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INTRODUCTION 

In the present paper we construct the in­
variant two- and three-point functions for 
superf ields transforming according to rep­
resentations of the conformal superalgebra 
introduced in paper/!/. \'ie recall that an 
arbitrary representation of the mentioned 
kind is determined by its Lorentz structure 
and by two complex numbers d and z . The 
corresponding generators of the representati­
on are their differential operators in the 
space of functions of the variables xµ, e~, 
{; ~ , where xµ are the coordinates of a point 
in the Minkovski space, and e ~ and C;, are 
spinor mutually anticommuting variables sa­
tisfying the relations. 

2
1 [(1 - iy ){; -] ~ {; 

5 a a 

In what follows we shall use the "nonphysi­
cal" form of the conformal superalgebra 
generators defined in ref. / 3/. We write down 
once more these generators for convenience : 
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s = s<r ry ) a - s<r x e J a -a a v a v 

- -+a - - a 
-(8d - 12z>e - 16e ry - - s<e r 0 e )(y 0
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- 1ry Y YµY --- , ae 



where 

+ + " -ry = e + (x~ ) , 
a a a 

- -
~ = ~ • a a 

Constructing the two- and three-point func­
tions we distinguish two cases: 

a) In the first one an arbitrary two- or 
three-point function is constructed out of 
the superfields as well as of their conju­
gates. This case is discussed in the second 
section. 

b) In the second case all two- and three­
point functions are constructed out either 
of the superfields only or of their conjugate 
fields only. We discuss this type of functi­
ons in the third section. 

2. We introduce, first of all, the follow­
ing notation. In accordance with paper!~, 
a superfield with arbitrary Lorentz structure 
is denoted by 

+ -
<Pia ll(-J l(x,ry '~ ), (2 .1) 

p q 

where lap! =la 1 , ••• ,apl 1/3 l=l/3 1 .•• fl l, and the 
brackets denote full symmetrization within 
the group of indices. The following ~denti­
ties are supposed to hold: 

<Ii 
la (-k)\a 'll fl l 

p k q 
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where 

la (-k)iu: ~-!=la, .... , a ,a' ,a , ... ,a l, 
I' • J k-J k k+l p (2,2) 

l{J (-kll/1' I~ lfi ,. .. ,(3 J>' ,p , ... ,(> !. 
!f k J k -1 k k + 1 q 

Sometimes, when writing the full index struc­
ture is not necessary, we shall just write 
''' , meaning by "A" the hole group of in­
di'i:es Ou II(! I) . The field transforming 
accordingr tog the conjugate representation 

- + -
:t_s denpte~ by <Ii la ll/l l (x,ry ,/; ) and 
<JJA(x.'1 ,/; J, , re?pec'i:ively~ 
Let 

4-"-"+) 
!\AB(x1,x2,r11' 71 2 's I'.; 2 = 

( 2. 3) 

and 

I' (x .x x + + - I; - !; - < +) 
A BC 1 2 ' .1 ' 77 1 ,ry 2 ,ry 3 ' I ' 2'.:,,, 3 = (2. 4) 

are the two- and three-point functions, res­
pectively*. 

*Remark. We have written here the two­
and three-point functions as functions of 
the nonphysical variables. In order to define 
the "physical" two- and three-point functi­
ons it is necessary to make the corresponding 
change of variables (seel 31) in formulae (2. 3) 
and (2.4). 
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Producing an infinitesimal transformation 
of the superfields and taking into account 
the invariance of the vacuum state under the 
action of these transformations, a system of 
differential equations is obtained for the 
functions (2.3) and (2;4). 

As in papers /i. 2, 3 /, it is sufficient 
to examine the equations, corresponding to 
the generators s~, 'I! only. We start with 
the two-point function. The corresponding 
equations have the following form: 

li<r
0 ~t )a 8ss' + <s2) BB,!~ AB'= 0· 

!i(yOa:-)a 8AA' +(Sla)AAJ~A'll=O, 
2 

li(yO ~-)a llBB' + ('f2-;; >ss'I ~All'= O, 
I 

(2. 5) 

(2. 6) 

(2.7) 

(2.8) 

- + where Sia, Tia are the generators of the 
representation under which the superfield 
~A<x 1 ,,,j .~ j""l is transformed, while 
s + , 'I - are the generators of the con-
• 2a 2a . d h. h h JUgate _representation un er w ic t e s.uper-
field <ll s<x 2 ,,,;.~;) is transformed. 

Equations (2.6} and (2.8) have the follow­
ing solution: 

·~ ( + - c - c +) 
AB x 1 ,x2 t17-1 ' 71 2 's 1 's 2 (2. 9) 

I · - 0 8 - · c + o'I +I D ( + c -) 
=exp-l1J2Y ·1-•s2Y IAA'A'Bxl,x2,77l,s I' 
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where DA ll is an unknown function. The expo­
nent in the R.H.S. of equality (2.9) is de­
termined as the global transformation produ­
ced over the function DAR (see paper/3/ 
and appendix I). ~e did not separate the fi­
nite dimensional part of this transformation 
since at this time it is not necessary. 

Later on we shall have to determine the 
function DA'H from equations (2.5) and (2.7). 
A system of equations for DA'B (which we do 
not write here) after some algebraic mani­
pulations (we must commute the differential 
operators of the equations with the exponent) 
is obtained. The latter sh.ows that: 

a) DAB does not depend on ryt and ~I ; 
b)A nontrivial solution can exist only if 

(2.10) 

c) The function DAB satisfied the equa­
tions of ordinary conformal invariance. Then, 
a nontrivial solution exists if and only if 

p = s q = r . (2.11) 

If all these conditions hold the function 
DAB is determined up to an arbitrary con­
stant and has the following form:· 

D la -1{3 }; ly 118 
p q q p 

=Clx2 1-d- \i(p+q) (~ yo(l + iy <))I x 
12 12 o a 118 

p p 
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Xl2 = X 1 - X 2 I (2.12) 

where 

A 

"i2l,B l!y l 
q q 

and summation runs through all permutations 
of the indices a. and ,B. , respectively. 

l . l 

Thus, the solution is determined. To obtain 
its explicit form it is necessary to produce 
the global transformation (2.9) over the 
function DAB (formula (2.12)). It is more 
convenient to do the latter, if we return 
to the physical variables: 

(2 .13) 

c+ =;; + . 
2a 2 .a 

Since the general case is rather cumbersome, 
we confine ourselves to two examples. 

a) Two-point function of scalar super­
fields ( d = d 

1 
= d 

2 
; z = z 

1 
= z 

2 
) 

+--+ 2-d 
11 <x ,x , e ,e , t; ,t; ) = c 1 Y I x 

I 2 I 2 I 2 12 
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+ - - l, (d - 2 z) 

h(z12'' l ''2 ,e2) 2 2 ' (2.14) 

where 

(2. 15) 

(2. 16) 

b) Two-point function of the spinor super­
fields' 

*Remark: Note that the functions (2.14), 
(2.17) reduce to the corresponding functions 
of superfields, belonging to the invariant 
subspaces, if a relation between d and z 
holds under which an invariant subspace 
exists, although we do not suppose the exis­
tence of an invariant subspace in the present 
paper. 
10 



A 

(Y y0 <1-iy )) f3 
12 5 a 

where Y 12 ,z 12 and hare determined by 
formulae (2.14),(2.15) and (2.16), respec­
tively. 

Now we pass to the three-point function 
rAec • The corresponding equations have the 
form: 

li[(yO: +)a +(yO~ +)a}l!CC'+<s;a>cc'lrABC'=O, (2.18) 
I 2 

li<yo / - ) a ll AA ,IJBB .+cs ;2a )(AA')(BB'l lrA 'll 'c= 0. ( 2. 19) 
'I 3 

!i[(yo () _)a+(yo_iJ_) Jllcc•+('f3-a)CC'lrABC'=O, (2. 20) 
ae 1 ae 2 

{i(yO:; >.. ll AA'llBB' +('fl~a)(AA'l(BB'} lrA'll'C = (f, c2 • 21 ) 

where S~Ztt =S1: + S ;_. ; 'f 1~ = 'f ;a + 'f :a 
In full analogy with the previous case, 
equations (2.19} and (2.21) have the follow­
ing solution: 

·u 



(2. 2 2) 

where JABC is an unknown function. Acting 
on (2.22) with equations (2.18) and (2.20), 
after some algebraic manipulations, we obtain 
for the function ~~8 c<xl'.x 2 ,x 3 ,ry~ ,ry;,.;;:.; ;i 
a system of equations. The latter snows that: 

_ a) JABC depends on ry:a ! ry;a , .; 1: and 
.; 

2
a only through the var 1ab1 es 

if 
of 

+.l(+ +) 
X a = 2 ry la -ry 2a ' (2.23) 

- 1 - -
'I' a= 2(q la-.; 2a ). (2.24) 

b) A nontrivial solution can exist only 
the quantity.z=zi'+z

2
·:... z

3 
obtains·· one 

the following values: 

z = 0, 1';2,3, 4. (2.25) 

c) Under these conditions the function 
J~Bc must satisfy the equations correspond­
ing to the conformal subalgebra. The latter 
show t.hat in the cases z = 1,2,3 a nontrivi­
al three-point function does not exist: In 
the other two cases, i.e., z = 0,4 a non­
trivial function exists provided that the 
following equality 

p I + P2 + p 3 =·qi + q2 + q3 
holds. 

12 
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\,, 

If all these conditions are satisfied the 
function '.J"ABC in the case z = O is determi­
ned as 

+ -
f~BC(x1,x2,x3•X ,'I' ) ='.i";BC(xl-x3lx2-x 3) ,(2.27) 

where '.l"ABC is the ordinary conformal inva­
riant three point function for fields with 
dimensions d1 , d2 and d3 , respectively, 
while in the case z =4, we have 

where <To 
. J ABC 

vious case. 
Thus, the solution of the equations for 

the superconformal invariant three point 
functions is completely determined* . In 
order to obtain the explicit form of the 
solution it is necessary to produce the glo­
bal transformation (2.21). As in the case of 
the two-point function it is convenient to 
do this in terms of the "physical" variables. 
After this procedure the operator exponent 
preserves its form while the genera tors S 72 
and T~2 act on the differences x13 and x23 
only. 

We give two examples: 
a) Three-point function of scalar super­

fields. In the case z = 0 , we have 

* Conf-0.rmal invariant 
ctions for fields with an 
were presented .in several 

three point fun­
arbi trary spin 

/ / k f . 4,5 wor s, see .i. • 
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- l (d - 1 z ) 
- c+ -) 2 I 2 I xh(z

13 
,/;

1
,s

3 
,0

3 
x 

Y 13µ ~xiµ -x 3µ -Sill~ Y'r'" e:, 

+ + v2 ., ,,. 0 + l 
Z ~ <l -16i/; y 0 0 ) Y2 A (t, 3 • 2 • 

23p. 3 2 3v >' 
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\ 

while in the case z = 4 , we have 

++-.--+ 
l(xl ,X ,X ,8 ,0 ,0 ,.; ,.; ,.; ) 

23123123 

-x2 )(- . .yo)( - ) , 
12 12 12 

- 1 - -
X12 = 2(_;1 +t2), 

+ 1 + + 11 
e 12 = 2W 1 - e 2), I x 12= 2<x 1- x 2> • 

where I~ is determined by formula 
b) Three-point function of one 

and two spinor superfields of the 

In the case z = 0, Wff have 

+- + - + - - + 
r 0a(3 <x1 ,x2 ,x 3 •81,.;1·8 2 ,.; 2·8 a•.; al 

2 l/2(d3-dl-d2) 2 !/2<<lz-d1- d3) 
=C!Y 1t I y131 

(2. 30) 

(2.29). 
scalar 
kind 
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1 z ) 
2 2 

x 
(2. 3 2) 

l (d -d -d ) - l (d - 1· z ) 
x0-16''°1;P(O~:')) 2 3 I 2 h( ,,- ,,+ 0-) 2 l 2 1x 

·~a" I 2 zl3 '<:.1'""3' 3 

while in the case z=4,we have 
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3. In this section we find the two- and 
three-point functions constructed from 
<I> A (x,71+,i;-l (In the case when these functi-
ons are constructed from the conjugated 
fields only, all the results remain the same 
with the substitution 11+~11-. e-. ~ i;+), 

Let us denote by 

(3. 1) 
+ - + -

=<Ol<I> <x .11 .e l<i> (x .11 .e llO> 
All!B222 

and 

(3. 2) 
+ - + - + -

= <Ol<I> A (xi ·'11 • e I )<I> B(x2 ,712'e 2 )<l>~(x3 ,713' e 3) IO> 

the two-and three-point functions, respecti­
vely. 

Performing the infinitesimal transforma­
tions and taking into account the invariance 
of the vacuum state with respect to tl1e su­
peralgebra, we obtain a system of differen­
tial equationd for the functions t.AB and rABC 

where Li is any arbitrary generator of the 
algebra (1:1). 

Consider, first the two-point function 
t.AB • As a result.of s+ -invariance 
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and T--invariance 

it has to be 
ti2=~1-~2} 
riance 

f . f ++ + d a unction o 11 12 =11 1 -11 ~ an 
• The condition for P~-inva-

(3. 6) 

gives: 

Further we restrict ourselves to the case of 
scalar and spinor superfields. 

A. Two-point function of scalar superfields 

From the equation for II -invariance 

(3. 8) 
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' 

it follows that the expansion of the functio11 
A in powers of the spinor variables contains 
no zero degree term, with respect to these 
variables *, z = z 1 + z 2 takes the values 
z 2,4, both cases should be treated sepa-
rately. 

a) Z=Zl +z 2 = 2. 

The most general form of a Lorentz-invariant 
scalar two-point function A<z 12 ,u72 ,e1;it is 

Now we make use of the equation for S--ih­
variance: 

v + l v + 2 v.... 'l l VA - 2 
[S(y 71 ) a + 8 (y 71 ) a - 8( y x 

1 
t 

1 
a - 8(y x

2 
t

2
} a -

I a '' 2 a v a v a v 
(3. 9) 

- - - + a -t la (8d I - 12zl) - t 2a (Bd2 - 12z2) - 16tla 1/ I <hJt -

- + a 
-16t 1/ -- -

2a 2 aq+ 
2 

16t- e-_a_ -me- e-_a_JL\= o 
la J a< - 2a 2 ae-

, I 2 

•This is also valid in the general case 
of n-point function constructed from the 
superfields only (or from the conjugated 
ones only) ~ith arbitrary Lorentz structure. 
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which together with Kµ-invariance: 

(3 .10) 
+ 2ix 1d + 2ix 2d - i17+y0 y Y0 _a_ -

µ I µ 2 I µ at; l 

- i17+yoy Yo~ l~ = 0 
2 µ iit;2 

gives that the function ~ does not depend 
explicitly on t; ~2 , and that d1-d 2= - 1 d 1 =3/2zr 
The D-invarianve condition 

[z~2a; 2 +d 1 +d 2 + i u;2 ~+ ]t'dz~ 2 ,u~2 > = 0 (3.11) 
12 

leads to the following solution for the func­
tion 

In the special case when d 
1 

= 3/2z
1 

,d
2

=3/2z
2 

d=d +d =3 
I 2 

~( + ) - c Ii 4 ( ) + 0 + zl2,ul2- z12ul2yul2 .(3.13) 

b) Z=Z 1 +z 2 =4. 

In this case the most general form of a Lo­
rentz-invariant function is 

(3 .14 ) 

The equation for S- -invariance is identical­
ly satisfied by this function, an<l Kµ and 
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D -invariance lead to the following results: 

(3.15) 

B. Two-point function for spinor superfields 
(spin: 1/2) 

+ - + - + -
6.a{1(zl2 ,ul2'.;12)=<0l<I> a(xl,~l ,.; I )<I> {:J(x2,~2 ,.;-2 ~lg~l 6 ) 

In this case the number z = z1 +z 2 takes the 
values z=l,2,3,4. Buttheoddvaluesz= 

d,3 have to be excluded because otherwise 
one has to construct spinor coefficient 
functions in the expansion of 6.a{:J form the 
4-vector z 12µ. • 

a) z = z
1
+z

2
= 2 

It can directly be verified that the equa­
tions for s~ and Kµ. invariance admit only 
a trivial solution. 

b)z=z 1 +z 2 =4 

The s-, K and D - invariance equations 
lead tg th~ following result 

(3 .17) 
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Consider now the 3- point function. Analo­
gously s:-invariance 

[Hy 0 _a_) +Hyo_a_) +i<yo_a_) Jr = 0 
<Jry+ a a71 + a a71 + a ABC 

(3.18) 

T 
I 2 3 

-invariance 

[i( o_a_) 
y at;- a 

I 

+i<r0 _a_) +.i<ro_a_) Jr 
at;- a at;- a 

2 3 

and Pµ-invariance 

·c- o o a Jr 0 + i, 3 Y Y Y -- Alic= 
µ a71 + 

3 

lead to the following dependence 
function r ABC from the variables 
t;-:-.i=l,2,3 

I 

+ + +c-c-c-
T/ =T/ +Tf ,, =- -- • 

23 2 3 23 2 . 3 

22 

= 0 (3.19) 

for the 
xi, + 

.,, i ' 

(3.21) 



A. Three-point function of scalar superfields 

It follows from TI-invariance that 
z=z +z +z takes the values z = 2, 4, 6, 8. 

1 2 3 

a) z = 2 

From s~ and Kµ -invariance it follows that 
the function r does not depend explicitly on 
~ ~ and ~ 2:; • And the equations for s-;, , 
K and n-invariance have a nontrivial 

µ,l • so ut1on 

2 d 1-2 
(z ) x 

23 
(3. 2 2) 

only if 

d 1 +d 2 +d 3 =3 

d. = :l/2 z. ' i =. 1,2,3. 
' ' 

b) z = 4 
+ + _ _ 2 -1/2(d 1+d 2 -d 3 l 

r(z12 ,z 23•u12 ,u 23 ·~12 '~23) =C lz 121 x 

-l/2(d+d -d) 2 -l/2(dl+d3-d2+2) 

I 2 I 2 3 11 I x x z23 zl3 
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if 
if 

c) z = 6 

+ 0 + + 0 + c - oc­
xu12Y ul2u23 Y u23'12Y '12+ 

2 
-I/2(<)+drd

3
+!) 

2 
-l/2(d +d - d - I) 

+ C I z I fz I 2 3 1x 
2 12 23 

x 

2 -l/2(d1+d3-d2+!) 
xlz 131 ul~yout2g2~Yog2~ u;3you ;3' 

only d l = 3/2z 1 , C 1 = 0, 
only d3 = 3/2z

3
, c = 

2 
0. 

d) z = 8 

B. Three point function of spinor superfields 
(spin 1/2). 

From the condtion for n-invariance it 
follows that z =z 1+z 2 + z 3 should take the 
values z =l,2,3,4,5,6, 7 ,8. However, it can 
be seen immediately that rABc" 0 for even z, 
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as for these values it is impossible to 
construct the corresponding expansion ofl'AHC 
in powers of the spinor variable. &1t it car1 
be verified by clirect calculation that r\!H'.'o 
also for the odcl values of r z, because the 
equations for s-;; 'and Kµ invariance have no 
other solution but the trivial or1e. 

Appenclix 

Here we give the formulae for the global 
transformations in terms of the "physical" 
variables (see ref. / 3/). We begin with the 
transformations of the variables. 

a. Global transformation with the para­
meter (i~ , correspond1ng to the generator 
s~ 

b. Global transformation with the para­
meter /o + corresponding to the generator T+ 

a a 

+ + 1/2 v + + 
x ~ (l + 16if3 y0 8 ) x A ((3 ,e ) = y , 

µ v µ µ 

+ + + + + e ~ e + Si e y 0 e f3 , a a a 

+ + -1 - - - .... + 
~ ~ (1 + l6i(3 y 0 8 ) (~ -Si.; y 0

,; (y{3 ) ) 
a a a 

where 
v + + v + v + v + ++ + 

A µ(f3 ,e )=8 µ + 16i,8 y 0 u µe + 4&5 µf3 y0 (3 e y 0 8 • 
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Superfield .depending on these variables trans­
forms as follows 

;iryoS- + - - - - I (d- 2z) 
e '-' f(d,z) (x,e ,{; )=<1+16i,8 y0

{;) 2 2 x 

+ + -1 - - - ... + 
0+16i(J y0 11) [{;a-8i{;y0

{; (y(J l)l 

The finite dimensional parts of these trans­
formations have the following form: 

i(J- y0 S- q ( - -) i(J- y0 S'-
(e )All~ "AB f3 ,{; e , 

+ + + ,.+ 
i{1 y0 T 'lJ + +)K i(J y

0
T 

(e ) AC = All (f3 ,II BC(y,c )e 

where s';; and T'a+ are the differential parts 
of the corresponding generators and the mat­
rices '!JAB and Knc are defined as follows: 

-- -oµv-
'IJ AB ({3 ,{; )=o AB+S(~f'.) AB f3 y o {; -

1 - - - -
-16q(q+2)2(1-iy5)ABf3 yof3 {; f'{; , 
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Kia Ha'H/3 H/3'l 
p p q q 

. + v - q/2 q ' 1 . ) 
x(l+l6i/3 yoy I; yv) j!\ '2(1-1y5 /3j/3j + 

+8iyµf3 yoyVl;-[yJ µ ~ (1-jy5)]/3jf3j l. 
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