
often used in mnother restricted sense, se distinct from the
Schrodingsr eigenvalus problem. The cosfficient of an eigenvalue
( V; above) depends on the choice of coordinates. The problem
is then called a Sturm-Idouville, in the following abbreviated



to SL, problem in l\;"r only when Ve depends on the ordinary
"physical®™ coordinates (or relative coordinates), e.g.,like

Vﬂv if spherical coordinates are used, We can, in the one-dimen-
pional case, always bring the LS eigenvalue problem to a form
where Vi ig 1. However, this means introduction of new,
artificial coordinates which in most of our work are an unneces-
sary complication.

The usefuliness of this SL problem in quantum mechanics is
closely tied up with some physical facts. With the possible ex-
ception of the forces which bind the guarks together to form
baryons, it geems that all physical forces are finite in the -gense,
that the potential between particles goes to a finite limit for
large distances between them. This meang that the Schrodinger
equation which describes the motion of particles interamcting
with such forces will have a continuous spectrum, as well as pos-
sibly & bound apectrum,

Now, the problem is often met that functions which are,e.g.,
eigenfunctions of a complicated problem, are characterized by
their expansion in eigenfunctions of a comparatively simple
problem, If thig is of the Schrodinger type, the continuum eigen-
functions muet in general be included in order that the functions
form & complete set for the expansion. It is often more conve-
nient to use an eigenfunction problem with a discrete spectrum,
a8 the Schrodinger equation with a harmonic oscillator or a box
potential to provide the expansion base, However, just the unphy-
gical character of these potentials may cause further troubles,
aBye,g., bad convergerice in some region of the space.

In general, one may say, that when physical problems are
solved by expanding some functions in a complete set of functions,
it is advantageous if the members of this set or at least aome
of them are as similar as possible to the functions which are to
be expanded, e,g., by satisfying a differential equation of a ’
similar type. In this respect, an SL method, in the meaning of

the word given above is frequently advantageous. It will often
be possible to find an SL mse%t, which is discrete, and for which



the expansion satisfies certain particularly sharp convergence
conditions, as the "uniform convergence of the logarithm®™, defi-
ned below in Section III.

The SI expansion was firet introduced in quantum mechani-
cal calculations by Epstein/1/, immediately after the publication
of Schrodingerts first paper. The aim wae to get & simple ex-
pansion set for calculation of the Stark effect, and the SL-set
wag that of solutions to Schrodinger-hydrogen-like equations,
with a fixed binding energy and varying charges

L
(-a+ L5 (22 - €))fi=0. ' (2)

It ie here a great gimplification, that the eigenfunctions have
simple analytic forms (& polynomial Z; times an exponential »
function in r ). In other ways, this example is rather parti-
cular by the potential being singular at the origin and of long
Tanga, tdo,

We are here mainly dealing with the Woods-Saxon potential,
which is generally accepted to be m good approximation to the
nuc)ecn~-nucleus interaction, thus looking at equations of the
type

(-if."a-f o+rA v-E)fizo
m

v=_(t+azp(.'%£))"’, (3

where V, may represent,e.g.,additional Coulombd terms. The
main property of the potential (the factor of A, } which
has made it: convenient for nuclear phyeics problema, is, that
it ig of finite range, nearly flat in a certain internal region,
and varies mainly in s definite surface Tregion of the order of
magnitude a. . Another property, which we are going to make
use of, ie that it is different from ¢ everywhere in space.
It has no singularities.



II, General mathematical propertiesgs of Sturm-licuville expansions

The general theory of SL expansions was well established
for a long time/19/. We shall briefly recapitulate it here, with
particular reference to the asbove-mentioned potentials., Theorems
about completeness and convergence can in some cases convenlently
be proved directly from the 3-dimensional form, and we will write
our equations in a way where the dimensionality is not stated
explicitly, It seems, that for many reasons, it is appropriate
to go over to integral equations.

Writing our egquation (1) as

(("-/'—gj'f'A,; V)£(")=01 (4)

where, in the general case, H,=- d"' o we may go over to
+the integral form
: 72 - VA
seon(v) A IV (E-1) I/ g 0=9: @ , (5)

VA f
where g.(r)= [ver)f jE(r) , and the reciprocal operator (f—H,}
generally must be an integral operstor,
We may also write (5) as

A fKlt,rig c)dr=g.). ®)
Here, when H, is self-ajoint, K is symmetric, This is fundamental

for the precof of the expansion theorem below,
We must obviously have

A c‘f,‘"’ff Vi, ar= N5 (1)

where we can choose the normalisation

N =-17, (8)
In the case , when H,=—4 {3-dimensions, neutrons)
(here and in many following equations we use £m= %=/ ) we

can expliclitly write



Y -oe{r-ri /
K (c)=sign () (jvirl 2 (ve ",
le-r (9)
mz‘-.:. Ief

The usual requirement which gquantum mechanics puts on our functi-
ons and therefore alsc on the beeis is that they belong to the
_Hilbvert space it' of square integrable functiorne (of, say, n
variables).

It is clear that in order that the eigenfunction eqmation
would have s meaning, some limitations must be put on K , and
the most convenient is that also the kernel of K is square
integrable, i,e.sbelongs to -'f" (of, say, £n variables). For
auch kernels, the Schwartz! inequality will ensure that when
it acts on functions belonging to f" it gives again functions
belonging to Z* y and that products of such transformations
belong to 15& agiin, According to the theorems of Hilbert
and Schmidt,any function 9 s belonging to .‘ft now admits
g development

o 0
g= b+ S5 9. (10)
where ,(h =,

So we may also write

d= "(9:2;3«:6?.: . (11)

This expansion is convergent in the mean, Mercer's theoremlzo/
states further that if all but a fipite number of the eigenvalues
of K have the same sign, the convergence of the expansion 1s
uniform and absolute, Thip means, that if

o>
= c, r
da(r) ,,};,, g,(c) (12)
and

N
du(tl=Z. €afy(T) (13)



then it is possible to find an A,{f) such that

[dy(c)-dic)| &7 > n(F- (18)

From (5) we may alsoc write {11) as

F=1vi®d=signuire-m)" v

g (15)
=2 52&;%;
.- £xo
so we see, that any JC , for which
4 N -1 L
IVid=sign(y) (€-H,)7f € L (16)
has an expansion {12) with the convergence of
% n
[VITF, (£)= v/ ;;ac‘.ﬁ. | (17)

being absolute and uniform,

Prom (15) and (16) we see the necesmity of V& almost
everywhere, )

Since (16) is fulfilled, when Y goes to zerc glower than
a Geussian function, for r—+o2 and F is an oscillator eigen~
function, we will, for the potentials considered here, have a
get of f's which is complete in ZL* (one or 3-dimensions},
so in this sense [‘f:} is complete In the relevant Hilbert
gpace,

The uniform convergence of (17} is of course not identical
to uniform convergence of j%v, but we shall see below, that in
gome important cases, we cen prove an even stronger type of
convergence of the  £./8 .

To what extent do the potentials ugsed in nuclear and
atomic physics satiafy the above requirements? '

The property of K~ being {"' ig satigfied by all nuclear
potentials in use, and with slight modifications for large -
r-values (screening) Ffo g !

also for the Coulomb potential.



Definiteness,i.e.,all A, bhave the same sign - is obtai-
ned,e.g.,from (9) if V is slways positive (negative), so this
is the case both for the pure Coulomb case and for V given by
3.

Por protons, ths total single particle Hamiltonian containg
a combination of this attractive potential and a repulsive Cou-
lomb potential, If this combination is used for V , X* is not
definite, However, due to the long range ¢of the Coulomb potenti-
gl, it meems more reascnable to use an SL basis where this is
kept fixed and included in H.(Ve) .

Since the Coulomb potential ig repulgive, we will then only
have eigenvalues corresponding to an attractive nuclear potenti-
al, i.e.,K is again definite,

When spin coordinates are included in the space X , we
can introduce spin-orbit terms in the Hamiltonian, Since thesme
are generally of the type 1‘;’ Zd'rj-‘ £€.5 they will occur with both
signs, and again, 1f they are included in V , we will lose the
definitenesss property. If we include them in H, , & combination
of a repulpive central potential and an attractive apin orbit
term could give a state in 2f£ . However, there will only be a
finite number of such states, for each £ , corresponding to
the finite number of bound states in the pure spin orbit poten-
tial. For large values of £ such states are again excluded due
to the centrifugal barrier. :

We will then conclude, that if we use the SL expansion in
the ways indiceted here, it gives us an absclutely and unifoimly
convergent expansion in the above meaning of all functioms which
are in .{" of the single particle coordinate space (including
spin coordinates).

ITI, Particular convergence properties

Physically significant quantities are in quantum mechanics
calculated from the wave functions ¥/ ag matrix elements

= . * .
#6‘/ S AY, 4T, (18)



where A ‘ig an operator, in the general case depending om cool=
dinates and derivatives.When the Y 's satisfy a Schrodinger
equation, the derivatives can in general be transformed into
integral operators, It is now seen, that the property of absolute,
uniform convergence is in general sufficient to ensure, that
quantities, like A@f’ calculated by approximate wave functions

(Aip) = [ ("), REG), dT (19)

are algo absolutely convergent, and thia shows the phyeical
significance of the expansion theorem, in the SL case at least

for auch operators which converge stronger than V% for raw,
However, the existence of infinitely meny systems of SL functions
with different potentials,etec,,(and in this connection we may

use the term for the Schrodinger expansion as well) makes it desi-
rable to find some criteria tc distinguish between them,

Of course, one important criterium may be the easiness with
which (1) is solved, This depends, however, on the available
computers and programs, and we shall concentrate on more mathema-
tical criteria,

The first ie the fastness of the convergence, i.e.,for a
given # , which method leads to the smallest A, , At the end
of this section, we shall d1souss this ¢onvergence fastness
and see, that in many cases, the SIL expansion is supericr to
other expansion methods.

There is however another problem, which is important when
the same nuclear wave Tunctions are tested in many different
experiments. The uniform convergence ensures only that the
difference for a given matrix element [ﬁﬂq;)n- ﬂk/f can be
made smaller than a given ¥ for /V>A/.ff} . But in different
experiments matrix elements of very different magnitude are
investigated. If now we have fixed A/7) , so that & good accu-
racy is obtained for a given operator A , it is by no means
gure, that the same AQOU gives a good accuracy for another
operator, B,

If,0.8.y [B,_-j[d.f , the inequality I(B(;J‘)” - B,_'J'ldf
is of no use. . :

Generally speaking, the problem is that certain operatorsa

10



test small compornents of the wave function, and it would be
desirable if our expansions were good, also for these componenta,
Mathematically speaking, we can say that this is the cage, if

we have not conly

I%(f}‘qf(!.‘)l4f independent of (r) (20)
but also

m}- — ! léf independent of (r ) {21)

v (r)

for almost all ¥ ([r-ri|>5, ¥W(r)=0)
for N)/Vp(f).

Since "uniform relative convergence" or similar expressions do
not give a clear idea of what is meant,we shall ingtead talk
about "uniform convergence of the logaritim®, 1In fact, (21)
implies

| &h Vy(r)= oy e, = bn(-7)] (22)

independent of (r)
for N> No(7(1))

and conversely, (22) implies
qfr,v(r} - {éf;,'-'-le'f""] (23)

v(r)
independent of(r)
for N >”¢(fr[f&})-

We shall now find scme conditions which ensure the SL expanmion
to have uniform convergence of the logarithm, We shall for aim-—
plicity look at the one dimensional (radial) case only, ¢orrespon-
ding to experiments testing regions of different distance
from the ceéenter of the potential (as,e.g.,in heavy ion transfer
with different energies).

So we look at the expaneion (11), where f satisfies

1



(Ho+ AV +V,-E) f=0 (24)

and f(:
(H,+ A,;V- g) ‘7C‘;=O

with &= E, 2t . zrew
-/
where H,. is in the case of neutrons - a-';,_ 7 E and the bounda-

ry condition for § and f; are f/o)=f.(p)z0- Vow

Fultd Falrd , (g WCECr, £07)
S Fo }.fdr- :t"-(r') » (26)

where T, and r are chogsen in such a way, that the integral

(25)

r

exists., We shall alaoc express the Wronskian
WN (1")5 W({N (r'):f(f’")) (27)

in terms of an integral:

Wiy (r') -~ Wa tr,}= f Wy (r))dr

r

=3 Jreivs, (r}«rfdrf O Dtg-y, )£

where we have used {24) and (25) and put A=1,
Now ’

W, fo)= Wy (e=)=0 (29)

and we may conveniently choose r, = ¢ , then

W (r)=-3 ( fﬂd V(rif, frwf a1 V6 f
) ff(r) Ve £ (r)dr f f,,(r) V, () ) dr) ,

where we have once more used (24) and (25).

(30)

12



Let us now suppose, that V(r} 1is almoet everywhere conti-
nuous and differentiable, and that there exists a constant, €, ,
such that

[V,(r”< {clvrr)' for all F, . (31)

Then we will have an SL expansion of h=f %ﬁ with the same uni-
form convergence properties as that of f

lV(l’J,’/z! hN (V‘)-h(r-)ll_ { for all r (32)
for N >MN.(f),
where

N - ]
(V= £,6) [ £,6) G, () £ty (33)

50 {30) may slso be written

r

Wiy ()= = [ Chay () V= £, 60V, (7)) £ 6 r
== [ h Vb v) far.

In view of the uniform convergence of the expansion of ;f and
we now have '

_ r’ s
| WN(r')Rf;f(IV(r)HIV;(PH) ‘[;{-'(r){dr : (35)

(34)

for N > M (¥) independent of r°,

If now a conatant 02 exists, so that

oD

4 A ' '
r [arl v 1 fo) < e f 2 (36
rul
for r,«r%r and Y

we obviously have from (26), that

é{_(:)_ ;F,v(f‘a)

gor G 1416 o

independent of r,

13



. ' /f
Now, by the uniform convergence of fv{ ‘E’C/V s, we can always
find (rO,NO), sc that

£, (r)
F(r)

- i r<f (38
for N >M(1)s

where r_ is at a finite distance from any zero of fV[%;F

We therefore see, that in all open intervals between the
zeroes of {V{ /"DC » we have uniform convergence of the logarithm,
provided €, and €, exist. The requirement, that [r-r;|>3 is,
for most zero points r,'s, without implications,since no ope-
rator will test the wave function in the neighbourhcod of an
arbitrary zero, Only those, which are given by the boundary
conditions (0 and oo ) are of interest, and have (¢ =0 also,
In practice, the interval which is most interesting is

Famay, £ K& o2
where EJN—_— ig the largest finite zero of f, That such a largest
zero existe is eamsy to prove (mee section V).

The exigency, that c, exists is now identical to the requi-
rement that

—ar’

o %
farfvirt]™ e < cpenpl-gar) (39)
r

for r > Msmar

or, for the potential of (3) LZzad/

So, for emall 2 -values, the condition is always fulfilled,
This is also the region, where this convergence property is most
needed. ]

What we have here found, are sufficient conditions for the
uniform convergence of the logarithm of O(Jv(f')' , and a fortiori
of f'N(r) itself, Even Mercer's theorem and its foundeation come
in this cathegory, Thepe conditione are in the most important ca-
see satisfied by nuclear interactions {potentials).

It is not eay-to find necessary conditions for V and VT,
either for the uniform convergence of fN, or for that of the
logarithm, This is clear from the fact, that any finite series
in the fn 's pogsesses both convergence properties, and at the
same time can be thought of as a solution of (24}, in general

14



defining a v, without physical sense, but imposing nc new restric-
tions on V., The importance of the uniform convergence of the
logarithm is seen, when we compare the Sturmian expansion with
an expansion of f {(a solution of (24)) on harmonic oscillator
wave functions, which may be unifermly convergent, but where, ne-
vertheless, e,g.,if it ie an overlap function for particle trans-
fer, calculation of precise crogs sections for heavy ion transfer
processes Will require a larger basis for smaller energies.

Alsc the question of how faet is the convergencé of the
SL expangion may be elucidated in the cage defined by equations
(24) - {25), still keeping E =€ ., In this expansion we have
the coefficient of f

Ca=~ ff Viadr= X, ff (Hy-€) §,dr=

== N [f (v fudesion) fgv gars 4O
= (A-x)"el,

As we shall show below, in Section V, A, 1is roughly
proportional to n2. Since C: is bounded, when V, is bounded, as
we phall assume, the series will converge rapidly. Looking at
the first integrel for ¢, in (40), this may be said to be due to
the more and more rapid cecillations of fn as n increases, Ho-
wever, the last integral in (40) has the game property. The ci
is actuslly the SL expaneion coefficient of

r
h=f%’-={w,. (41)

L
which , for the V, V1 we are interested in, belongs to 2{ .
Yow hr satiefies the equation

(Ho-€)hT= v h%+ uT &L hT
I_ L 4L (42)
| Vi= (% & w) +5’_r-z&m~v,—/\v

Mﬁbﬁ&m;

15



So

Cr=- [hTvf, dr= .ALfJf,, (Hy~ &) hZdr

(43)
‘H
=L e’
An
where 11 ig the coefficient of £, in the SL expansion of

II_ I;T T
bV - (VAT uT L ). (40)

For some potentials, V,and residual terms, V1, the argu-
mentation leading from £ to hT and from h- to h'f can be
repeated over and over, However, already the convergence,
fagter than ALY , implied by (40)-(44) when h*' is bounded,
is very fast, and the main problem in practical calculations
aeems rather to be, for which n values, ‘this type of convergence
sets in {see further Section VII)., The boundedness of h'T is
eagily proved in the important case where V is of the Woods-Saxon
type (3), and V, is proportional to its radial derivative, This
is the type of radial dependence, met in the 3-dimensional case,
when V1 represents a coupling to an cacillating or static surface
deformation, as we shall see in Section VI. The c's will then
further contain a vector coupling coefficient, which, however,
hag no influence on the convergence properties considered here.

IV, The eigenvelue problems of the Fruncated Sturm-Liouville

expansion

Our aim with the SL expansion is to approximate the bound
state solutions of the Schrodinger equation for one or more
particles, which is an eigenvelue problem. Thies naturslly finds
ita counterpart, when a truncated expansion is used, in a set of
independent linear equations for the coefficienta, The requi-
rement, that these equations have a solution, i.e, that their
determinant is zero, then determines the eigenvalue,

Now, the Schrodinger equetion will in general contain a
number of constants, which could be adjusted in order to attain
this, Whenever these constants enter the equation in & linear way,

16



the problem can be sclved by standerd techniques, as a matrix
diagonalization problem. One possibility is the traditional

search for E, when the different terms in the potential are given.
It should then be remembered, however, that the desirable conver-
gence properties, treated in the lasat section, obviously depend
on the fact that we have put E=E ., In order to achieve this,

we would therefore have to adjust £ , by some sort of iterstion .
Since the energies are experimentally known, and important featu-
rea of the wave functions depend directly on these energies, a
reasonable alternative would be to change the potential termg

in the Hamiltonian in such a way, that E= E < the expérimental
value, This might again be done by iterstion , but if there are
the linear parameters of the intermctions, the coupling constants
or potentisl depths, which are changed, it can aleo be achieved
directly in nearly the same way as E is found. Below in section
VII, we shall look cleser at this problem in the case of two
interacting particles in a potential. Pirst, we shall, however,
look at the question of how to obtain sets of linear equations
for the coefficients.

Different methode to achieve thieg have been used in the li-
terature/10’11’17/. .

They are equivalent in the limit of A, but not for
finite N, and it is therefore of interest to conmpare them. We
shall 40 so only for a simplified example, which, however, re-
veals the main features of the general problem.

We look again at the SchrSdinger equation

(H-E)f:q

It is obviously equivalent to

u{H-g)f=0 , (46)

(45)

where U is an arbitrary functicon, which is different from zero
everywhere in configuration space., We can now multiply (46) by
the members of a complete set of functions [iy} and integrate,
thua obtaining

>
:4: e,_-f;f}. u(n E)j-;_-az'-_-.%: My Ci=o - wn

17



Then the eigenvalue problem is

Det (M )=0. (48)

This has meaning, if we truncate . - in such a way as to
get the same pumber of independent functiona f; and fl .

We are interested only in the case, that the j:f's are again
SL-~functions. Then two choices of U are useful: U=V and U = 1,

The firast gives

> e( [ vHfarees;)=0 (49)

'corresponding to the diagonalization of the matrix VH, which
is not Hermitian, but nevertheless must have at least scme real
eigenvaelues,

We shall specislize to

:..A+)4V-+&V,, E= €, (50)

where the constants A and & are introduced to show the
linear dependence on potential depth,etc,,explicitly,
Now we get with U =1

T aCal§inemrriyl=e

this is a Hermitian eigenvelue problem with A =as an eigenvalue
(and can be transformed into one with J} as an eigenvalue). We
shall now concentrate on the one-dimensional {radial) case, the
same as in section IIX, but with the further simplification that

for oc2reg V=-1/, Y=o
~ Rareyg Ve -7, ==~/ (52)
— fédrdiee v= &, V=0

We introduce the names

s 4
¥
Ef‘)ﬁ. J€_ dr:d:'.‘_. ’ !;6’;{. ar= 15.‘; (53)

18



from which we see
Vie t T =3, (54)

for E= 4 we now have in the two cases with U=V and U=1

respectively

N

‘;Z < ((A‘ALJ(KJ'+TLW,;/~)+Z&‘Y.:J')=0 . (55)
and

F 4
AN ((A,Aa)sg/.ao»a;.)w. (56)

In order to understand the effect of the truncation, we shall
now introduce a 1, order perturbation apprecach for the solution
of (56), valid when the /d‘ff,;/] are sufficiently small compared
to any fA,~)¢] - If a truncation will be useful at all,
such a perturbation expansion must converge fast for sufficiently
high i andfor j.

Co=1 (definition) .
e, (i o) :»a;_j, (57)
¢ A

A’-’- Aa"d’d:p-

Due to the non-diagonal terms containing /\‘-_ » (55) does not
immediately lend itself to a perturbation approach. However,
pince (55) and (56) are equivalent for large N, we ghall try
to solve (55) with the angat:z
Co=t
C (ikoj=C . +d;

' 8
Nedom s (58)

where Wl and o; are conpidered to be small. To their deter-
min&tm: we then have, neglecting terms of the order J‘-_/l!, d..J?J’f'
and d' , the equation
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d'(".‘;o +£ o VD, (ThT)- T oy

£FEe ve Tie
Yoo Yo (TLT))+ d, (Av“)‘,/) (59)

4
(G (t% )+ Gt T4, (22T (0 A ) T = 0.

+

Now the completenees relation
o
g (r)g.lr)=2(rtr) (60)
=0 .

for the function

Vitr)= v, (r) (61)

gives

o oo 45 o Y,
AT ﬁf, (), vee)] éﬂﬂ—)j;g/ry v lviryf f (r)dr (62)

or

o
Un = T
o e v

J (63)

This series is, according to what was proved earlier, absolutely
convergent,

With no truncation, we have a{‘- ZmM=¢ , and, which
is easily proved, no other solution.

In the truncated case we have

A
G em )+ di(etz) (2 A ) oy

oo (64)
ﬂ/"(fsgf +-J%}(’z:e—z;u:z-—a'525¢f{;5t/Z'é—Z;)‘fZ,
which is N + 1 equations to determine the N + 1 unknowns
{,‘(j'-:f.../V/M-
Introducing
X' ((;#0 Ed Ac"'(i'
A ) ‘-( l-) (65)



. o
.Xﬂz—-'f') 5 EZ ‘f‘ J:a
[

sar v
we get

v :
Xo=¢ (T-TY I~ (#-j){/ , (66)
J=e 4
where

Aip= b+ (252) 0y = [f v of az. “n

Since the potential ¥V is meant to give a rough picture of
a nuclear potential, we shall assume, that the "surface part™
of it, Vy=-7T for Rﬁr_é&' is small, but not very small
compared to the "volume part", V= -1 for ez re R , and that

LETed, (68)

where oL 1is a positive number, (Bay, 0.25 £ L & 0.5).

Then, an order of magnitude estimate for X;(#) is obtained
from (66), replacing 4,:} with J;/ y iee.,

. L . .

X, = r)dz::_”cf;j <, (69)
for the estimate of ) (4/ we shall further assume, that X is
so large, that all £ (éz4/ are well approximated by sine
functions for Rerc S . Then, with the proper normaliza—
tion of the d-'é s, We have

[Vo]eey” 1 csecxe (70)
S PN 4‘(3 ~c) N
where C. and ¢ are at moet of an order of magnitude of unity.

It is geen, that the effect of truncation is somewhat simi-
lar to a renormalisstion of d’ by the factor 1 + ;‘" (rﬁt) when
going from one method to the other.

The factor V gives & spatial truncation. For Z=/ , the
two methods are equivalent, but not for Z =0, since the comple-
teness relation, leading to {63) i1s not valid any more., However,
-the lack of completeness invalidates both approaches. Thie is
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clear also from the fact, that for « =0, all 'f:l and there-
fore alac f'-:: ¢, £ (independent of the truncation) sa-
tisfy

(H,*E)frza , r >R (71)
but f should satisfy
(.ff.-é'— EE)‘ff==a , Jrr>k (72}

g0 it is necessarily different from f!', Obviously in order to get
near to f, if O" is large, 1t is an advantage to have a large

Z -~value, It is seen from (41),etc, ,also, that the convergence
of the 3L expansion for small € values is slowed down by the
factor V!/(,/=J'/Z’ which enters into ;rr,etc. One could think of
using & base with V different from that of the total Hamiltonian.
. But if V; is small or has cancelling contributions, this would
slow down the convergence., The equivalent idea, with realistic
nuclear potentials would be to use a basis with a large value of
R or a., However, for reasons similar to those given above, this
is of limited help.

The question which of the twe methods yieldas the most cor-
rect regult, is not clearly stated, We must instead choose an
operator, 6, apd ask, which method gives the expectation value

LW [3]%s nearest to the correct one < WaldlW.> , The best
cholce would presumably be & =% >< %[ » but pince we do
not know [V > we must instead choose an operator which is
minimized by (%> . Now, the eigenvalue problem (51} of
determining A= A, with the basis { £, ce€n~§ 1@ equivalent
to the minimization of H-E in the same basis, with the subsidiary
condition that the solution

V= 2 e.fy 713)

LhN

is normalized by the SL-~normalization

fV‘(H—E}V/r: ”»in P ﬁ"{.f‘/‘y(r:’."/ (74)
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If we only look at the lowest value of } /a) corresponding to
Y, (M) (ground state) the minimum is an absolute one and by an
appropriate choice of H, all caseg can be reduced to this. Since
the states Y, fw) form a complete bamsis in the space [,ﬁ_-,g.'é}v]
with the same orthonormality as the f's, the mean value of H-E
(74) can alsc be written

f’lr"f(H-E)'lfxr:=§”191/L(Av‘/1)' (75)

which is obviously minimized by Cy = 5;/‘ .

S50, when N goes to infinity, A,(N} goes to) and the mean

value is roughly proportional to the square of the deviation of
Y from the exact solution %, . '

Therefore,” when the deviations are sufficiently small, the
function which gives the smallest mean velue in (74) is the
best approximation., But since, es we have just stated, (51} is,
for the limited basis {f;,c &#f , equivelent to the minimi-
zation problem of this same space, (51) must be the "best™ solu-
tion which can be congtructed from the functions {4, £#} .
Just how good.it dis, can be inferred from the general convergence
properties of the 3L expansion, which grant that the neglected
sum ?-:';4/ e®A. , will go to zero faster than some negative
power CAn)~F

It should be noted, that these arguments are valid only for
gufficlently high N-values, No Suarantee existe, that for some
emall value of N, (51) is actually better than (49), Note also,
that (49), or the equivalent eigenvalue problem for the energy,
ie not equivalent to a varistlonal principle, because cof its
non-Hermiticity,

Another argument, in favour of the diagonalization wlth

{ =1, is, that in perturbation theory, where ¥ is expanded
in powers of 4 , the 1. order terms are given by (57), inde-
pendent of the truncation, whereas we have Just shown, that this
ie not the case for u =V,
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Coneclusion

We have here conaidered some problems of convergence of the
Sturm-Liouville expansion technique, with particular regard to
nuclear probleha, where the natural basis is the one, where the
5L functions satisfy Schrodinger-like equations with a fixed
energy but different depths of a potentisl well of the Woods-
Saxcon shape.

The properties of this potential, which are essential for
our discussion (eesentially negative definiteness of the potenti-
al and finiteneas of certain integrals of it) are obviously shared
by the two other potentials of common use in nuclear physics,
particularly in few-body problems, the Yukawa and the Hulthen
potentiala.

For reasons of simplicity; the discussion waslmainly deal-~
ing with cne-dimensicnal problems, meoet of the featureg proved
are, however, with due modificationa, found in the more interest-
ing multi-dimensional cases, too.

The convergence properties (16,17) of the expansion mean;
that in any finite region of configuration space, every function
which is continuous almost everywhere can be approximated arbi-
trarily well by the SL-seriea.

For a class of functiona, satiafying a Schrodinger sgua-
tion with a potential which decresses with increasing r not slower
than that of the base, we showed that in the most interesting
cage of not too strongly bound particlea, the Sl-expansion has
the property of uniform convergence of the logarithm (21) in the
important region of Fr—s e , and we slso showed, thsat the
terme in the expansion go to zero not slower than n"‘.

We looked at the eigenvalue problem, and found & relation
betweesn different types of diamgonalization propoged in the li-
terature; the Hermitian methods (56) were shown to possess gome
advantages as compared to others.

In a forthcoming paper, we shall discuss some remaining
queation: the shape of the Sturmian functions, the special prob-
lema of the thres-~dimensionsl expansion, as well as of the six-
dimensional one, uged for 2 particle problems, and some appli-
cations to concrete problems of nuclear physics.
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