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1. Intro du c t i.o n 

Since the Sturm-Liouville expansion method in atomic/1-e/ 
and nuclear /9-181 physics has recently obtained some spreading 
we find it appropriate here to discUse some of the properties, 
which make it useful. These are tacitly assumed in other papers, 
where the main aim is to use it for calculation of principal 
properties or numerical comparison with other methods whereas a 
more mathematical 48monstration or its oonvergence properties, 
etc. 1has earlier been given only in very general terme7191. 

The term Sturm-Liouville problem is used for a wide class 
ot eigenvalue problema ot the type 

_,r. + r:. A;.1 ~ ".:•"• .r,,
1

, CT1 
(1) 

where /;. s&tiar7 certain boundary conditions, or more speci
ficall.7 tor the one-dimensional problem ot this type, some -
times even more apecifically tor th• probl•• in a finite tnterTal. 

IYen then, the concept 1• sutticientl7 general to include, 
e,g.,the ODe dimenaional SCbrOd.1nger eigenT&lue problea, 

In pbi'a1c•• however, the term St1ll'll-L1ouv1lle pro.bl .. ia 
often U8et in another reatr1cte4 aenee, •• dietinct trow. the 
Sch1"041ncer elgenTal•e probl... 'l'he coefficient of an eigenT&lue 
( V, aboYe) depend• on the ch01ce of coor41natea. The problem 
la then called a s~-Liov.Tille, in the following abbreTlated 
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to SL, problem in ).;.., 1 only when V.r depends on the ordinary 
"physical" coordinates (or relative coordinates), e.g.,like 
V(r) if spherical coordinates are used. We can, in the one-dimen

sional case,-alwaye bring the LS eigenvalue problem to a fonn 
where Yr is 1. However, this means introdtiction of new, 
artificial coordinates which in most of our work are an unneces
sary complication. 

The usefullness of this SL problem in quantum mechanics is 
closely tied up with some physical facts. With the possible ex
ception of the forces which bind the qµarks together to form 
baryons, it seems that all physical forces are finite in the -sense, 
that the potential between particles. goes to a finite limit for 
large distances between them. Thie means that the Schr0dinger 
equation which describes the motion of particles interacting 
with such forces will have a continuous spectrum, as well as pos
sibly a bound spectrum. 

Now, the problem is often met that functions which are, e.g., 
eigenfun?tions of a complicated problem, are characterized by 
the5r expansion in eigenfunctions of a qomparatively simple 
problem. If this is of the SchrOdinger type, the continuum eigen
functions must in general be included in order that the functions 
form a complete set for the expansion. It is often more conve
nient to use an eigenfunction problem with a discrete spectrum, 
as the SchrOdinger equation with a hannonic oscillator or a box 
potential to provide the expansion base. However, just the unphy
sical character of these potentials may cause further troubles, 
as,e.g*,bad convergence in some region of the space. 

In general, one may say, that when physical problems are 
solved by expanding some functions in a complete· set of functions, 
it is advantageous if the members of this set or at least some 
of them are as similar as possible to the functions which are to 
be expanded, e.g., by satisfying a differential equation of a 

similar type. In this respect, an SL method, in the meaning of 
the word given above is frequently advantageous. It will often 
be possible to find an SL set, which is discrete, and for which 
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the expansion satisfies certain particularly sharp convergence 
conditions, as the "uniform convergence of the logarithm", defi
ned below in Section III. 

The SL expansion was first introduced in quantum mechani
cal calculations by Epstein/11, immediately after the publication 
of SchrOdinger's first paper. The aim was to get a simple ex
pansion set for calculation of the Stark effect, and the SL-set 
was that of solutions to SchrOdinger-hydrogen-like equations, 
with a fixed binding energy and varying charges 

(- IJ .. " ( ~ - ~))f.= 0. ,. • (2) 

It is here a great simplification, that the eigenfunctions have 
simple analytic forms (a polynomial z~ times an exponential ' 
function in r ). In other ways, this example is rather parti
cular by the potential being singular at the origin and of long 
range, too. 

We are here mainly dealing with the Woode-Saxon potential, 
which is generally accepted to be a good approximation to the 
nucleon-nucleus interaction, thus lo·oking at equations of the 
type 

(J) 

where V. may represent,e.g.,additional Coulomb terms. The 
main property of the potential (the factor of At ) which 
has made it·· convenient for nuclear physics problems, is, that 
it is of finite range, nearly flat in a certain internal region, 
and varies mainly in a definite surface region of the order of 
magnitude a.. • Another property, which We are going to make 
use of, ia that it is different from o everywhere in ~pace. 
It has no singularities. 
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II. General mathematical properties of Sturm-Liouville expansions 

The general theory of SL expansions was well established 
for a long time/191. We shall briefly recapitulate it here, with 
particular reference to the above-mentioned potentials. Theorems 
about completeness and convergence can in some cases conveniently 
be proved directly from the 3-dimeneional form, and we will write 
our equations in a way where the dimensionality is not stated 
explicitly. It seems, that for many reasons, it is appropriate 
to go over to integral equations. 

Writing our equation (1) as 

(( H.-t)+A, V}f.:(rJ=o, 
(4) 

L 
where, in the general case• H = - L .a .+ Ve. we may go over to 

0 Lm 
•the integral form 

~ ~ 
ftjn(v)A, IV/ (!-H.F'!v/ i<.&=fJrJ, <5> 

-l"L 
where 9,J.rJs / V(r)/ -:Ji {i:) , and the reciprocal operator (t-H/ 
generally must be an integral operator. 

We may also write (5) as 

(6) 

Here, when H0 is self-ajoint, I< is symmetric. Thie is fundamental 
for the proof of the expansion theorem below. 

We must obviously have 

(7) 

where we can choose the normalisation 

N,· = -2. (8) 

In the case , when He=-d (J-dimeneions, neutrons) 
(here and in many following equations we use t. m::: h = I ) we 
can explicitly write 
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(i 1i _gt/r-r'I ~£ 
l<'(r)=s\rn(v)J/v(rJ/ e fV(r')/ a:r:', 

tr-r'/ 
zL: /€{. 

(9) 

The usual requirement which quantum mechanics puts on our functi
ons and therefore also on the basis is that they belong to the 
Hilbert space iL of square integrable functions (of, say, n 
variables) .. 

It is clear that in order that the eigenfunction eq~ation 
would have a meaning, some limitations must be 
the moat convenient is that also the kernel of 
integrable, 1 .. e .. ,belongs to ,Z£ (of, say, l,n 

put on I< , and 

f( is square 
variables) .. For 

such kernels, the Schwa:ctz'inequality will ensure that when 
it acts on functions belonging to ~L it gives again functions 
belonging to i~ , and that products of such transformations 
belong to ~"" again .. According to the theorems of Hilbert 

and Schmidt ,any function g , belonging to 2.t. now ad.mi ts 
a development 

( 10) 

where kh= 0. 
So we may also write -d= k'i= ~ e•I.:. . ( 11 ) 

This expansion is convergent in the mean. Mercer's theorem/20/ 
states further that if all but a finite number of the eigenvalues 
of K have the same sign, the convergence of the expansion is 
unifonn and absolute. This means, that if -d(r)=I:. e.1.rr:J ••• 

( 12) 

a"nd 

(13) 
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then it is possible to find an N0 (f) such that 

N7 N.(f} · (14) 

From (5) we may also write (11) as 

f: 1vi1Ld-= 'tan(v)(f-H.)-1/Vj 
( 15) 

so we see, that any :f' , for which 

4Z _, i" /V/d= !~n(v} (f.-H,) Vf € ( 16) 

has an expansion (12) with the convergence of 

t,1 l'.t. N 
Iv{ t.fNfr)= /v/ f. c,t ( 17) 

being absolute and uniform. 
From (15) and (16) we see the necessity of' V~o almost 

everywhere. 
Since (16) is fulfilled, when V goes to zero~ than 

a Gaussian function, for t"-...oO and f is an oscillator eigen
function, we will, for the potentials considered lmre, have a 
set of f's which is complete in -:f.L (one or )-dimensions), 
so in this sense { /;, J is complete in the relevant Hilbert 
apace. 

The uniform convergence of (17) is of course not identical 
to uniform convergence of ~H' but we shall see below, that in 
some important cases, we can prove an even stronger type of 
convergence of the ,j=Nls 

To what extent do the potentials used in nuclear and 
atomic physics satisfy the above requirements? 

The property off< being ;fL is satisfied by all nuclear 
potentials in use, and with slight modi-fications :for large·· 
r-values (screening) ,...-1:::;,. 11!.-cr r-1 

also for the Coulomb potential. 
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Definiteness,i.e.,all Ai. have the same sign - is obtai
ned,e.g.,from (9) if V is always positive (negative), so this 
is the case both for the pure Coulomb case and for V given by 
(3 ). 

For protons, the total single particle Hamiltonian contains 
a combination of this attractive potential and a repulsive Cou
lomb potential. If this combination is used for V , I( is not 
definite. However, due to the long range of the Coulomb potenti
al, it seems more reasonable to use an SL basis where this is 
kept fixed and included in H~ (V,,) 

Since the Coulomb potential is repulsive, we will then only 
have eigenvalues corresponding to an attractive nuclear potenti
al, i.e. ,K is again definite. 

W'hen spin coordinates are included in the space ~ , we 
can introduce spin-orbit terms in the Hamiltonian. Since these 
are generally of the type -/: !J.¥--~·f they will occur with both 
signs, and again, if they are included in V , we will lose the 
defini tenesss property. If we include tlrem in Ho 1 a combination 
of a repulsive central potential and an attractive spin orbit 
term could give a state in ~l • However, there will only be a 
finite number of such states, for each ~ , corresponding to 
the finite number of bound states in the pure spin orbit poten
tial. For large values of ~ such states are again excluded due 
to the oentrifugal barrier. 

We will then conclude 1 that if we use the SL expansion.in 
the ways indicated here, it gives us an absolutely and uniformly 
convergent expansion in the above meaning of all functions which 
are in :(L of the single particle coordinate space (including 
spin coordinates). 

III. Particular convergence properties 

Physically significant quantities are in quantum mechanics 
calculated from the wave functions 'l/c;;' as matrix elements 
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where /l ·is an operator, in the general case depending on coor
dinates and derivatives.When the 1f•s satisfy a SchrOdinger 
equation, the derivatives can in general be transfonned into 
integral operators. It is now seen, that the property of absolute, 
uniform convergence is in general sufficient to ensure, that 
quantities, like llt:.J·' calculated by approximate wave functions 

( 19) 

are also absolutely convergent, and this shows the physical 
significance of the expansion theorem, in the SL case at least 
for such operators which converge stronger than IV/ ¥t. for ,...,...c. 
However, the existence of infinitely many systems of SL functions 
with different potentiale,etc.,(and in this oonnect1on we may 
use the term for the SchrOdinger expansion ae well) makes it desi
rable to find some criteria to distinguish between them. 

Of course, one important criterium may be the easiness with 
which (1) is solved. Thie depends, however, on the available 
computers and programs, and we shall concentrate on more mathema
tical criteria. 

The first is the fastness of the convergence, i.e., for a 
given f , which method leads to the smallest N0 • At the end 

of th18 section, we shall discuss this -0onvergence fastness 
and see, that in many cases, the SL expansion is superior to 
other expansion methods. 

There is however another problem, which is important when 
the same nuclear wave functions are tested in many different' 
experiments. The uniform convergence ensures only that the 
difference for a given matrix element /(IJ;.JJN- A~J· I can be 
made smaller than a given f for N > N.fi) • But in different 
experiments matrix elements of very different magnitude are 
investigated. If now we have fixed N-(f) , so that a good accu
racy is obtained for a given operator R , it is by no means 
sure, that the same IV~(/) gives a good accuracy for another 
operator, B. 

If ,e.g., f B•j /L. f , the inequality / ( BoJ) I{ - Gt.j { L. f 
is of no use. 

Generally speaking, the problem is that certain operators 
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test small components of the wave function, and it would be 
desirable if our expansions were good, also for these components. 
Mathematically speaking, we can say that this is the case, if 
we have not only 

/Y,,(r}-'lf(r)l '-1 independent of (,!:) (20) 

but also 

\~ -1 ILf 
'If Cr J 

independent of (! ) (21) 

ror almoet au .r (Ir-rd >F", 'Vfr,J=o) 

for N > N.{f). 

Since "un:i:form relative convergence" or similar expressions do 
not give a clear idea of what is me:i.nt,we shall instead talk 
about "uniform convergence of the logarithm~. In fact, (21) 
implies 

I£... v;,<r;- 6. vrrlf '- f, = /.t.. r1-11 I 

and conversely, (22) implies 

independent of ( ! J 
for N >No {f(f,J} 

independent of(~) 

for N > No{f,(/£)}. 

(22) 

(23) 

We shall now find some coDditione which ensure the SL expansion 
to have uniform convergence of the logarithm. We shall for sim
plicity look at the one dimensional (radial) case only, correspon
ding to experiments testing regions of different distance ..r 

from the c•nter of the potential (as,e.g.,in heavy ion trans~er 
with different energies). 

So we look at the expansion (11), where .f satisfies 
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(H ... AV+ v,-£) f=o 

and fc. 

(H,+f.,V

with f= £, 

t) fc=O 

d'- ~(1!+1) 
where H0 • is in the case of neutrons - ;;r;..r.-+ --;:;:t: and the 

ry condition for f and /;,, are ;f fo)=:fc.· fo):::o. Now 

fN(r)= fN(r,) +fdr' W(fN(r•),f(r')), 
f(r) ;f(r,) r; f~(r') 

(24) 

(25) 

bounda-

(26) 

where r
0 

and r are chosen in such a way, that the integral 
exists. We shall also express the Wronskian 

in terms of an integral: ,. ' 
WN(r')- W,.,(r,}= J (fr W,.,(rJ}tir 

i; N ....,,. ,.., 

= -f. [f'(r) V f,, (r)clrjar f.(r)(().. -f) V(r)- v, (r)} f (r), 
r, 

where we have used (24) and (25) and put A= I. 
Now 

(27) 

(28) 

WN (o)= W,,{o0)=0 (29 ) 

and we may conveniently choose r,: o • then 
N - r' 

W N {r') = -fJ / f(rj V, (rJf. (r)dr j f. {r} V{r}f(r)dr 
~ ,., • (JO) 

- Jf(r)V(rJf.(r)dr j f.(r} V,(r)f(r)dr}, 
• • 

where we have once more used (24) and (25). 
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Let us now suppose, that V(r) is almost everywhere conti
nuous and differentiable, and that there exists a constant, c, 
such that 

! v, c r J r < I c, v (r) I for all r', (31) 

Then we will have an SL expansion of h = f ~ 
form convergence properties as that of f : 

with the same uni-

r v(.-J 1 '/t I hN {r)- h (r.J /"- r for all ,... (32) 

for N>N,(f}, 

where 
N ""' 

h,, (r) =f. f. (r} j f. fr') V, (r') f {r1dr'. 
• 

So (30) may also be written 
r' 

W N (r')= - j ( J,N (r] V{r) - fwfr) V, (rJ)f {.jdr 
.., 

= - J (;f,, V, - ·Ji,, v) fdr. 
r' 

(JJ) 

(34) 

In view of the uniform convergence of the expansion of f and h 
we now haTe 

r' it 
/ WN(r')/"f j(IV(r)/-f/V,(rJ/) ff(r}fotr 

• 
for N >N,(f} independent of r'. 

If now a constant c2 exists, so that 

""' 
r'fl J dr/ V(r!/'lt-/ fMJ-' C.i.f.t.(r') 

r' 
for r,. Lr~,.. 

we obviously have from (26), that 

I f,,(r) _ f,v{r.)/<. fC 
f(r) /(r,) 1 

and /3:> / 

independent of r. 
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Now, by the uniform convergence of 
find (r

0
,N

0
), so that 

I< ' 

t,lt. I V { 'JN , we can always 

(38) 

for N>N,(f), 
'l't 

where r
0 

is at a finite distance from any zero of IV/ '-f ... 
We therefore see, that in all open intervals between the 

zeroes of {V/'1tf, we have uniform co~vergence of the logarithm, 
provided C1 and C1. exist ... The requirement, that Ir- re: I >d° is, 
for most zero points r., 'a, without implications, since no ope
rator will teat the wave function in the neighbourhood of an 
arbitrary zero. Only those, which are given by the boundary 
conditions (O and o0 ) are of interest, and have f°Nfr} =0 also. 
In practice, the interval which is most interesting is 

Y°OMtl..¥ J:.. Y"~ 00 J 

where romax is the largest finite zero off.,. That such a largest 
zero exists is easy to prove (see section V). 

The exigency, that c2 exists ia now identical to the requi-
rement that 

oo ¢L _a,,...' f dr'/V(r'I/ e. < c,_-.p(-£"'-r) o9l 
r 

for r > ro'"oi" 

or, for the potential of (3) .t:Jt.a.<.t. 
So, for small Z -values, the condition ia always fulfilled. 
This is also the region, where this convergence property is moat 
needed ... 

What we have here found, are sufficient conditions for the 
uniform convergence of the logarithm of f,,(r) , and a fortiori 
of fN(r} itself.,. Even Mercer's theorem and its foundation come 
in this cathegory.,. These conditions are in the most important ca
ses satisfied by nu~lear interactions (potentials). 

It is not easy to find necessary conditions for V and v1 , 
either for the uniform convergence of fN' or for that of the 
logarithm.,. Thie ie clear from the fact, that any finite series 
in the fn 's poseeeeee both convergence properties, and at the 
same time can be thought of as a solution of (24), in general 
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defining a v1 without physical sense, but imposing no new restric
tions on V. The importance of the uniform convergence of the 
logarithm is seen, when we compare the Sturmian expansion with 
an expansion off (a solution of (24)) on harmonic oscillator 
wave functions, which may be uniformly convergent, but where, ne
vertheless, e.g. 1 if it is an overlap function for particle trans
fer, calculation of precise cross sections for heavy ion transfer 
processes will require a larger basis for smaller ene:giee. 

Aleo the question of how fast is the convergence of the 
SL expansion may be elucidated in the case defined by equations 
(24) - (25), still keeping E = e. • In this expansion we have 

the coefficient of f .., .., 
c.=-f f Vf.dr=. >.:' ff(H,-t)f.dr= 

• .. 
).-1 f ( I -=-. f Av+v,)f.dr=(A-~.rffv,f.dr= 

• 0 

(40) 

- - 0->..r'c.:r 

As we shall show below, in Section V, A., is roughly 

proportional to n2• Since c; is bounded, when V1 is bounded, as 
we shall assume, the series will converge rapidly. k>oking at 
the first integral for en in (40), this may be said to be due to 
the more and more rapid oscillations of fn as n increases. Ho
wever, the last integral in (40) has the same property. The c~ 
is actually the SL expansion coefficient of 

(41) 

,/L 
which , for the V, v1 we are interested in, belongs to 2,. 

Now hr satisfies the equation 

( H,- f) h:r- V rhr+ ur !!L hr 
- dr 

vr= (f,. e.. w,)1-+ ;:L &ow,- v,-..1 v 

Ur=-Lfi.&.w,. 
dr 
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So 

where cII 
n 

(43) 

is the coefficient of fn in the SL expansion of 

(44) 

For some potentials, v,and 
men ta ti on leading from f to j, 'I 

residual terms, v1 , the argu
and from ~ :r to J,It can be 

repeated over and over. However, already the convergence, 
faster than ;.,,:1.. , implied by (40)-(44) when J,Zl is bounded, 

is very fast, and the main problem in pract~cal calculations 
seems rather to be, for which n values, ~his type of convergence 
sets in (see further Section VII). The boundedness of h1I is 
easily proved in the important case where V is of the Woods-Saxon 
type (J), and v1 is proportional to its radial derivative. This 
is the type of radial dependence, met ln the )-dimensional case, 
when v1 represents a coupling to an oscillating or static surface 
deformation, as we shall see in Se.ction VI. The c 's will then 
further contain a vector coupling coefficient, which, however, 
has no influence on the convergence properties considered here. 

IV. The eigenvalue problems of the truncated Sturm-Liouville 
expansion 

Our aim with the SL expansion is to approximate the bound 
state scllutions of the SchrOdinger equation for one or more 
particles, which is an eigenvalue problem. This naturally finds 
its counterpart, when a truncated expansion is used, in a set of 
independent linear equations for the coefficients. The requi
rement, that these equations have a solution, i.e. that their 
detenninant is zero, then determines the eigenvalue. 

Now, the SchrOdinger equation will in general contain a 
number of constants, which could be adjusted in order to attain 
this. Whenever these constants enter the equation in a linear way, 
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the problem can be solved by standard techniques, as a matrix 
diagonalization problem. One possibility ia the traditional 
search for E, when the different tenns in the potential are given. 
It should then be remembered, however, that the desirable conver
gence properties, treated in the last section, obviously depend 
on the fact that we have put £::. €. • In order to achieve this, 
we would therefore have to adjust g , by some sort of iteration 
Since the energies are experimentally known, and important featu
res of the wave functions depend directly on these energies, a 
reasonable alternative would be to change the potential tenna 
in the Hamiltonian in such a way, that G ~ f-=. the expi!rimental 
value. This might again be done by iteration , but if there are 
the linear parameters of the interactions, the coupling constants 
or potential depths, which are changed, it can also be achieved 
directly in nearly the same way as E is found. Below in section 

VII, we shall look closer at this problem in the case of two 
interacting particles in a potential. First, we shall, however, 
look at the question of how to obtain sets of linear equations 
for the coefficients. 

Different methods to achieve this have been used in the li
terature/10, 11, 17 /. 

They are equivalent in the limit of N-Otb, but not for 
finite N, and it is therefore of interest to compare them. We 
shall d0 so only for a simplified example, which, however, re
veals the main features of the general problem. 

We look again at the Schr0dinger equation 

(H-t=)f=o. 
(45) 

It is obviously equivalent to 

U(H-E)f:o , 
(46) 

where U is an arbitrary function, which is different from zero 
everywhere in configuration space. We can now multiply (46) by 
the members of a complete set of functions £.:1).'J and integrate, 
thus obtaining 

"1:. e.,ff'J'~u(H-e)f,;«:z::-z;. M .. e,..=o • 
,;,. (,,.. J' (47) 

17 



Then the eigenvalue problem is 

(48) 

This has meaning, if we truncate 
get the same number of independent 

We are interested only in the 

in such a way as to 
functions f. and • case, that the 

SL-functions .. Then two choices of U are useful: U=V 

The first gives 

~ c .. ( f f;/'"v H f .. a.r:-+ E F;,J J~o ,. 

f! 

JfJ7' s are again 
and U = 1 .. 

(49) 

'corresponding to the diagonalizat1on of the matrix VH, which 
is not Hermitian, but nevertheless must have at least some real 
eigenvalues. 

We shall specialize to 

(50) 

where the constants A and d-' are introduced to show the 
linear dependence on potential depth,etc.,explicitly. 

Now we get with U =1 

this is a Hermitian eigenvelue problem with A ae an eigenvalue 
(and can be transformed into one with J-- ae an eigenvalue). We 
shall now concentrate on the one-dimensional (radial) case, the 
same as in· section III, but with the fUrther simplification that 

for O "=-,..LR 

11.~r<-$' 

S''-f-LOO 

We introduce the names 

' f :f/£ ar=tr.. , 
N J ' .;i. 

V=-l,V1 =0 

V=-<::, V,=-1 

V=- o, V1= o 

I/ 

J f-... f. a'r= V .. 
0 tl ,. ,jl; 
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from which we see 

VJ<. + r UJc. = ~c. < 54 i 

for E= €. we now have in· the two cases with U=V and U=1 
respectively 

N 
' ( ' Z:: c .. 0-,\.)(V .. .,.z:"'u. ·)+z>-d.·)=o 

i - '" "J ':) a ':) 

and 
Ir' 
;- c '- ( ( ,\ - A,) ~- - er~-)= o • 

(55) 

(56) 

In order to understana the effect of the truncation, we shall 
now introduce a 1. order perturbation approach for the solution 
of (56), valid when the /J-cf7v·/ are sufficiently small compared 
to any /).,- ~.1(1 • If a truncation will be useful at all, 
su9h a perturbation expansion must converge fast for sufficiently 
high i and/or j. 

(definition) 
(57) 

Due to the non-diagonal terms containing Ai , (55) does not 
immediately lend itself to a perturbation approach. However, 
since (55) and (56) are equivalent for large N, we shall try 
to solve (55) with the ansatz 

c; =I 

< (i.# o)= c._ + d,; 

.\':>.+J" ' 

where ./" 
mination we 
and ~ t. 

and tli. are conaid•r!'J'd to be 
then have, neglecting terms of 
the equation 
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(58) 

small. To their deter

the order t{jH 1 ~ J-;'11 



+ 0.. t-j-0 (r~ z:)} + ~· ( ,.\,- .>..,;) 
IV 

+,/" ( <j. (r'-- z::)• <f. J+ ~. <( (z::•- r) 0 ,-). ; ) u;· = o. 

Now the completeness relation 

""" L 9<. (r') 9• (r)= ~(r~r) 
t.:o . 

for the function 
L 

V1 fr)= - V, (r) 

or 

(59) 

(60) 

( 61 ) 

(62) 

(63) 

This series is, according to what was proved earlier, absolutely 
convergent. 

With no truncation, we have d,: =JH= () , and, which 

is easily proved, no other solution. 
In the t,runcated case we have 

,y 
1J· (A,-AJ)+ fi,,ai (z:'--z:)(A.- ..1.:) ";· 

""' +.f' <r;j + °v (r:~-z:)}= -rt-F,NcfJi. (z:L_z:)V::o 

which is N + 1 equations to determine the N + 1 unknowns 

1;-f/~1 .. . II /,_,t1 • 
Introducing 

.(; {i.¢o)=:cl,;(A,-)..) 
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we get 

where 

°"' - ;::_ u:. "Z. 
i. >N J'-

N 
X;."' J (r:-r:':) ;;:_ 

.;=• 
(66) 

(67) 

Since the potential V is meant to give a rough picture of 
a nuclear potential, we shall assume, that the "surface part 1

' 

of it, V::.-"'C for R. ~ rt:.S is small, but not!!£( small 

compared to the "volume part", V = -1 for o ~ r ~ 1l and that 

(68) 

where J... is a positive number, (say, 0.25 :t J.,.f:;; 0.5). 

Then, an order of magnitude estimate for X~{N) is obtained 
from (66), replacing flt.J· with 4;· , i.e., 

X:· "" ,,_ (r-..::•-; L. ,;. . tr. 
" fJ t1"># •J ..;-

(69) 

for the estimate of X: (H) we ehall further assume, that N is 
so large, t~t all fi. ( i.;,.H) are well approximated by sine 

functions for R '1:. r1' .f • Then, with the proper normaliza-

tion of the / h , we have 

I 

.j(J -i.J 
(70) 

where C.; and C are at most of an order of magnitude of unity. 

It is seen, that the effect of truncation is somewhat simi
lar to a renormalieation of q.- by the factor 1 + E: ('7:!=~) when 

/{ 
going from one method to the other. 

The factor V gives a spatial truncation. For r:::: I , the 
two methods are equivalent, but not fo-r r =0, since the comple
teness relation, leading to (6)) is not valid any more. However, 

·the lack of completeness invalidates both approaches. Thie is 
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elear also frorn the fact, 
fore also f '= .L: e.,. :f.:.' 
tisfy 

( H, - E:) ;f '= o 

but f should satisfy 

that for 'C =0, all f,.' and there
~ 

(independent of the truncation) sa-

(71) 

(72) 

so lt is necessarily different from f'. Obviously in order to get 
near to f, if J- is laree • it is an advantage to have a large 

Z" -value. It is seen from (41) ,etc. ,a1s·o 1 that the convergence 
of the SL expansion for small ~ values is slowed down by the 
factor V,/v=J/r which enters into hr,etc. One could think of 
using a base with V different from that of the total Hamiltonian. 
But if V1 is small or has cancelling contributions, this would 
slow down the convergence. The equivalent idea, with realistic 
nuclear potentials would be to use a basis with a large value of 
R or a. However, for reasons similar to those given above, this 
is of limited help. 

The question which of the two methods yields the most cor
rect result, is not clearly stated. We must instead choose an 
operator, e, and ask, which method gives the expectation value 

.l. Vf 0 I y > nearest to the correct one < V. I Cl v., > • The best 
oho1ce would presumably be 0 =- ·l<V; ><. V. f , but since we do 
not know I '\Ir. > we must instead choose an operator which is 
minimized by ('\';> • Now, the eigenvalue problem (51) of 
detennining A= A..> !!i!l:!. the basis ( fc.', i~NJ ie equivalent 
to the minimization of H-E in the same basis, with the subsidiary 
condition that the solution 

(73) 

is normalized by the SL-normalization 

(74) 
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If we only look at the lowest value of A (N) corresponding to 
'1f. (N) (ground state) the minimum is an absolute one and by an 
appropriate choice of H, all cases can be reduced to this. Since 
the states '7.1:t(µ) form a complete basis in the space [fc;,, 1.'t:Nj 
with the same orthonormality as the f 1s, the mean value of H-E 
(74) can also be written 

(75) 

which is obviously minimized by C.t = ~ti, 
So, when N goes to infinity, J0 (N) goes to A and the mean 

value is roughly proportional to the square of the deviation of 
Y from the exact solution 1t'; 

Therefore,· when the deviations are sufficiently smal~, the 
function which gives the smallest mean value in (74) is the 
beet approximation. But since, as we have just stated, (51) is, 
for the limited basis {Ji., ib.N} , equivalent to the minimi
zation problem of this same apace, (51) must be the "best" solu
tion which can be constructed from the functions [ft,., i ~NJ 
Juet

0

how good,it is, can be inferred from the general convergence 
properties of the SL expansion, which grant that the neglected 
sum fiA/ ei.t.. A~ , will go to zero faster than some negative 
power ( >oN;-P. 

It should be noted, that these arguments are valid only for 
sufficiently high N-values. No guarantee exists, that for some 
small value of N, (51) is actually better than (49). Note also, 
that (49), or the equivalent eigenvalue problem for the energy, 
is not equivalent to a variational principle, because of its 
non-Hermiticity. 

Another argument, in favour of the diagonalization with 
U =1, is, that in perturbation theory, where V is expanded 

in powers of d-' , the 1. order terms are giV'.en bY (57), inde
pendent of the truncation, whereas we have just shown, that this 
is not the case for U =V. 
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C o n c 1 u s i o n 

We have here considered some problems of convergence of the 
Sturm-Liouville expansion technique, with particular regard to 
nuclear problems, where the natural basis is the one, where the 
SL functions satisfy SchrOdinger-like equations with a fixed 
energy but different depths of a potential well of the Woode
Saxon shape .. 

The properties of this potential, which are essential for 
our discussion (ee~entially negative definiteness of the potenti
al and finiteness of certain integrals of it) are obviously shared 
by the two other potentials of. common use in nuclear physics, 
particularly in few-body problems, the Yukawa and the Hulthen 
potentials .. 

For reasons of simplicity,. the discussion was mainly deal
ing with one-dimensional problems 1 most of the features proved 
are, however, with due modifications, found in the more interest
ing multi-dimenSional cases, too. 

The convergence properties (16,17) of the expansion mean, 
that in any finite region of configuration space, every function 
which is continuous almost everywhere can be approximated arbi
trarily well by the SL-series. 

For a class of functions, satisfting a SchrOdinger equa
tion with a potential which decreases with increasing r not slower 
than that of the base, we showed tbat in the most interest~ng 
case of not too strongly bound particles, the SL-expansion has 
the property of uniform convergence of the logarithm (21) in the 
important region of r- oo , and we also showed, that the 
terms in the expansion go to zero not slower than n-4 .. 

We looked at the eigenvalue problem, and found a relation 
between different types of diagonalizatiori proposed in the li
terature; the He:rmitian methods (56) were shown to possess some 
advantages as compared to others. 

In a forthcoming paper, we shall discuss some remain~ng 
question: the shape of the Sturmian tunctione, the special prob
lems of the three-dimensional expansion, as well as of the six
dimensional one, used for 2 particie problems, and some appli
cations to concrete problems of nuclear physics. 
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