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I. INTRODUCTION
Basing on high-energy répreSéntation for the scattering émpli-

tude 1t 1s possible to describe a number of properties of the

hadron interaction at high energies (see reviews /1,2/). The so-
called eikonal repregentation for the two-particle amplitudes was
obtained by summing the perfurbation theory .series in the four-
dimensional Feynman-Dyson formalism /3/, on the basis of the qua-
sipotential equatidn'(QPE) /4/ and by the functional integration
method in quantum fipld theory (QFF) /2/.

In paper /4/ -the high energy representation for the scattering
amplitﬁde,waa derived in the framework .of the QPE /5/ uéing Fou-

" rier-analysis on the three-parametric group of horospherical

ghiftings which is embedded as a subgroup in the Lorentz group
/6,7/. This representation has the form

. (S8 0 (A o~ A o R 2 ‘
T =-2isfe "5 s G IR exp[& N @a)gy-4 3ot 1)
where FE is.an ordering operator, 1n which lnstead of the usual
© ~functions the step functions :
A g oo eA.QE dq
| 0@) =z} s e .
of the finite-difference analysis /7,8/ are used; and V(&) is
e quasipotential operator in the space of "state vectors" |§>

with two-dimensional vector-.§= (9'32)._ belng the analogue of the
impact parameter. Formula (1.1) is a direct relativistic genera-



lization of the eikonal representation of the non-relativistic
quantum mechanics /9/.

The aim of this paper is to derive the generalized eikonal re-

presentation (1.1) for the scattering amplitude st high energies
by summing the diagrams of the covariant Hamiltonian formulation
of QPFT /10/ and disgrams of the three-dimensional formulation of
QFT on the light cone /11/. We consider the interaction Lagran-
glan &(x):g:\yzcx)@(xx, where \Y(x) is the "scalar nucleon® with
mess M and q)(X)is the scalar meson with mass m.

2. A GENERALIZED EIKONAL REPRESENTATION IN THE
RELATIVISTIC HAMILTONIAN THEORY

First we demonstrate how the usual eikonal representation is
derived in the framework of the three-dimensional formulation of
QFT by summing the generalized ladder diagrams, describing the
scattering of two high energy '"nucleons®, with the help of the:
variational derivatives method (see Pig.1). To this end let us

2Axlp) p .
T ) —"" -y e ~
; 3 3y —
\ ( 1 ’/ 4 \ ) ,f \
ST ST < R AR P
P . . .
2 e 1" ,—""’ sl T ,f"’ ’ ‘u\ .
. N .
Mg.1

recall the basic rule's for constructing matrix elements. Suppose
that all vertices of a given Feynman diagram are numbered. Then
the continuous dotted line of quasiparticles must connect all

vertices and be orfented along the increasing vertex mumber. In-
ternal solid lines of the physical particles are oriented in the
opposite direction-along the decreasing vertex number. To each

internal dotted 1ine with the 4-momentm&x(£=k2;’5zz=1,f>0). there
corresponds the factor %—ué':ﬁ N And {0 each intermal “nucleon"

¢
(meson) line with the 4-momentum k.- the function Al)=0(k)~

8 (x2-M2) (D(k) = (k) F(kZm)), v

The sum of diegrams of Fig.1 gives the following expression

for the amplitude on the energy shell (i.e. when +P=qf+c[( )
(?)“T(R»Pz:'cﬁ"’rz)s(ﬂ*Piq'f012 = , E*R e

- M 2 ,,0v/.2 2 | . ; .

A KGR IIER 4

(2.1)

~X=0, .-

?

ipr-igx’
where G(Pﬂj}):&dxo{xle? qG(x,xll}) is the Fourier-trans-
form of the one~particle Green function of nucleon in the exter-
nal field }(")EA(")!P(") , which satisfies the equation
[4.~ M*-g3®]GC x5 ) = B(x-x) -

The operators U{A and :}(!P R :lp which there enter derivative
operators over external fields Ai(i = 1,2) and \p , have the
form

x ) 2 -
X, = ex P{-igz Scluclv [G(MJL-W)E(W - 8(u- WD v)] sAi(f)’B A z(w)}, :
Hy= e I exp{fo0rniigda],

S¢@) L
=) P FLKX _(+) .
where & (X)= +1(2x) SE+ D (<)dk is the negative (posi-
tive)~frequency part of the: Pauli~Jordan commutator function.
The operatorﬁ(yappears due to the presence of quasiparticles in
the theory.

The validity of the formula (2.1) can be verified by pertur-
bation expansion using the following formal properties of e-
function: .

1) B(x-x) O (x-%,) = O(x=-%)O(x-%)+ O(x~X,)6(x,;~ %)}

2) B(%- %) 0%~ X3) - OCm-x) =0, mMm =2 (2.2)

3)O"G)=6(x), mz1;

H S0 (X% )0(Xg x0T X )=1.

.over all n!
permutations .

Let us compare (2.1) with the analogous formula of refs./3/which
is obtained by summing the generalized ladder diagrams of the 4-
dimensional Feynman-Dyson formalism (see Fig.2):

("”i)uT(zPi .Pz"%'%) b (Pf R C"i- 1’2) =

. 2 2 ' (2.3)
h : P?,‘o:?’nz l!( é-szq"-M MGG zlAZ)‘G(R' ’lA‘)lAf-Afo.
where ) < 8 .
K =exp {‘ ‘32 §DW-v) SAWOAL) d“d"}
P —4 =
BRI
P, «~—q

-2
Fig.2



For the physical external lines the relativistic Hamiltonian
scheme coincides with the Feynman one, the action of the operator
'J{ leads to the multlplication by unity and the chain of diag-
rams of Fig.1 coincides with the one given in Fig.2, 1.e.,the re-
lation (2.1) gives the same result as (2.3).

In the I K; K;=0 approximation /2,3/ for the amplitude

T(P oy (k)_"['(s t) 2 e get the eikonal representation:

T(s)= QtSSche (exP[szé:)lz T 1) _-t (2.4)

To derive the generalizekd ‘eikonal representatlon (1.1) let us
examine in the ladder approximation"c_ompletely reducible (CR3>
diagrams, describing the process under consideration (see Fig.3).

~ax(®)
P *‘\ (" ,-v" - T IS
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Figo 3

We shall call a diagram the CR-diagram ih'fhe ladder approxima-
tion, if it is such a reducible diagram, irreducible components
of which correspond to one meson exchange (In what follows we
shall omit the words "in the ladder approximation" for brevity).

For one of the CR-diagrams of the 2nth order in 8 depicted
in Pig.4 (the number of all CR-diagrams which differ in the way
the vertices are connected by dotted line, is equal to of ), one
gets the follow1ng expression

'T(S*) m\-.)gﬂdk A( -‘lﬁ—nfo (A +20%, =02

2j¢1
, - (2.5)
'5(A2“I ed )\aezj*2 x%,), :

. -7
where K., EP‘ ? K°EP2’ K2n-l-=-q{"<2"'=- q’z‘%g ®, X, ==, Aszi-i kJ

On integrating over 4K2j,2(3=0,1,...n—-2) , the expression
(2.5) takes the form

) +2
(S ‘t) (SJT)-r—MSn [dK?JM A(sz)A (Azj" '2) gj:“ ]

-l (2.6)
d 2z,
Kn[m(AZ’u 2Jo| %ai) %ng ] s A25“= P_ Keju, P=q|+qz'
Now 1ntegrat:|.ng over | Rojee (J 0,1, ,m-1) , we get:
a AR
( {) Q@Y Sﬂ[dkzyl KZJ“)A (AZJ*' }"x’-:*l)—:% i (2.7)

ol l
‘n a ”Az,.. -{E] Gpl J(l AZ‘N) AlJu .

J=0 1'»‘“

S ALl subsequent calculations are carried out on the energy shell

(®=2=0).

Suppose that at high energies (i.e.,when 8= P-'°° t= (P ‘1')"0"51)
in denominators of the type 224 NAzJ.. w:J.,i of the inte-
grand (2.7) one can neglect the terms 22 (for the discussion of
this approximation, see Appendix), i.e, ,

7/
T "Az,'u*'wzju T J'A’j""' @ajs (2.8)

In this approximation the sum of all terms, corresponding to on
CR-diagrams, is equal to

T, 24 »A(::.%.)i*’ e TIVIRER J1, .9

€ e
where V. [(k, (-) Kz) ] '—5?‘—)—5 K.(‘) K, = k," R"[Kg- _;1“:"'.]
. 2 '

We choose the 4-vector & in the form _
_ P Kaut K :
"}"_J"i Y| Kain + K2 ’ (2.10)
(szu" KZJ'

—

Then expression (2,9) in the c.m.s. (i.e. q,l=- :0', 1=-P2=P )
can be written as follows

'I".\(Sft)ﬁa“wgﬂ [?ia_'d—'g%iégﬁ]ﬁ\/[ z,.,)] (2.11)

izo

=4 d aRun
where Ez |\] +K,", Ep= Eq'-JMzd-q,l A..Q.,J" Run

EZ +
Since high energies are carried by nucleon lines (i.e., the essen-
tial contribution in (2.9) comes from the regions E2 o Eq, ),we
can substitute Ea,u(Ez,n ‘E) by Eq, (Ezm “)

T.sH= (2n)w)(sg,) S E,;.TE’;'Q JSV[(szd()kzj")]_ (2.12)



Now for finding the asymptotics of (2,12), we apply the tech-
nique, developed in ref./4/. To this end, putting

P(—)?i”—&, T<.2j¢|(_‘)q:=_£j ( F=X(+)-ci( ’ _K.qu=.£-i (+)?¢) (2. 13)

and taking into account relations CLI).2 H“d.Q
write it in the follow:.ng form.

Dt a1z, Q]V[_(A()x ] [(x()x)] \] )(_2.14)

_in (2,12),we

TEH)=en) (aa,s Sn[eﬁ

Using relations (&, (—)X)a (.’L l) (see /47, we’ pass "to horo-
spherical coordinates A (q:Zf) X; =(a »K) in (2.14) by means
of formulae E +J\J, Me% , En~ }'n Me’ J+ -Lzy ea" "'(%.:'Mz)’
da,=¢" daoE"

Then we get: i % a,dF, —-»/2.
TEH6D (sg) in [ o f]ﬂv( (2.15)

where A= A@). 3,=3,0%;, ,A"_,=x,_2@?~...,3 ,,’=33,,_,.

The definition of operatlons (+) and ® are given, for example,
in /7/. We have chosen QV in the form q,—(o O,q,) and have taken
into account the fact, that when S>>M’2 1]  the f‘ollowing ap~-

proximation holds £
+
EK‘*’% E“L (E E+)\,JSC1,)/M E ().J Njs ]) E(L(e 1)

Since A (amb'x)()(—i.-'?., ,n) » then A =0, 7 A 5.‘ e (6 b’)
when 1 £ kK<n-4 and Cl.( Qn.,b’,‘, b’h_ when k = n, where,
by definition, 0 ,=Q, 60—- U . Using now in (2.15) the operator
Fourier-trunsformation on the group T(3) _W(‘)

VE)VET)- g @R e ™™

and performing. the 1ntegration over all U , we arrive at the
expression o a(z z )-iaz, )

T, (0= (16nEL)e Se‘ [e 'e"qj_ — dai].
{1z g’ “”|V<z)|9e >

Taking into account, ‘that in high energy regime the relations
a=~0, z; A |-l:|~ hold, after the integration over Q;
(J 1,2,..,n-1) 4 one. gets the following representation

T(s{)--msje ‘Z&ag;ag,(zs) (6@ z)-8G- g)(gN(Z) V(Z)I?)dz dz 2. 17)

(2.16)

- %"@12 AZJM)/lapAzJN

Thus, we have demonstrated that the summation of the chain of
diagrams (Pig.3) at high energies leads to the representation
(1.1) for the emplitude T(5t)= Z.T (s,t) , which was derived in
/4/ from the QPE.

3. A GENERALIZED EIKONAL REPRESENTATION IN THE THREE-
DIMENSIONAL FORMULATION OF QFT ON THE LIGHT CONE

According to ‘the diagram technique of the three-dimensional
formulation of QFT on the light.cone /11/, to dotted line there
corresponds 4-momentum {2, where 4~vector }/l B in contrast to 4-
vector & , is light-like: p =p&*=0, fo>O . In this case to
the. CR~diagram of the 2nth order 4n 9> which ig depicted in Fig.4,
there corresponds the following expression : )

n-2 ®)

T( )= 2 )‘wSﬂdK Ak, )&(A+u8e dx’“ﬂi)(mmm 40 -

& lE L 2Zu 2,
n

After performing integration over ? (J 12 2n-1). instead of
(3.1) we get *)
Tt~ Al S Ste) L, (s
h (g_n)S(h-.l) 2N 2" 2iaM " - sz_:_is_“._. i€ laFA;J~|
where &2'=(M’A2‘M)/|2|IA2 "l i=i2,.n-L. H.{in
‘Suppose that at high energies in the denominators of the form
» one can neglect the terms Xy (cf.with

/2.8/). Then the sum of all terms, which correspond to 2% CR-
diagra.ms, is equal to (in ‘the follow:mg X=xmO )

T(s{) (2:1) )Shi:l A')(K)E(HAQZM) ﬂ\/[(K Okl e

In (3. 3) it is convem.ent to pass to the c.m.s. (P 0), where
=30 -(e)_n

TED-e) (65 gnE d s, 2 0QE AT nv[(mk f13E o0

2ju 2y j=0

In the hlgh energy ll.mlt, i.e, when 2Eq,—r"’°° the O -functions
in (3.4) can be “replated. by unity. As a result the expression

(3.4) for Tn takes the form
=(n-1}.n-2

TG (85} Mg s Edn"" HV[(K ()K“)],"_ (3.5)

*) s it is known, the points HAEjn: FAZ.. O  do not contribute
in (3.1) (see /11/).



which exactly coincides with the expression (2.12) of the prece-
ding section.

Thus, we again obtain the representation (1.1) for the scat-
tering amplitude, which differs from the usual eikonal represen-~
tation (2.4) by a more complicated dependence of phase function
on the energy ‘and potential. For example, in the case when the

matrix <9|V(z)|9> 8(9 S’N(Z,g) is diagonal, the logarithmic
dependence arises /4.7/
an(i Ve&d))dz

TG ’c)--'*ﬂ*SSsds’J e ™ -1} e
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APPENDIX

When deriving the expression (2.9) we have used the approxima-

tion (2.8), which is analogous to the approximation ZKEKJ=O/2.3/.

It can be shown that this approximation preserves the asymptotics
of the amplitixde.- By the conservation of asymptotics we mean the
following /12/. Let T,{s;t) be the exact contribution of CR-diag-
rams of 2nth order in to the. a.mplitude, and T(S‘l'.) in the appro~
ximation (2,8). Then, ag S—» oo, t= = const. p
Th(s t) — )RS, ‘
T.(5.8) —> L&) BCS). (4. 1)
If jS(s)-—ﬁ(S), then asymptotics does not’ change, though (1) and
) are always different.
For example, let us consider the CR-diagrams of fourth order
(Fig.5), which give the following contribution to the amplitude:
T,6:t)=const SA(K)A(K):D(P):DGL)H jaie[s%.m,m,m,).( |
A2

x§ (K-PI + P’- xaei)S (q;kl-q,'ﬂ\x_,‘) + 8@«-4»32_,)8(&- P- P'q.").az'- AR,)”
i 5(<yz- K’+q,'+ Nz rR)+ S@W K+qf¥->.zz- 22,)5(k~ P P'* XX ML, )*

% 8@(2_ kLqena) + B G*- g+ x%y) S(e- PP >3 8(% K g+ A%, Azs)].
*® dkdk,cl P’clq: .

10 -

’ - ’ o~
P ‘q.« P N
L G4 A U { S W 4 { \ ( )
WA+ RS o+t v+ .
\¢ 7/ 4 Ny . [} t [} ]
P Vi 74 < R S

2 - "}2 S
Fig.5
We write the relation (A.2) in the form
T(Si) TG +A(s.), . ©(A3)

whereT is defined by formula (2,9) with n=2, and for the case
‘'when & 1is taken in the form (2.10), A2 in the c.m.s. has the
form (E,‘ JméRR)

- dSZx 1 -
(5*) °°“3tS Ex { Ep-elm® G-qD-ic] (€Y .‘(Eq EJ-id

i 1
E,,' i (K~p)-.s][ (Eq Ty E“ ak[Efr ~(Eg [ u][ (E;'E‘)’.'-iﬂ}
The appronmatlon (2.8) implies that the terms A..(S +)

v'-T(S A)-T.(SA),n=2 (see /A.1/) are neglected. Here we will de-

momstrate that the asymptotics of A (st) 15 of the form g.Because
of (2 13) and the relation

B 1 (o - £ BE2FT (22

we have

m (K—a,,)— ‘1 = (Eq- E.‘)*:F(ov)
m= (k- P1) =B, 55 (5B = (B OR),
where _§(k)—2ME +mZ 2M and when s’>m,|fl,M2
)
bEp-x —E li E*+)‘3| .
Consequently,

(S {) _Const SCl.Q. (1“+x3) [ s
B M IEY$EOR) 2+s‘3“<1‘ )] (A.4)

what was to be proven.
In the same way one can prove that after omitting '&J in de~

nominators of the integrand in the expression (3. 2), its asymp-
totics does not change. Indeed, confining ourgelvesg to the CR-
diagram of the fourth perturbation expansion order (see Fig. 5)
we get the following expression

1



o K d4Q2 OQR-pK)OHKk-19 1)
A(SJ‘)‘ const{ AL |>) u]{ B+ X,- 1€

2H(P-x) [m* (k-q)=ig] m* (k-

Spq ke x-pip) X2 _ (A.5)

+ z;a)zz—a +9(F"'z k96 FP)I_ae;«ae-u '&3&-«2 (2,~x2~itx=vztatjtt;‘}
L (k- ~(P-x 2 (k-

where &‘—’ZF(K:;'; > Xz “‘2"((5 :)) » By= ’;“:_P;))
We orient, as above, the vector'q,along, and the vector T
against ¥ axis. Then at high energies in c.m.s., one has rela-
tions qu PH 2E$ HE> and the ‘integrand in (A.5) vanishes. It
means that as Eq—> 00 the asymptotics of A,(s,t) is emaller than
that of T (5 1) .

In conclusion it is to be noted, that though when obtaining
the representation (1.1) we have not taken into account all ge-
heralized ladder diagrams (which are used in deriving the usual
eikonal representation), the asymptotics of the amplitude is not
changed, since the sum of all omitted diagrams in each 2nth or-
der tends to zero like ﬂ/s“4.
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