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New Definition of the Decay Law

Time evolution of unstable states is considered. The
usual definition of the decay law is shown to be of a li=-
mited application. A more general definition is proposed.
The decay law behaviour at large and small times is dis-
cussed. .

The investigation has ©been performed a%t the
Laboratoery ¢of Theoretical Physics, JINR.
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1. The following general statements about
the quantum-mechanical decay law are known:

1) The time dependence of the decay law
which is bound by an exponential exp (-at}
as t- e is inconsistent with the boundedness
from below of the spectrum of the total Ha-
mlltonlan H (which describes the decay dyna-
mics)/ 14/,
. 2} The decay law time derlvatlve vani-
shes at t=0 if the energy expectation value
< HY > of the unstable state ¢ 1is fini-
te /56}‘ 7

The statement generated a series of pa-
pers in which it was stressed that the pro-
cess of the decay observation must change
the observed decay law. Various theoreti-
cal methods for describing this process le-
ad to an exponential asymptotlcs, see, e.g.
ref./712/ | however, suppose that unstable
particles propagate in vacuum after their
production, and their observation begins
only when the asymptotical decay regime has
been set in. According to 1) it is nonex-
ponential and one must observe more unde-
cayed particles than one could e§?ect if
the asymptotics were exponential There-
fore the papers ™12/ 45 not exclude the pos-
sibility of the experimental verification



of the statement 1).A relevant experiment is
discussed in ref. /¥,

It was shown in ref./'®'" that the phenome-
non 2) may be observable in the following
sense: the observed decay is delayed if de-
cay measurcments are sufficiently frequent.

2. The purpose of this note 1s to show
that statements 1) and 2) are true (as mathe-
matical theorems) only for a restricted
class of the physical decay models. Two im-
portant suppositions must hold for these mo-
dels (the authors cited above do not mention
them when formulating 1) and 2))}. If the sup-
positions are wrong, one cannot use the usu-
al definition of the decay law. We suggest
a new definition (the usual one turns out
to be its particular case). Its application
to a solvable decay model provides results
which can be considered as counterexamples
to 1) and 2) as physical statements.

3. The first supposition a) looks very
natural: the total space of states in the
decay problem is H-=H, e H, , where H,
and H; are spanned by the vectors describ-
ing the unstable particle u and its decay
product d, resp. In each instant of time
the system reveals itself either as u or as
d . The decay 1s realized due to a loss of
the probability from N, into X, (ref./3 ).
So the decay law PW is defined as the sur-
vival probability. If only one vector ¥
enters into ¥, then :

PO = <, exp(-iitly >1°. | (1)

Of course H, is not one-dimensional if u
is a particle: e.g.,u may be in states with
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different momenta p . lLet its state
be a packet, which can be described in terms
of the field theory as :

+ + 3 + .3 2 '
¢u=afﬂo,af=fdpﬂmap,fdpﬁmﬂ =1, (2)

Here Q¢ is the state without particles
and a; is the creation operator. If (2) is
the initial state then exp (-iHtw, changes
not only because of the decay itself but -
simply because of the packet diffusion. The
latter is not the decay. So we must define
P(t) as the transition probability from ¥,
to all possible u states (i.e., from ¢,to X,)

P® - /d ol<aty VWY % Ub = expt-iBy.  (3)

We call (3) the usual definition of the de-
cay law. Other definitions are possible
which either are equivalent to (3))(e.g.,the
definition in terms of the u Green function)
or somewhat generalize it (e.g., when u state
is described by a density matrix).

The second supposition b) can be stated
as follows: ¢, can-be expanded in terms of
the H eigenfunctions ¢; which belong to the
contlnuous part of the H spectrum:
Y,=fdE«E)¢ . Then (1) turns into the equati-
on: '

. P(t) = | fAE] ()| Zexp (~EDI 2, (4)

which was used in’Y and /% +to prove 1) and
2). Approaches using the resolvent operator
need the follow1ng modification of the above
formulation: ¢_ is in the H domain /1%,

.4, Relativistic local field theories are
examples of theories for which a) and b) may
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be wrong. The usual way to describe unstable
particle state is to take, as ¢, , a suitable
eigenfunction of a part I, of the total Ha-
miltonian H (or a superposition of such
eigenfunctions). H; may contain not only the
free part of H but also its strong interac-
tion part if the decay is due to the weak in-
teraction. Local interaction Hamiltonians
always have terms with creation operators
only. Therefore such processes as @ ,- u +d
(u is u antiparticle) or u-u+d+u are pos-
sible along with u-»d. They are '"virtual"
but nevertheless turn out to be important
for our subject, see below the concluding
sect.6. -

We see that unstable particles may be
also in states not belonging to ¥, ,. So the
definition (3) does not give their total
number at the moment t. Analogously the ob-
servation of the decay products at the mo-
ment t does not guarantee that u is not
present at this moment.

If ¢, 1is taken as stated above then its
expansion in ¢y turns out to be impossible
in all local models where the expansion pos-
sibility can be investigated, see, e.g.,
ref./16/ %,

*The supposition b) may fail even if the
expansion is made possible (e.g.,by introduc-
ing a suitable formfactor).In this case it
usually contains such a normalizable vector ¢p
(belonging to a discrete H eigenvalue)as the
physical vacuum .Just such a situation ari-
ses in the model discussed below in sect.6.
As a consequence the r.h.s. of (4) will acquire
the time independent summand (c(Egl®)%i.e.,
according to (3) the decay stops at large
times.
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5. We conclude that (3) is not valid for
any theory of the decay process. We propose
another definition of the decay law

N = <Uihy_,NU®¢_>- <V, NU®R, > . (5)

Here N is the operator of the unstable
particle number and 9, 1is its no-particle
eigenvector NQO 0. Nt is the average num-
ber of unstable particles at the moment t
minus ''theoretical background" of these
particles which can be present even if there
were no unstable particles initially (e.g.,
the 'background' may be not zero if the state
1, 1is nonstationary). As the first conse-
quence of the "background" subtraction, N
vanishes identically if the unstable partic—
les were absent initially (i.e., if ¢ ,=Q ).

We shall give another formulation of our
definition before (and in order of)} comment-
ing it. Let us consider the probability to
find, at the moment t, at least one unstable
particle (i.e., one, two, etc.) in any state
and irrespective of any other particles (e.
g., decay products) which may accompany it.
This inclusive quantity may be written out
as

I =8, fd% i<afe,, U, >17, Usexpt-ilt).  (6)

Here ¢ ’s denote states, which form a comple-
te set: S ¢ ok = {8_ denotes the cor-
responding summatlon and 1ntegrat10n) It
contains $,, one-particle states apﬂo, two
unstable particles,decay products and so on.
By ap¢ we denote a state which differs

from™ ¢_Dby the presence of one more unstable
partlcle. Of course <a, ¢m,U¢u> 0 if ¢,



cannot pass to the state a®¢_. For example,
the process » »7 +v 1s forbidden (even as a
virtual one) by the lepton number conserva-
tion law. Rewriting (6) as

16 ='sm_fd3p<'u¢u, a;¢mXa:¢m,U¢u> =

. 3
=8, fd p<a,U¥, b p<dn, a,Uy >
=<U¢u,fd3pa;aPU¢u >

(7)

we see that I{t) is the average number of
unstable particles in the state Uy . So,
we have

N(t)='smfd3p1<a‘;¢m,wu>| -5_fd p|<a IR >(£|;)

In the case of the decay #»~ > ¢ "+ v the sta-
tes aj ¢, really reduce to =7, s wtop~
etc., while a "¢ . reduce to o pty, etc.

Let the supp051tion a) be true, i.e., the
physical dynamics is such that in S only the
element <alQ,,Uy ,> is not zero. Let, in ad-
dition, the "background” be absent (this will
be the case when, e.g., 2, is stationary and
coincides with the physical vacuum @, so
that supposition b) turns out to be true).
Then the new definition (8) or (5) turns
into (3) as in its particular case.

Let us stress that the new definition
properly takes into account the virtual tran-
sitions, discussed above in sect.4.

The calculation of N{t) can be reduced to
the evaluation of the expegctation values of
the Heisenberg operator NW=U'NU in the
statesy, and Q,. Thus one can avoid the ex-
plicit calculation of the evolution opera-
tor U). By this remark we conclude the
general discussion of the new difinition.



6. For our purpose declared in sect.2
it will be sufficient to apply the new decay
law definition (5) to a particular solvable
model, for which the suppositions a) and b)
are not true. This was done by the author
in ref./17, The model describes the charged
particle which is in an oscillatory potential
and interacts with photons in the dipole ap-
proximation. The particle excited state y
{one-phonon state) is described by a corres-
ponding eigenvector of the free Hamiltonian
H, . The phonon may pass into photons. The
exact calculation of the phonon number at the
moment t according to (5) reveals that N
is bounded by an exponential when t -»~,though
the total Hamiltonian spectrum is bounded
from below. More exactly, one can represent
N at all times by the expression
exp(-T'ti1+a(t), where alt<i and oscillates with
large frequency >>I' . Because of «(t) the de-
rivative dN/dt at t=0 1s equal to -2 ,but
not to -I' and not to zero (note that a few
oscillations later, we have already dN/dt =
=-~I"). This result holds equally well for
two variants of the model formfactor: the
one correspending to infipite <y , H¢ >
(the formfactor gk) = p/vk2+ p2 chosen in/'%
and the other corresponding to finite <y,,Hy >
(the formfactor gk=p%k2+p2)).So both asser-
tions 1) and 2) are wrong for the discussed
decay model.

Let us stress that this result was ob-
tained using the new decay law definition
(5), which takes into account the transiti-
ons of the type u-u+u + d, Qo+ u + d.
They do not conserve 'energy' if the term
means the Hy eigenvalue. Therefore their
probabilities are small compared to the pro-
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babilities of the "energy" conserving pro-
cesses, i.e.,u»u and u-d . Nevertheless,
these '"virtual" transitions turn out to be
important. Indeed, if one neglects them,
then (8) turms into. (3) and nonexponentlal
asymptotics follows in contradiction with
the exact result stated above.
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