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INTRODUCTION

In the present paper we construct the in-
variant two- and three-point functions for
superfields transforming according to rep-
resentations of the conformal superalgebra
introduced in paper/l/. We recall that an
arbitrary representation of the mentioned
kind is determined by its Lorentz structure
and by two complex numbers d and z . The
corresponding generators of the representati-
on are their differential operators in the
space of functions of the variables «x,, 0,
§£4 » where x, are the coordinates of a point
in the Minkovski space,and 6 and ¢7 are
spinor mutually anticommuting variables sa-
tisfying the relations.
¢
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In what follows we shall use the "nonphysi-
cal" form of the conformal superalgebra
generators defined in ref./% . We write down
once more these generators for convenience :
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Constructing the two- and three-point func-
tions we distinguish two cases:

a) In the first one an arbitrary two- or
three-point function is constructed out of
the superfields as well as of their conju-
gates. This case is discussed in the second
section, '

b) In the second case all two- and three-
point functions are constructed out either
of the superfields only or of their conjugate
fields only. We discuss this type of functi-
ons in the third section.

2. We introduce, first of all, the follow-
ing notation. In accordance with paper/%

a superfield with arbitrary Lorentz structure
is denoted by

.". -
(I)ga }gﬁ }(X,T,' € ), (2.1)
p q

where ia }=§a1“u,ap} {ﬁ(ﬁ={ﬁiu.ﬁq}, and the
brackets denote full symmetrization within
the group of indices. The following identi-
ties are supposed to hold:
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where

3(1i,(—-kHu,k ;: guzv-u, ak-—l K k4] ren GPE ’ (2.2)

{,Uq(—k)|ﬁ’k b= 1B By B ,[ . Bq i

k+17

Sometimes, when writing the full index struc-
ture 1s not necessary, we shall just write
¢, meaning by "A" the hole group of in-
dices (e Hp ). The field transforming
according to*the conjugate representation
15 denoted by ¢ia pix, Utg ) and
A (X7 LE), re§ cItlvely

Let
A X emyaay € {
(2.3)
T - 4
= <01 (x 1y )P xm L) [0>
and
~ . ~e )
]Anéxlxz’xa’ﬁ 6 S ) (2.4)
4 - b=
=<0 (x DD (g € )P (x . n3,§ )[0>

are the two- and three-point functions, res-
pectively *

*Remark. We have written here the two-
and three-point functions as functions of
the nonphysical variables. In order to define
the "physical” two- and three-point functi-
ons 1t is necessary to make the corresponding
change of variables (see 3) in formulae (2.3)
and (2.4).
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Producing an infinitesimal transformation
of the superfields and taking into account
the invariance of the vacuum state under the
action of these transformations, a system of
differential equations is obtained for the
functions (2.3) and (2.4).

As in papers’/1:Z3/, it is sufficient
to examine the equatlons, corresponding to
the generators S'&,Ti only. We start with
the two-point function. The corresponding
equations have the following form:

{.i(f{#{)aa%, + (5, LS (2.5)
ﬁ(f%)a VRIS Y ) (2.6)
{i(y°—£§-—_i)a S + (To  ppdAap = 0, (2.7)
ii(y°~£—+)a Bans +T1)aad A op= 0, (2.8)

2

where Sy, , T;, are the generators of the
representation under which the superfield

Mxlﬂf £7) is transformed, while

Sy, 2T, are the generators of the con-
Juéﬁte rgpresentatlon under which the super-
field & yx,1,,63) is transformed.

Equations (2. 6) and (2.8) have the follow-

ing solution:

- N
AAB(XI,Xz ,7}1,7?2 551!52} = (2.9)
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where D, 1s an unknown function. The expo-
nent in the R.EH.S. of equality (2.9) is de-
termined as the global transformation produ-
ced over the function D,z (see paper/3/
and appendix I). We did not separate the fi-
nite dimensional part of this transformation
since at this time it is not necessary.

Later on we shall have to determine the
function D,-; from equations (2.5) and (2.7},
A system of equations for D,.; (which we do
not write here) after some algebraic mani-
pulations (we must commute the differential
operators of the equations with the exponent)
is obtained. The latter shows that:

a) D,p does not depend on 5} and ¢7 ;

b) A nontrivial sclution can exist only if

zy=zy dy=d, (2.10}

¢) The function D, satisfied the equa-
tions of ordinary conformal invariance. Then,
a nontrivial solution exists if and only if

p=s q-=r. ‘ (2.11)

If all these conditions hold the function
D, 1is determined up to an arbitrary con-
stant and has the following form:

D . : (x,,x,.) =
la ~B_ iy 15 1 %1%

C Ly 2 |~ Hprg) (% 40 .
Clx12| (xlzy (1-+1y5))[a p}{a p} X



% (Xlzyo(l - i)’s)){ﬁq;{yq} 1

X197 X217 %9 > 7 (2.12)
where

~ 2 IE[ A

x12{apﬂsp{ T 12a 5.

A B

ﬁz&%ﬁyq} =2 E x12ﬁy

and summation runs through all permutations
of the indices ¢, and g, , Tespectively.
Thus, the solution is determined. To obtain
its explicit form it is necessary to produce
the global transformation (2.9) over the
function Dag (formula (2.12)). It is more
convenient to do the latter, if we return

to the physical variables: :

+ + A - - - A +

8, =n. - &) 8, =n, —(x,&,)

Lo ia 1°17a 2a 2a 2227a (2.13)
- - +
(fla_ gla {:2(1 rf :

Since the general case is rather cumbersome,
we confine ourselves to two examples.
a) Two-point function of scalar super-
fields (dmdl=d2;z='zl= 2, )
- 2., —d
A(Xlrxzael :6235 :f ) 1 121
1 3 7 1 3
+_ +—sld= 5z} e == Fld-D2)
x(1-16i£,°0) 2 T (-16i6y°¢) P P x



- -l -‘—2)
12’6]’62 2 2 T (2.14)

where
Y., =x,, -8i6.y% 6
12,” 12, 2? Yu¥1 o
Z,, = (1-16i&)y 1/2Y A(g-“,
"1z, 12, 2 1 - (2.15)

v+ + v _+0u+'v+0++o+
A #(A‘?,Ql):S “:—16162)! 0#91—488#91}’6] 62)/ fz,

+ ‘“- N _ . + oA . -
2,92_}— 1 161{2;/ zwrf

h(z o'f-_ls-{: 1 -

12°%1
O T
~ 1288, ¥°2),0, £,v°¢,

(2.16}

b} Twoﬁp01nt function of the splnor super~
fields”

*Remark: Note that the functions (2.14),
(2.17} reduce to the corresponding functions
of superfields, belonging to the invariant
subspaces, if a relation between d and =z
holds under which an invariant subspace
exists, although we do not suppose the exis-
tence of an invariant subspace in the present
paper.
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+ + 3+ - i1 s - _; +_
¢ (x, 06 and @ (xz.,ez,f;),(l+ly5)¢ =(1-iy J¥"=0

B

—_ —dm 1
Aaﬁ(xl’bxzs 11 2:{1 ,E ) = Cllel 2 x

- l(d— ."3:: ) _ —— 1 d— ___
x(1~16i€,y°0,) 2 Z(1-16i0,,°¢,) 2 3= § 0(2.17)

. :
— _'-‘ + .\2) N .
><h(z12 ‘EI . ,{"_2) (Y12y°(1_']y5))aﬁ ,

where Y;,,Z;; and h are determined by
formulae (2.14),(2.15) and (2.16), respec-
tively,

Now we pass to the three-point function

EABC . The corresponding equations have the
orm:

{l[(}/ ?311__) +(y En—;") ]3 3 )CC I ABC,=0, (2.18)
1 .

h(Y ‘5:’"‘) SAA'BBB'+(Sl2a ){AA')(BB')IFA"B c=0,(2.19)
3

_ 3 - "
til( °—-—) +(y°—) Bppr +(T, Voo dl,0n.=0,(2.20
14 %= ° Y Py cc 3a’'CC™ ABC 7 )

1 2
e o 6 _ .-v ) -
GO —) 8y, - BB'+(Ti2a}(AA')(BB') Iy o= 0. (2.21)
9% 3
where §;,,=8;, + S, ; T1og -TL T

In full analogy w1th the previous case,

equations (2,19} and (2.21) have the follow-
ing solution:
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I R
FABC(xl’xz’xﬁ’n ,nlyﬂzyﬂgafl’f !f;—) =

et o +
expl-ing y°8 =T Piaminnn Teuc® e o pé6 ),

(2.22)

where J,5c. is an unknown function. Acting

on (2.22) with equations (2.18) and (2.20),
after some algebraic. manipulations, we obtain
for the function 3 Xg 0% 4 T ED)

a system of equatlons. %he lat%er shows that:

. a) ¥4 depends on 5/ , , 51 and
?y through the Varlabfes
x b= -_2'_(,71& =72, - ‘ (2.23)
~ler e e
= S 1=y ). (2.24)

b) A nontrivial solution can exist only
if the quantity z=-z,+z,- z, obtains one
of the followling values:

z =0,1,2,3,4. _ S (2.25)

c¢) Under these conditions the function
T;BC must satisfy the equations correspond-
ing to the conformal subalgebra. The latter
show that in the cases z =1,2,3 a nontrivi-
al three-point function dOES'not exist. In
the other two cases, i.e. = 0,4 a non-
trivial function ex1sts prov1ded that the

following equallty

P,+DPy +P, =4, +q, + q : : (2.26)
holds. - .

12



If all these conditions are satisfied the
function 9° in the case z=0 1is determi-

ABC
ned as
EIABC(X P % X ‘I’ )_EXBC X 1xmx ) ,(2.27)

where J9.. is the ordinary conformal inva-
riant three point function for fields with
dimensions d;, d, and d,, respectively,
while in the case 1z =4, we have

ﬂ.ABC(X XyoX 40X ‘1’ )-.‘_T;BC LR XX )x oK Hy % 2

(2.28)
where I3 e is determined as in the pre-
vious case.

Thus, the solution of the equations for
the superconformal invariant three point
functions is completely determined* . In
order to obtain the explicit form of the
solution it is necessary to produce the glo-
bal transformation (2.21)., As in the case of
the two-point function it is convenient to
do this in terms of the '"physical' variables.
After this procedure the operator exponent
preseryves its form while the generators §,
and ’I2 act on the differences x,, and x
only.

We give two examples:

a) Three~point function of scalar super-
fields. In the case z =0, we have

13 23

*Conformal invariant three point fun-
ctions for frelds with an arbitrary spln/45/
were presented in several works, see f.i
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-~ _+
F(X X2,x ,91 62 7] :61562 ’g.?, )
%(dﬁl—dz—d-d)- g %ldg—dj~dy)

o (dgmd | ~dy)
—cly 2 x

12 23l I3|

i ) 3 1 3
— - —=(dy=-= . S 0 Pt _
x{1-16if, y°§]) 2 73 zl}(l—16i€3 }/052 y 292 3 zg) 3

1 I 3
: 2 ‘da"“ 3 g 52y
(11618007 (1-16i4,3°0,) ° E
I
(dy=dy—~dg)
3 "17%
x (1~ 16i¢, y°(9 -6, x
1 iy
L~ 3, -
‘ - Lt = ‘1 I
xhiz , & .6, ,6,) 2 ° x S (2.29)
' - l@ - 3;) o |
.t 9 2 272
Xh(223 162.9§3$63 ) ]
.= +
Yigu = X1 %3, 80, VO”# %, Yiou = Y134 4_{23,1 :
Y 86 Py 6
23u = ¥gu~ Xy ~ 89y, 0
+1/2
Z 15, = 17163, y°9 W2y A €t eh,
13u i) 3 1

_‘ | + +I/2. Vo pt
7. = (1—161§3y°62) Y23VA #(53 ,92 ),

23u



while in the case z = 4, we have
G 600 e ey
xl’x2’x3’ 1, 29 3:51352353 =

+ 4+ = = =+
=y (=X px 0,0 ’02’63’51 ’52’63) *

= e + +: + A
X&)y V6 K0, V0, +26),9°%

12X 12
(2.30)
2 - .0, =
xlzxxz"yxlz)?
NS Y7y
12 221 2 ?
- 1( - —
X2 = 5%+
1 J 1
912~-2— e )/x =E(x1-x ),
where T’

is determined by formula (2.29).
b) Three-point function of one scalar
and two spinor superfields of the kind

<0l¢)(x1, l,rf )‘I’ {x,, 02 £ )‘Pﬁ(x3,€ ,63”0) (2.31)
In the case 2z =0, we have
F+— &8.+ —6+ —9—- +
0af3 (),%, 0% 3,0):81,0,,6,,0,,8,) =
1/2(c13 did,) 9 1/2(d2~d1— dy) 9 1/2(d;~d,~d 1)
|Y13 Y

=ClY zl 23[
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- - %“r% z)) _ a4y
x(1-16i0, Y°£ ) (1-16i6,°¢ , ) 2 x
1 3
o+ g ldg=dg= F2p)
x{1-16i¢,°0 ) T x
1 3
_ s hdy=dg,-1- 22))
x-thigyoy) BTS2 2.32)
1l —d-d) -l -3,

1 2

x(1- 16,578 ~0)) 2 3 hiz,, €600 2 N

1 _ 3

- 4+ =" 3 a . )
Xh(zzs ’62’63 363} [sty (1+ 1)’5)}&8 )

while in the case z=4.we have
4= + o+ = - = =
PHB(XI,X2,X3,91,02,93 !51’62!53) = .
+= + 4 = == =
=Toap 1%y Xg01:0p, 03585665 ) =
e - + + + 'o" -
x(£197°815 1015701, +20),¥"x %, +

2.- .o, —
M TRSTRe Xlz) :
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3. In this section we find the two- and
three-point functions constructed from
®,x,37,§7) . (In the case when these functi-
ons are constructed from the conjugated
fields only, all the results remain the same
with the substitution »*syp™, €7 - ¢1).

Let us denote by

FoH g e
AAB(XI’X2’T]1’r]2 Qé:lié-;-) = (3 1)

+ - + o=
=<0|P
Oi A(xl’q_}’fl)q)B(X2.’q2’§2)‘|0>

and

+
FABC(Xfxz’X3 ,ﬁ 27, 5 f 5_7 = G.2)

. + - Co -, + -
=<0|(DA(X1’T]1’€1)¢B(XZ’772’62 )(DC(X3 vnaif 3)E0>

the two-and three- p01nt functlons respecti-
vely.

Performing the infinitesimal transforma-
tions and taking into account the invariance
of the vacuum state with respect to the su-
peralgebra, we obtain-a system of differen-
tial equationd for the functions A ,, and [,

[L1+L2]A Aéxl,x .7 ,7? f ,'fj

: . - (3 3}
H‘+L +L3HABéxe,xyn,q,ny§ €y )

where L. is any arbitrary generator of the
algebra (1.1).
Consider, first the two-point function

A,g - As a result.of St -invariance
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o 0 o Dy - P
[§16% P )a+1(y ?)GJAAB(XI,X2,711sﬂ2s§1,52)= 0 (3.4)
1 2

and T ~-invariance

d ST ‘
[1()/ ;g—) fl(}" 3 ) ]A l,xz,fll,nz,fl,fpﬁ(S.S)
1 f2
it has to be a function of q: n+ q; and
¢io=¢7- €5 . The condition for P,-1inva~-
riance

[id +id +if 1°y »° +
g1 ke 1T Ta ant (3.6)
+i§_fhfy°—f——IAAB= 0.
27 Tp" gt
gives:
_ + g = | et ox.ED
Bl apZiptipdly) FeT Ry TNy

Further we restrict ourselves to the case of
scalar and spinor superfields.

A. Two-point function of scalar superfields

Alz ,E ) <OId (x .nl,f Ty ®éx ,E Y o>,

1?“ f”z

From the equation for [II-invariance

-z, -2 sul 9y 51—2 9_1A -0 (3.8)

g T W2
dug, 1y
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it follows that the expansion of the function
A in powers of the spinor variables contains
no zero degree term, with respect to these

variables*, =z =2z,+2z, takes the values
z = 2,4, both cases should be treated sepa-
rately.

a) z=z; +tz, = 2.

The most general form of a Lorentz-invariant
scalar two-point function Aulzﬂg;,ﬁgn is

2 2
A= A(z )ulzy u12+B(z )ulzy 212612

2
+ Clz )rfmy 512

Now we make use of the equation for § -in-
variance:

| 2 S | v+ 2 | ZE NN l.q_ [ 2 2_
[8(y le)a 6V+8(y n2)a ay B(y xl‘fl—)a 0V Bly ngz)aav

(3.9)
- - - + 4
_,fla(Sd]— 1221) —§2a (8d2-1222),—16§1a171 -57?_)(_ -
' 1
16Tt e e el e 1a-0
2«2 1 la®1 gy - 2a° 2
2 1 2

+*This is also valid in the general case
- of n-point function constructed from the
superfields only {or from the conjugated
ones only) with arbitrary Lorentz structure.
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which together with K#—invariance:

o Iy 1_ 42 Vailox2x 2o x2g. 13
h[ZXFxI/ xlg#U]81-+ﬂ2x#xl} X5 8 ! g *

] . d
+2ixld, + 2ix?d_—- i }’}’ Yo =
gl wle” M o

_JA =0
2 .
gives that the function A does not depend

explicitly on ¢, , and that d,-d,= -1 d, =3/2z,
The D- 1nvarlanve condition

o
= iny ¥y, r°

(22,022 +d +d + 3 u, :+]A(z at =0 (3.11)
u

leads to the following solutlon for the func-
tion

Alz ut )=clz

9 ~1/2(d+1) gt _
12 *% s d -d,= -1 d1—3/2z1

1! LIPYAL I ;
z1+zg=2 (3.12}

In the special case when d,=3/22 ,d,-3/2z2
1'72 2
d—d +d =3

+ 4 + ot
Mz, ou ,)=C8 (2, Ju Yu . (3.13})

+z,.=4.

b) z =z, 9

In this case the most general form of a Lo-
rentz-invariant function is

+ - 2, 4o Hpm op—
Mzyyuyg &gt = Alzdu Y8 oy, - (3.14)

The equation for § -invariance is identical-
ly satisfied by this function, and ¥, and

20



»

D -invariance lead to the following results:

2,- - % L
Clzy,l 12V‘52§2V $rpr d=d,=d

(3.15)

+ —
Mz ul E7)=L 0 d Ad,

. . - .
68(212)u12 y°u12f 12”0512 , dl+ d = 4,

B. Two-point function for splnor superflelds
(spin 1/2)

4+ -
(z.,, 3 Mo 1€, 10>,
af t12 12 12 ﬁ Xgoly 2(3.16)

In this case the number z=z;+z, takes the
values z=1,2,3,4. But the odd values z=
=1,3 have to be excluded because otherwise
one has to construct spinor coefficient
functions in the expansion of A,z form the
4-vector z

A Y= <0|¢’ (x 171 ,E L

12,u‘ "

a) z‘=zl+22=2

It can directly be verified that the equa-
tions for 8; and K, invariance admit only
a trivial solution. o

b)z=z1

The S;, K, and D - 1lnvariance equatlons
lead t6 thé following result

+tZ, = 4

5 )-[C (y°(1—1y n +C2(y°(1+iy_ N1 x

aﬁ af3 5 af3~
4 + o5 - -~
x 8 (zy du you AL FPIPI. d,= 4. (3.17)
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Consider now the 3- point function. Analo-
gously 8 -invariance

lity ,_.._} +iG° ————) +i(y° ———~——) I =0 (3.18)
ARBC ‘
anl a 817 a 611 a

T~ -invariance

. . . 0
fily?—— )a + iy —— )a +.1(y°gg—:)a It =0 (3.19)

1 2 3

and Pp -ipvariance

. . - - J
o o 3 0 o}
[16'“14-18#2 +16p3+1{:1y YVu? ++1f2yy'uya_.$+

n L]

ca Jd -
+iEg Yy, 0° o ¥ I ppc= 0

3
lead to the following dependence for the
function TI,, from the variables x 7t

i? E

£7,i=1,2,3 '

L y8c=Fanc 2120 5a® 12’“23 62,5 y

. L ot ont e (3.21)
Z1g =¥ 7 Xy U1o= N9 %619 s

+ + 4+ - = -
Mpg =M ~ 747 €157, &,

z,.. =X, —-X_,, 1

+ ot _a é.-—
93 " XgTXg 1 Ugg=To3T X35 99>

+ + + - - -
= + , =§ - .
1’23 '.7’2 7)3 523 2. f3
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A. Three-point function of scalar superfields

It follows from H-invariance that
=2 +Z,+Z, takes the values z - 2,4,6,8.

a) z=2

From 8, and K, ~invariance it follows that
the functionI" does not depend explicitly on

€1 and ¢, . And the equations for §
K and p-invariance have a nontrivial
solution
d -2 d -2
+ o+ 3 2,51
Tz g2 g0 g0 gy 512 é )= (XZ (2,4 s
(3.22)
dg—2
2, 2 12+o+12+
x{z),) R R TL I L e S SPL VA

Uyo¥ Z19%93 Y 93
only if
d,+dy+dy =3

d. = 3/2z,, 1 =.123.
1 1

b}z =4
~1/2{d+dg—d )
- 2 1rdg—dy
O
= x
Dz 512 9350 50 5581 5¢ 03 Clz,|
- - - - 2
9 1/ﬂdfd3dl) 0 l/ﬂd1+da a2+)
x|z, | lz | X
23 13

+ s u+ o'll+
XKUygY Ujollgg ¥V oy o

2d1=3'z1 , 2d3= 323 ,
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c)z=6
—1/2(d1+d2—d3 -1}

ok g 2
Pz g2 gg.u 00,8560 ) =Clz 1) *
12 —1/2(d2+d3—d1+1] 5 -1/2(4d 1+d3—d2+1)
z Z x
23 13

X“lz}’ u12 23” “23‘512” €1

—1/2(d1+d2-—d3+1) 2 -—1/2(d2+d3— dl— 1

+C |z°| jz “i X
2' 712 23

9 —»1/2(&1+d3-—d2+1)

x|z

4o 0p— +
uyu iy '

= 3/27:1 , d3= 3/223 ,

if only d,=23/2z;, C;=0,
1f only d, = 3/2z,, C,=10.

d)z=8
r : ~1/2(d1+d2—d3 )
(z 12’223’1’12’ 23"512éf 3= CIZ 2! u X
9 —1/2(d2+d3-—d1) 2—-1/2(d1+d3—-d2)
x{z 7 | : iz “| x
23 13
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B. Three point function of spinor superfields
(spin 1/2).

From the condtion for I-invariance it
follows that z =z;+z,+z, should take the
values =z=1,2,3,4,5,6,7,8. However, it can
be seen immediately that I',;.=0 for even z,
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as for these values it 1s impossible to
construct the corresponding expansion of!zgc
in powers of the spinor variable. Bt it can
be verified by direct calculation that [I'yye0
also for the odd values of I' 2z, because the
equations for S, and K, invariance have no
other solution but the trivial one.

Appendix

Here we give the formulae for the global
transformations in terms of the 'physical"
variables (see ref./3 ). We begin with the
transformations of the variables.

a. Global transformation with the para-
meter ﬂ; R correspondfng to the generator

SU.

- +
X - +8ifs Yy 8,
X X#I—l[ YV

PR

e, & e o T
g §, r8EYVEB_

2

U+ - (‘)+ .
o

=

b. Global transformation with the para-
meter g* corresponding to the generator T*

+)1/2

ot o v, 4+
- 0 A G = ,
X (1+16i8 v X, u(ﬁ ) Y,

=

+ + L.t +
6, -~ 06, +86 y°0 8 _,
- =1 —_ - -_— A
¢ +16i8500 N (e —8ig Y BB ),
[#4 a (7]
where

+ + o+ +
A"M(B*,e+)=a"#+161;8*);00"#9%.485‘;3 AT
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Superfield depending on these variables trans-
forms as follows

C . Oo— - _ Y Yao 3
B fla %0 €71=(1+16i8°¢) SR
xS4.0 O, +8IB 7YY, 07,0, & +8EPETB ),

ot ot _ ot o lge 38
BT 1y (%, 00 € )=(1+16i877°0T) 2 52

. - dfd- 3 2 + ot gt ot
11618 57y 71 5 flan 0,00, 4810 OB
+ ‘--1 - - — A
a-168° 00N 17 -8y E D 1) .

The finite dimensional parts of these trans-
formations have the following form:

C OSF - ery OSI—
P Y U, 8P Y
P + +
BT + ot iBTyer”
(el[ Y Yac =UAB(ﬁ Nl )KBC(y,c)e ,

where 8’ and T’, are the differential parts
of the corresponding generators and the mat-
rices U,; and Kyzz are defined as follows:

- —. o, MY .=

Uyp B¢ )=3AB+8(Epv)ABB SR
- 163q+ 05 (~ivg) g £ 16 £V,

+

+ + t oo MY
‘UAB(B ,9 )=8AB+8(EW)ABB VR g -

- 16p(p+2)—;—-(1+ iyy) g B 7870007,
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K e ooy By =L, .y
{ap}f pf%ﬁq}{,ﬂq} b v 2 5 fap§§a p}
(11618 vy ey Y2 T 1Ay )y as
¥ V v -1 Y= B.B*
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