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of gravitation are characterized by the fact that in
newtonian approximation, besides the newtonian gravita-
tional force, there exists a Yukawa-like additional force
which 1s called the strong gravity.
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An Estimation of the Parameters of Strong
Gravity

The solutions of a class of generalized equations

The main result of our investigation is the estima-

tion of the parameters of this force, the starting point
being its possible perturbative action on the motion .
of planets and on the spectra of hadrogen atoms. Another
result is the proof that strong gravity is not able to :
prevent the collapse of objects with masses and sizes
comparable to those of quasars.
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1. INTRODUCTION

The strong gravity 1s derived .by genera-
lizing the equations of the gravitational
field. The generalization can be achieved
in various ways. The most straightforward
one 1s to replace the usual lagrangian den-
sity

L = R = scalar curvature

E
in the integral of the gravitational field
by the lagrangian den51ty :

L, =R +aR? + small terms. . (1)

If then one goes to the weak field limit

in the new equations, one obtains a genera-
lized grav1tat10nal field the potential of
which for a massp01nt ig /1.2.3.4/

U=V+W, _ » (2)

where
' _ GM
r.
is the newtonian potential, and
. W, -4
GsM__e T _ o, DY
r r

W=

(3)

is the potential of strong gravity.

'In (3) and (4) M and r are the mass’ and
the distance to the masspoint, G is the
"newtonian" constant of gravitation,



Gs is the "constant of strong gravity",
and A is a parameter. Furtheron we shall
~use the dimensionless number

G
S= ——.
G

The expression (3) for the strong gravity
was derived also 1in ref. However, in
ref.’3 the starting point is not the gene-
ralized lagrangian (1) but a modification
of the Brans-Dicke theory. This modification
is due to) G.Callan, S.Coleman- and R.Jac-
kiw/%/ who replaced the massless scalar field
in the original Brans-Dicke theory by
a function of a massive scalar field.

Strong gravity was also proposed by
A.Salam and his coworkers /78 the motivation
being that there must exist a generalized
theory of gravitation, built by the same
principle as the photon- p°® -meson mixing
theory/gﬂ i )

There are several other theories related
to strong gravity in the sense that they
are operating with Lagrangian densities
similar toL) The introduction of new Lag-
rangian densities has various motivations
to account for the effects of the quantum
gravity/19-14/ to see whether the big-bang
singularity can be avoided by generalizing
the Lagrangian density/m/or merely to study
properties of more complicated equations of
gravitations/mﬂ

It was claimed that at present to the
~accuracy with which astrophysical and astro-
nomical phenomena are studied strong gravity
is negligible/L4ﬂ_The'same holds for ob-
servations concerning satellite motion and
measurements with gravimeters/4/.
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The purpose of this paper 1is to reinves-
tigate the question on a quantitative level.
In this paper upper limits for C and A
wvere obtained for two cases: a) when A has
order of magnitude of one astronomial unit
and b) when A has the order of magnitude
of the first Bohr orbit. The estimations
are derived from the difference between
predicted and observed perihelion shift of
Mercury in the case a) (sec.§2) and on the
base of predicted and observed Lamb shift
of the hydrogen atom for case b) (Sec.§3).

The above estimates will be used to cla-
rify whether repulsive forces due to strong
gravity could prevent the collapse in Gene-
ral Relativity as conjectured by A. Salam and
coworkers’/8/ or at least to try to explain
the observed stabilify of quasars as sug-
gested by the present author/lﬁIWThe ana-
lysis shows that strong gravity is not in’
the position to supply repulsive forces
able to prevent the collapse of objects with
masses and dimensions typical -for quasars.
It is also doubtfull whether strong gravity
would prevent collapse of objects which
are smaller than quasars.

2. SECULAR SHIFT OF MERCURY’S PERIHELION

Shapiro and his coworkers have made an
attempt to determine the general relativis-
tic effects of the combined motion of the
planets of the Solar system. They have used
the following method. The parameters of
planetary motion with respect to their mu-
tual disturbances have been calculated in
two ways: firstly on the basis of Newton’s
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theory and then by means of Einstein gravi-
tational equations; afterwards the results
obtained in both ways were compared with
observational data, This comparison has
shown that at present there are no grounds
to prefer the ralativistic calculation in-
stead of the non-relativistic one while ‘
taking into consideration the mutual influ-
ence of the Sun and the planets/!9/That is
why, in order to obtain more reliable re-
sults, we shall 1limit -ourselves to conside-
ring the effect of the parameter a in the
non-linear Lagrangian L1=R+aR2 on the secu-
lar shift of Mercury’s perihelion, where
the success of the conventional GR is in-
disputable. '

Hereafter we shall make an estimation
of the parameters A and W, in (3). For
that purpose let us consider the planets
motion in a centrally symmetric field of
the Sun with a potential (2).

As the relativistic corrections are small
we can sum them up linearly with the non-
relativistic ones, and in particular with
the effects of the strong gravity.

Let us pass to taking into account the
effect of the strong gravity. We shall seek
a solution in the form of an expansion over
the small parameter Wy. The Binet equation
for a central force with a potential (2)
has the form

da%i_ ) GM +!W0 —f-
de? T K2 mK?

where K=const 1s the surface velocity, r is
the planet’s radial coordinate, dand O is
the polar angle.

(1+—r)\—)e ) (%) .
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The polar coordinate system is situated
in the plane of the non-disturbed motion
of the planet, its center coincides with
the center of gravity of the system Sun-
planet and the straight line ©=0 passes
through the perihelion.

Let us introduce in (4) the new variable

a GM ' ‘ ’
uzT-— K2 . (5)
The equation (L) takes the form
9 :
d"u
+“‘f(“)l . : 6
e (6)
where

). (7)

LA
fa —2 0+ 2L

)exp (- —
GmM(1- 82) A u- 1——;2 u+1 1 3
. — —_—e
In formula  (7) it has been taken into ac-—
count that GM____ 1 _ , where a ande are
K2 l1—e?2

correspondingly the major half-axis and the
eccentricity of the undisturbed motion of
the planet. £

Applying the method of variation of
constants we can write down the solution of
the differential equation (6) in the form

u=C; cos®+ C, sin & F f (u) sin (0~ )dgp.
. 0

In (5) and (7) it has been taken into
account that the undisturbed motion of the
planet is along an ellipse with major half-
axis a.That is why in the latter equation

we substitute C,= %€ _  and Cz=Q If in ad-

1—-e?.
dition we replace f{u)
in (7) we obtain

‘by its expression
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) sin(@-p)dep,

u=1-—2— cos®+eof(1 + T ———1——-—)exp( T
—€ u+ 5 W, (8)
where 4 1-e ‘ —e
€= ——mmrme
1-e?

Eq. (8) is the nonlinear integral equa-
tion for the unknown function u(®). As e<«1
and e<1 the right-hand side of (8) is a
contraction operator. Therefore (8) can be
solved through the method of succe331ve
approximations of Kachopoli- Banach/ /It is

sufficient to retain the first iteration
and in it only terms linear in ¢. Then we
obtain the solution in the form '

0 2
S cos@re (14 & 1T yeyp(- & 0-b)d
u o cos +e({( + X Trecoss )exp( ,\ e cosq,'))sm( (;‘))(;i;

The law of planetary motion, w;th an ac-
curacy up to terms which are linear in ¢ ,
is given by formulas (5 ) and (9). Let the
shift of the perihelion for one revolution
of the planet be 6. This means that if we

. ' . d
substltute2n+6for 6 in (9) then Eé—le 2740
will be equal to zero. From (5) 1t‘follows

that for this to be fulfilled:—a—-_ should

be equal to zero for 8=2m+0. Therefore, in
order to determine 6 it is necessary to
differentiate (9) over ® and then to sub-
stitute in the left-hand side of (9)
du C 0.
:i—é_l®=217+6
hand side. A
In this way we obtain with an accuracy
up to the first degree in¥f

=0 and ©®=27+ 6 in the right-

2
1~ —e?
< g e
1 +ecos®

O=¢ i@]CoS@d@. (lob)
1+ ecos

exp(~ =

g e A o

In obtaining (10) it has been taken into
account that ¢<Xl. Let us investigate (10)
supposing that a/A>1. In order to take into
aecount the speed of decreasing of the ex-
ponential multiplier in the vieinity of
the point ¢=0 we rewrite (lO) in the fol-
lowing_form: 2 '

= _1_e__+" a _l-e - a2 1 _1
0~6 e —[ (l+/\ l+ecos @ )exp[ (1 € )(l eCOS¢ l4e +
+ 4 —)lcos@dO = e.LEZf 1y 2 1= e? ){ expl- cx{l & )] N

1“' 9 A liecos@

2
exp[__...(l_ Je siri ©/ lcos®dO.
- l4ecos®

Further, con51der1ng that a/A >>1 we sub-
stitute in the latter integral 1 .Tfor cos®

and & forsin®. 1f apart from this we substi-
tute” the limits -« , +o for -m,+m, respec-
tively we obtain '
0=1 5-['1+ G(l-e)lv2d 1te L ep[- S (1-e)],  (11)
e A a l-e € A _
. Where o0 ot 2

1: Ie dt=\/-77.
For e<1l, and taking into account that
a/A>> 1, we obtain

C0=¢V2ry L L exp[- L (1-e)l. (12)
X = Iy .

We must point out the circumstances that
the above calculations can be given a strict
formulation. For that purpose it is neces-
sary to introduce a new variabler=¢ 2 to

give the integral the form of a Laplace trans-

formation and to proceed to Abel asymptotlc'
as a/A- /2%

Let us consider also the opposite case
a/A <1, where the exponential function in
(10) can be replaced approximately by the
expression



1-~e2 1 o (1~e2) 2
o T 2
2 A2 (1~ ecos®)

1- 2
A liecos®
Let us put the latter expression in (10)
and substitute with the approximation l—e cosB+
+ e2 cos?@ for 1 .
1+ecos@®
tion we retain in the expression under the
integral sign the values of the eccentricity
e not higher than second degree we shall
obtain ,

If after the substitu-

6 ¢r A3 a2 (13)
1-e2 A2

Let us pass on to the evaluation of (.
It can be seen from (12) and (13) that the
effect of the additional force is maximal
at A=a and away from this value it decays
rapidly as a»0 or a->=. That is why we
shall use the obtained expressions for the
evaluation of the parameters of the addi-
tional force supposing that A =a and e?<<L.
Then from (13) we obtain

(=039. | (1k)

The latter formula offers the possibility
for evaluation of {. For that purpose we use
the data for the shift of Mercury’s perihe-
lion because it is at least half ‘an order
greater than the perihelion motion  of other
planets. .

Other methods for evaluating the accu-
racy of predicting the GR can also be sug-
gested but the method connected with the
shift of Mercury’s perihelion is the most
reliable’/!9/ This can be explained by the
fact that the shift of the perihelion 1is
a cumulative quantity that 1s calculated

10

on the basis of observations for two cen-
turies. In such circumstances the effect of
processes having accidental or periodical
character (e.g., solar activity) is consi-
derably reduced. Following this argument

we could possibly understand why the attempts
of Shapiro, already mentioned above, to
verify GR by analysing the simultaneous
motion of several planets for several months
were not successful. It is true that until
recently it was thought that the shift of
Mercury’s perihelion could be strongly in-
fluences because of the relatively high
degree of flattening of the Sun/23.24/ 7pne
latest measurements however have shown that
the difference between the polar and the
equatorial diameters of the Sun is equal to
18.4+41.25 mili-arcsec. This value is not
sufficiently great in order to exert sub-
stantial influence on the shift of the peri-
helion. Apart from this it is comparable
with the value of 16 mili-arcsec. for a uni-
formly revolv1ng Sun/25:26/,

The theory of Einstein predicts for the
shift of Mercury perihelion the value of
6-4303” for a century or 5.05.1077 rad./rev.
The observed value amounts to 0y= 43.11+0,k5"”
for a century. The value predicted by the
theory lies in the range of observation
of errors. Let us take the most unfavourable
assumption namely that the half-interval0.45”
of the error of 6y is conditioned by the
strong gravity, or in other words let us
suggest that 6<=0010.. Then from (1lk) we ob-
tain for Mercury (e=0.2)

—9 :
¢ ~1,4.10 if A=a 4 (15)

1
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where a= 5,5 10 cm 1n the major half-
axlis of Mercury’s orbit.

3. ESTIMATION OF G, AND A FOR ATOMIC
DIMENSTONS

Let us discuss briefly some of the pos-
sible effects of the strong gravity on the
spectrum of hydrogen atomn.

Let us assume that in Schrodinger’s
equation

2m

= Py S

AY + 5 [E-~UI¥Y =0
the potential has the form
U=V +W, ; ' (16) "
:;
where ’
v= 28

T

is the electrostatic potential and |
r r ’ ' : !
W= _G..‘-)_!“_.Le~x— :Le—T
r r .
is the potential of strong gravity.
In the last two formulae e is the charge
of the electron and proton and m andM are
their masses. _ o
Taking into account the additional shift
of the transition energy of the jump

'25%, = 2py under the influence of W Y
which is considered as a small correction

we obtain a : e
(<2 ) A
LA Tag 4 : (17)
1+ 3-8
where a = is the radius of the first '
me?2 :

Bohr orbit. AEW
12

has a maximum value

(18)

which is reached at A=3ap .

AEy is superimposed on Lamb’s shift AE
of the hydrogen line with an obtained
experimental value of AES*P = 1057.893(20)MHz

The theoretical value AEw of this quan-—
tity is equal to 1057,864(14)MHz /28/ Proceeding
from these data let us evaluate the para-
meter W of the strong gravitation. For this
purpose let us assume that it 1s admissible
to identify AEy with E®~E[ =0.029MHz.

Under this assumption we obtain

727/

—27
Mo /hass, = 0810 ergem (19)

and replacing W, by G, mM
G_<0,65.10%° erg.em/q.
For the number ¢ we have

. 30 .
() =100e0 (20)
‘A::3ao ’

L, THE EFFECTVQF STRONG GRAVITY ON THE
STABILITY OF QUASARS

We shall estimate the forces acting in
the quasar on the base of a rough model. In

‘this model the quasar will be considered as

a system of two attracting each other mass
points in those cases when we are interes-
ted in the force and the energy of attrac-
tion. Each of the mass points has mass M/2,
where M is the whole mass of the plasma.
The mass of the photon gas is disregarded
and does not enter in M. If 0OXYZ is a Carte-
sian coordinate system with a center coin-
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ciding with the centrum of the quasar, then
one of the masses 1s located in a point
Xd%/Z, Y=2-0, and the other one - in a point
X=R,/25Y=2-0, wvhere R, 1s the radius of the
quasar. :

As far as the force and the energy of
bressure are concerned, the quasar is con-
sidered as a sphere with radius R, where the
pressure is the same over the whole sphere,
The pressure will be equalized with the
photon gas pressure with the plasma pressure
being neglected.

The validity of the. model is notivated
in the following way. The mass My, of ‘the
photon gas could be ignored in comparison
with the massMpl of the plasma because

M R . .
—ph 8 where R :ZGM 1s the gravita-
Mpl Rq B C2

tional radius. As by quasars. we usually have

R
__5<<1,thenM==Mpl . On the other hand, becauséﬂg/
q — 6
gﬂng\/—;‘%;._ and M > 10 M
0 .

we cgn substitute p=p 'In the framework of
the accepted model the Newtonian force Nq
with which are attracted the two parts of

the quasar is given by the expression

2
N,-- GM2 .
4Rq ,

The gas force is calculated according to -
the formula G,=12R"p. (Here and further on it
is accepted that 7= 3 ). The pressure and

the entropy S of the photon gas are given
by the expressions p:.J%Ei and S=4/3. vT3

(21)

respectively, where V=4R> is the volume of
the quasar and «-= T.7x10-15 erg.cm-3 gr —4
is a constant. Following the elimination

14

of T from the formulas for P and S we ob-
tailn '
3.1/3 4/3 _—4
p=(-=) S R,
a
and consequently

1/3 _4/3 1
) S BT
q .

Let us ﬁass on the evaluation of the
post—-newtonian force of the quasar Rl'

The energy'Ew corresponding to the post-
newtonian force Pq,or, in o?her words, the
energy, which is obtained with an accuracy
of the order R /Rqon the basis of the PreﬁS?ce
of GR effects,; 1s given by the expression

B - GM2 Rg B

P Rq Rq ) :
Then, according to the accepted model, we

G -12(3- (22)
q a

have the re{?tion .—GMZRg
, p( q) Rf/2 q R§
from where we obtain o
2 & .
p __GMRg ° - (23)
1 4R3 - : ‘

Let us consider now the equilibrium con-
ditions of the quasar on the basis of the.
post-newtonian approximation of the ?las§1—
cal equation of Einstein of the gr§v1t§t10n
field. Making use of our rough estlmat}o?s
we can write down the equilibrium condition

as follows:
=0. . (2L4)
Gq+Nq+Pq 7 o |
if in'(2h) we subétitute‘(2l), (22) and {23),

we obtailn

15



A GM2Rg
_——— 2 0 :
R2 4R3 : (25) -

2 : 4 3/4
where A=12( 3 )1/3 43 CZM . At S=S*- (GM)

the minued in (25) disappears and that

corresponds to the equilibrium condition in

newtonian approximation. As §*-16, R3 T3
3

L

then according to the equilibrium condltlon
in newtonian approx1mat10n the temperature
of the quasar should be

4 E— —_— ,
T,= V= 235;- VM. . - (26)

The presence of the subtrahend in (25)
however shows that by more strict conside-
ration there will be no equilibrium, There

-remains the post-newtonian force which
could be balanced by the repu151ve force

Y due to the strong gravity. In this case

1nstead of the equilibrium condition (25)

we should have the following equlllbrlum
condition:

Gq+Nq+.Pq+Yq=0, (27)

1
where Y, is the interaction force between
the two parts of the quasar, generated by.
the Yukawa force.

The Yukawa force is essentially depen-
ding on A.

Let us consider thls question in more
detail.

A. Let us suppose that A= TH . where rH
is the radius of the nucleon. Then, it is
natural to suggest’/3/ that the potential
of strong gravity is identical to the or-
dinary Yukawa potential from the theory

16"

of strong interactions, i.e., to the po-
tential of the nuclear forces. If this is
the case, then the contribution of the force
could be described by means of the right-hand
part of the Einstein gravitational equa-
tions. In other words, as in the studies
of Openheimer and his assistants, it is
necessary by the, calculation of T;, to take
into account the nuclear forces. By that
approach however it is known’/?%/ that the
object loses stability already at M=2M

B. Let us consider now the case Ry >A>r,
The strong gravity is supposed to be repul-
sive. In this case because of the counter-
action of the strong gravity, the macrosco-
pic effect will consist in the formation
of surface tension on the surface of the
quasar, as well as state of strain inside’
the quasar with isotropic tension o <0.

C. Finally, let us suppose that A> R,
In this case the potential of strong gravity
would be equal to the newtonian potential.
And that means "that (27) will coincide with
(25). Therefore, in .that case there will
be no equilibrium.

And so, from our analysis it follows
that the strong gravity could generate
a repulsive force with the necessary pro-
perties if we have case B, i.e., 1f the
specifiec Yukawa forces were acting at lon-
ger distance than the nuclear forces under
the condition that their radius of action
was smaller than the radius of the quasar.
It is interesting to note that short-range
action of a similar type has been proposed
on other grounds/29:30/
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For the sake of simplicity let us sup-
pose that the plasma consists only of nuc-
leons and electrons and let £ be the ave-
rage distance between two nucleons. In
principle, however, this suggestion could
not be true, but in such case it is easy
to adjust the conclusions we are to make
further. .

The force F,of the Yukawa type gravita-
tional interaction between two nucleons
with a distance between them:. equal to r can
be written down approximately as follows:

K, =0, r>A,

s

9 :
F ='~Cﬁ["—12w—--(l+/—\’—-), r<h.

s

Let us make an estimation of the repul -~
sive force Y, acting between the two halfs
of the quasar, whieh would be necessary
to maintain its stability. It is sufficient
to investigate the case A = (. For the sta-
bility to exist it is necessary that the
post—-newtonian force R} be equal to the
repulsive forceY;, . As the latter is due to
short-range forces we can ‘put Y, =WR§0-

For the special case A=/

22
so that in a rough approximation we have
R 2
Yqzﬂ(yq)Fs.
Now, equating the expressions for Pj
and Y, - for a quasar with a mass M, ~ 107 M

and radius Rq ~ 10! cm, we get

£=15.10"%cm
-1
F_ ~15.107" dyn.

As ; r
F =_£_(..w_0_e—.r )

s dr r

18

we have

forr =f=2A
po_ o
5 ~'7ﬁ?""

From the latter formula we derive
q —~13
W, = W0 =1,7.10 erg-cm .

So, we obtained an estimation for the
value of which would ensure the stability
of the quasar.

Let us now look for the possible value
of wg as derived from the behaviour of
the H atom.

From {17) we have

AE. =100y

Vo450

Taking for AEy as above the value
0.8 .10%7 ergem we have '

wo-w!" 21,4.107%° erg.cm.

0 0

. H m
For the comparison we must take W, :=r~n-f——~
. ( !

: — . H
W= 1840WI{I) _ 2510 %q.cm instead of W, -

The comparison‘between WJ and.WH* shows
that even if shortrange forces would be 107
times weaker than is necessary to maintain
the equilibrium of gquasars, they would be
discovered from the behaviour of atomic
systems. As is easily seen, this conclusion
is true not only for r=f=A Dbut also for
£~ A2 0,012

So, one is led to the conclusion that
the strong gravity does not explain the
observed stability of quasars and probably
of objects much smaller than quasars.

The author is indebted to Prof.Ya.B.Zel-
dovieh for an essential comment which
prompted the investigation of the problem.
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