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An Estimation of the Parameters of Strong 
Gravity 

The solutions of a class of generalized equations 
of gravitation are characterized by the fact that in 
newtonian approximation, besides the newtonian gravita­
tional force, there exists a Yukawa-like additional force 
which is called the strong gravity, 

The main result of our investigation is the estima­
tion of the parameters of this force, the starting point 
being its possible perturbative action on the motion 
of planets and on the spectra of hadrogen atoms. Another 
result is the proof that strong gravity is not able to 
prevent the collapse of objects ~ith masses and sizes 
comparable to those of quasars, 

The investigation has been performed at the 
Laboratory of Computing Techniques and Automation, JINR. 
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1. INTRODUCTION 

The strong gravity is derived by genera­
lizing the equations of th~ gravitational 
field. The generalization can ii'e achieved 
in various ways. The most straightforward 
one is to replace the usual lagrangian den­
sity 

L "' R = scalar curvature 
E 

in the integral of the gravitational field 
by the lagrangian density 

2 L 1 sR+aR + small terms. ( 1) 

If then one goes to the weak field limit 
in the ne~ equations, one obtains a genera­
lized gravitational field the potential of 
which for a m:sspoint is /l,2 ,3 ,4/ 

U,. V+W, 

where 

( 2) 

V"" 
GM 
r 

is the newtonian potential, and 
r 

GsM --x-
W= ----e 

r 
Wo - -x 

=-.e 
r ( 3) 

is the potential of strong gravity. 
In (3) and (4) Mand r ~re the mass and 

the distance to the masspoint, G is the 
"newtonian" constant' of gravit~tion, 
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Gs is the "constant of strong gravity", 
and A is a parameter. Furtheion we shall 
use the dimensionless number 

Gs s---
G 

The expression (3) for the strong gravity 
was derived also in ref. 151 However, in 
ref. 151 the starting point is not the gene­
ralized lagra~gian (l) but a modification 
of the Brans-Dicke theory. This modification 
is due to> G.Callan, S.Coleman and R.Jac­
kiw161 who replaced the massless scalar field 
in the original Brans-Dicke theory by 
a function of a massive scalar field. 

Strong gravity was also proposed by 
A. Salam and his coworkers /7,S/• the motivation 
being that there must exist a generalized 
theory of gravit~tion, built by the same 
principle as the photon- p 0 -meson mixing 
theory / 9/_ 

There are several other theories related 
to strong gravity in the sense that they 
are operating with Lagrangian densities 
similar to L 1• The introduction of new Lag­
rangian densities has var:i.ous motivations 
to account for the effects of the quaritum 
gravity/10- 14/ to see whether the big-bang 
singularity can be avoided by generalizing 
the Lagrangian density/IS/or merely to study 
properties of more complicated equations of 
gravitations /IG/. 

It was claimed that at present to the 
accuracy with which astrophysical and astro­
nomical phenome~a are studied strong gravity 
is negligible/1,4/. The· same holds for ob­
servations concerning satellite motion and 
measurements with gravimeters 141_ 
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The purpose of this paper is to reinves­
tigate the question on a quantitative level. 
In this paper upper _limits for C and A 
were obtained for two cases: a) when A has 
order of magnitude of one astronomial unit 
and b) when A has the order of magnitude 
of the first Bohr orbit. The estimations 
are derived from the difference between 
predicted a~d observed perihelion shift of 
Mercury in the case a) (sec.§2) and on the 
base of predicted and observed Lamb shift 
of the hydrogen atom for case b) (Sec.§3). 

The above estimates will be used to cla­
rify whether repul~ive forces due to strong 
gravity could prevent ~he collapse in Gene­
ral Relativity as conjectured by A. Salam and 
coworkers 181 or at least to try to explain 
the observed stability of quasars as sug­
gested by the present author /I 7,18(The ana­
lysis shows that strong gravity is not in" 
tbe position to supply repulsive forces 
able· to prevent the collapse of objects with 

• fll • • 
masses and dimensions typical for quasars. 
It is also doubtfull whether strong gravity 
would prevent collapse of objects which 
are smaller than quasars . 

2. SECULAR SHIFT OF MERCURY'S PERIHELION 

Shapiro and his coworkers have made an 
attempt to determine the general relativis­
tic effects of the combined motion of the 
planets of the Solar system. They have used 
the following method. The parameters of 
planetary motion with respect to their mu­
tual disturbances have been calculated in 
two ways: firstly on the basis of Newton's 
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theory and then ·by means of Einstein gravi­
tational equations; afterwards the results 
obtained in both ways were compared with 
observational data. This comparison has 
shown that at present there are no grounds 
to prefer the ralativistic calculation in­
stead of the non-relativistic one while 
taking into consideration the mutu~l influ~ 
ence of the Sun and the planets l 19(That is 
why, in order to obtain more reliable re­
sults, we shall limit ourselves to conside­
ring the effect of the parameter a in the 
non-linear Lagrangian L 1=R+aR 2 on the secu­
lar shift of Mercury's perihelion~ where 
the success of the conventional GR is in­
disputable. 

Hereafter we shall make an estimation 
of the parameters ,\ itnd W

0 
in ( 3). For 

that purpose let us consider the planets 
motion in a centrally symmetric· field of 
the Sun with a potential (2). 

As the relativistic corrections are small 
we can sum them up linearly with the non­
relativistic ones, and in particular with 
the effects of the strong gravity. 

Let us pass to taking into account the 
effect of the strong gravity. We shall seek 
a soiution in the form of an expansion over 
the small parameter WO • The Binet equation 
for a central force with a potential (2) 

/20/ has the form 
2 1 r 

d (-) 1 GM W o r - -
r +-:--+--(1+-)e ,\ {4), 

dB 2 r K 2 m K 2 ,\ 

where K=const is the surface velocity, r 1-s 

the planet's radiai coordinat~, ~nd 0 is 
the polar angle. 
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The polar coordinate system is situated 
in the plane of the non-disturbed motion 
of the planet, its center coincides with 
the center of gravity of the system Sun­
pl~net and the straight line @., 0 passes 
through the perihelion. 

Let us introduce in (4) the new variable 

a GM 
u~-----. 

r K2 

The equation (4} takes the form 

d2 __ u_ +ux f (u), 

d Et 
where 

( 5 ) 

(6) 

WO a 1 a 1 ) ( ) f(u}x----(1+ --=----)exp(----1- · 7 
GmM(l-e2) ,\ u- - 2 ,\ u+ --2 

1-e 1-e 
In formula (7) it has been taken into ac-

count that~ 
K2 

correspondingly 
eccentricity of 
the planet. " 

1 , where' a and e are 
l-e 2 

the major half-axis and the 
the undisturbed motion of 

Applying the method of variation of 
constants we can write down the solution of 
the differential equation (6) in the form 

u=<; cos@+ C
2 

sin 0+ f}- f (u) sin ( 0-¢ )d¢. 
• 0 

In (5) and (7) it has been taken into 
account that the undisturbed motion of the 
planet is along an ellipse with major half­
axis a. That is why in the latter equation 

· ae we substitute C 
1 
=·-2 1-e · 

dition we replace f~) 
in. (7) we obtain 

and C 2 =0. If in ad-

by its expression 
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e 
U= -~ COS0H J (1 + ~ l )exp(- T l ) sin~0-<p)d¢, 

l-e 2 
0 ,\ u+ _1_ u+ _1_ (8) 

where ' 
l-e 2 . l-e2 

f=--2-· 
1-e 

Eq. (8) is the nonlinear integral equa­
tion for the unknown function u(0). As f« 1 
and e<l the right-hand side of (8) is a 
contraction operator. Therefore (8) can be 
solved through the method of successive 

. . h 1. B 1211 . approximations of Kac opo i~ anach .It is 
sufficient to retain the first iteration 

and in it only terms linear inf. Then we 
obtain the solution in the form 

0 2 2 
U= _e_· cos0+c f (I+~· l-e )exp(- a _ l-e )sin(0-¢,)dcp. 

l-e 2 o ,\ l+ecos¢ ,\ l+ecoscp (9) 

The law of planetary motion, with an ac­
curacy up to terms which are linear in c , 

is given by formulas (5 ) and (9). Let the 
shift of the pe~ihelion for one revolution 
of t·he pianet be 0. This means that if we 

substitute 2rr+0for 0 in (9) then -<iLI,:; 2 0 d0 6= TT+ 
will be equal to zero. From (5) it follows 

that for this to be fulfilled~ should 
. d0 

be equal to zero for ®=2TT+0. Therefore, in 
order to determine 0 it is necessart to 
differentiate (9) over 0 add then to sub­
stitute in the left-hand side of (9) 
du I • • 
--

0 0 
= 0 and 0= 2TT+ 0 in the right-

d0 6= 2TT+ 
hand side. 

In this way we obtain with an accuracy 
up to the first degree in 0 

2 . . 
l-e 2TT 1-e 2 a l-e2 

0= f -- J (1+ _g_ ----)[exp(- -- · -}]cos0d0. ( 10) 
e O ,\ 1 +ecos0 ,\ l+ecos0 

8. 

~-

~ 
i 

( 

,i 

~ 
· I 
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In obtaining (10) it has been taken into 
account that f«l. Le.t us investigate (10) 
sup po sing that a/,\» I. In order to take into 
account the speed of decreasing of the ex­
ponential multiplier in the vicinity of 
the point ¢=0 we rewrite (10) in the fol-
lowing form: 2 

2 ·+ir 
0 1-e [ (l a 1-e ) [ a (l 2 )( 1 1 =f--- +-----exp -- -e ---+ 

e _TT ,\ l+ecos0 ,\ l+ecos¢ l+e 

+ __l_)]cos0 d0= f-ldt'JTT(l+ ~ l-e
2 

)I exp[- a(l-Ef)] x 
1 +e e -rr ,\ l+ecos0 ,\ 

· 2 a - sin2 0/2 · 
x exp[...:-(1-e)e ----]cos0d0. 

,\ . l+ecos0 
Further, c onsider_ing that a/,\ » 1, we sub­
stitute in the latter integral 1 for cos0 
and~ forsin1. If apart from this we substi­
tute the li_mits -oo, +oo for-TT,+TT, 
tively we obtain 

respec-'-

0=·1 £ [l+ _g_(l-e}]y2~ ·l+e ..l. exp[-~ (1-e)], 
e ,\ a 1-e e ,\ 

( 11} 

where +oo..._ 12 
l = J e d t = ../rr. 

-00 

For e«l, and taking into account that 
a/ A» 1, we obtain 

0= ( v'2 TT v' !!. - 1- exp [ - !!. (1- e) l. ,\ eye ,\ (12) 

We must point out the circumstances that 
the above calculations can be given a strict 
formulation. For that purpose it is neces­
sary to introduce a new variabler~¢ 2 to 
give the integral the form of a Laplace trans­
formation and to proceed to Abei asymptotic 
as a/,\ ➔ oo/ 22/ 

Let us consider also the opposite case 
a/,\« l, where the expone,ntial function in 
(10) c~n be replaced approximately by the 
expression 
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2 2 2 ) 2 
1 

_ ~ 1- e + L ~ __ (l_-_e ___ _ 

,\ l+e cos 0 2 .\ 2 (1- ecos0) 2 

Let us put the latter expression in (10) 
and sub'stitute with the approximation l-ecos0+ 

+e2 cos20 for 1 If after the substitu-
1 +e cos(-) 

tion we retain in the expression under the 
integral sign the values of the eccentricity 

e not higher than second degree we shall 
obtain 

0= (11 ---­
l-e2 

a2 
,\ 2 • 

(13) 

Let us pass on to the evaluation of (. 
It can be seen from (12) and (13) that the 
effect of the additional force is maximal 
at A=a and away_ from this value it decays 
rapidly as a➔ 0 or a ➔ 00 • That is why we 
shall use the obtained expressions for the 
evaluation of the parameters of the addi­
tional force supposing that ,\ :ea and e

2 
«l. 

Then from (13) we obtain 

("' 0,3 0. ( 14 } 

The latter formula offers the possibility 
for evaluation of(. For that purpose we use 
the data for the shift of Mercury's perihe­
lion because it is at least half an order 
greater than the perihelion motion· of other 
planets. 

Other methods for evaluating the accu­
racy of predictin~ the GR can also be sug­
gested but the method connected with the 
shift of Mercury's perihelion is the most 
reliable119(This can be explained by the 
fact that the shift of the perihelion is 
a cumulative quantity that is calculated 
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on the basis of observations for two cen­
turies. In such circumstances the effect of 
processes having accidental or periodical 
character (e.g., solar activity) is consi­
derably reduced. Following this argument 
we ~ould possibly understand why the attempts 
of Shapiro, already mentioned above, to 
verify GR by analysing the simultaneous 
motion of several planets for several months 
were not successful. It is true that until 
recently it was thought that the shift of 
Mercury's perihelion could be strongly in­
fluences because of the relatively high 
degree of flattening of the Sun/ 23 ,24/. The 
latest measurements however have shown that 
the difference between the polar and the 
equatorial diameters of the Sun is equal to 
18.4~1.25 mili-arcsec. This value is not 
sufficiently great in order to exert sub­
stantial influence on the shift of the peri­
helion. Apart from this it is comparable 
with the value of 16 mili-arcsec. for a uni­
formly revel vi"ng Sun f 2 S, 26 1. 

The theory of Einstein predicts for the 
shift of Mercury perihelion the value of 

0 ,, -1 I 0r=43, 3· for a century or 5.05.10 rad. rev. 
Th·e observed value amounts to 0 0 = 43.ll~0.45" 
for a century. The value predicted by the 
theory lies in the range of observation 
of errors. Let us take the most unfavourable 
assumption namely that the half-interval0.45" 
of the error of 0o is conditioned by the 
strong gravity, or in other words let us 
suggest that e,,,~Ol0E. Then from (14) we ob­
tain for Mercury ( e =0.2) 

(=l,4•10-9 if ,\:ea ( 15 } 
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where a= 5. 5 l O cm in the maJ or half-
axis of Mercury's orbit. 

3. ESTIMATION OF Gs AND A FOR ATOMIC 
DIMENSIONS 

Let us discuss briefly some of the pos­
sible effects of the strong gravity on the 
spectrum of hydrogen atom. 

Let us assume that in Schrodinger's 
equation 

fl 'l1 + ~ [ E - U] 'l1 = 0 
h2 

the potential has the form 

U=V+W, 

where 

V= 
2' -e 

r 

is the electrostatic potential and 
r_ M r W r 

W = ~m e - X- = - e - T 
r r 

is the potential of strong gravity. 

( 16 ) 

In the last two formulae e is the charge 
of the electron and proton and m and M are 
their masses. 

Taking into account the additional shift 
of the transition energy of the jump 

, 2s½ -2p½ under the influence of W 
which is ,considered as a small correction 
we obtain (2,2 

Wo ,\ 
~E =------ (17) 

W ao /l + -i9-)4 

where a 0=~ is the radius o_f the first 
me 

Bohr orbit. ~Ew has a maximum value 

12 

I 
f 
\ 

-~ 

! 

:A 
·: V 

i,I 

16.E Wmax 
9 Wo 

I= 512 ¾ 1 

which is reached at A=3ao • 

( 18) 

6-Ewis superimposed on Lamb's shift 6-EL 
of the hydrogen line with an obtained 

. /27/ 
experimental value of LlEeLxp = I057-893(20)MHz . 

• . A th • The theoretical value uEw of this quan-
tity is equal to 1057,864(14)MHz 128( Proceeding 
from these data let us evaluate the para­
meter W of the strong gravitation. For this 
purpose let us assume that it is admissible 
to identify . 6-Ew with Etp-Et~=0.029MHz. 

Under this assumption we obtain 

-27 
W

0 
I,\ "" 0,8 • 10 erg.cm 

:3a 
0 

and replacing W
O 

by G,, mM 

G < 0,65 • 10 25 erg.cm/ g . 
s -

For the number <:: we have 

<:; I ""IO 
32. 

II 
,\"" 3 a · 

0 

4. THE EFFECT OF STRONG GRAVITY ON THE 
STABILITY OF QUASARS 

(19) 

( 20) 

We shall estimate the forces acting in 
the quasar on the base of a rough model. In 
·this model the quasar will be considered as 
a system of t_wo attracting each other mass 
points in those cases when we are interes­
ted in the force and the energy of attrac­
t ion. Each of the mass points has mass M/2, 
where Mis the whole mass of the plasma. 
The mass of the photon gas is disregarded 
and does not enter in M. If OX Y Z is a · Cart e -
sian coordinate system with a center coin-
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ciding with the centrum of the quasar, then 
one of the masses is located in a point 
X=R /2 , Y=Z=O, and the other one - in a point 

q • • 
X=-Rq/2 ,Y,,Z=O, where Rq is the radius of the 
quasar. 

As far as the force and the energy of 
pressure are concerned, the quasar is con­
sidered as a sphere wi~h radius Rq where the 
pressure is the same over the whole sphere. 
The pressure will be equalized with the 
photon gas pressure with the plasma pressure 
being neglected . 

The validity of the. model is motivated 
in the following way. The mass Mph of ·the 
photon gas could be ignored in comparison 
with the massMpl of the plasma because 

Mph Rg 2GM . . 
-~-- " -- where R = - is the gravi ta-
M pl Rq g c 2 

tional radius. As by quasars. we usually have 
R /29/ ~<l,thenM"'M 1 .On the other hand, because 
Rq P1 _M __ p 6 

...:.E.!.. "' 9y--· - and M > 10 M 
~h M -

we can substitute P"P 1.In the framework of 
p • 

the accepted model the Newtonian force Nq 
with which are attracted the two parts of 
the quasar is given by the expression 

GM 2 
N =- - 2 • (21) 

'I 4R 
q 

The gas force is calculated according to 
the formula Gq= 12R

2
p. ( Here and further on it 

is accepted that""' 3 ). The pressure and 
the entropy S of the photon gas are given 
by the expressions p=~ and S=4/3. vr 3 

3 
respectively, where V=4R~ is the volume of 
the quasar and a= 7. 7xlQ-15 erg •. cm-3 gr - 4 

is a constant. Following the elimination 

14 

of T from the formulas for P and S we ob­
tain 

p = (-~)l/3S4/3 R-4 
a q 

and consequently 

3 1/3 4/3 1 
G =12(-) S -

q a R2 
( 22) 

q 

Let us pass on the evaluation of the 
post-newtonian force of the quasar~. 

The energy EP, corresponding to the post­
newtonian fore e P q, or, in other words, the 
energy, which is obtained with an accuracy 
of the order R /Rq on the basis of the presence 
of GR effects/ is given by the expression1291 

2 
E =-Jili_ &_ 

P Rq Rq 
Then, according to the accepted model, we 
have the relation 

00 

E (R ) = 2 f P ( X ) d X 
P q R /2 q 

. q • 
from where we obtain 

p 
q 

GMZ-R 1; 
12. 

4R 3 
q 

-GM
2

R g 

R2 
q 

( 2 3) 

Let us consider now the equilibrium con-
ditions of the quasar on the basis of the 
post-newtonian approximation of the classi­
cal equation of Einstein of the giavitation 
field. Making use of our rough estimations 
we can write down the equilibrium condition 
as follows: 

G +N + P = 0. ( 24) 
q q q 

If in (24) we substitute (21), (22) and (23), 
we obtain 
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2 
A GM Rg 

---,,-. - ------=-- = 0 ( 2 5 ) R..:. · 4R 3 
q q 2 1/4 3/4 

where A =12( 1..f3s413 - ~- At S=S*= a_ (GM) 
a 4 24 

the minued in (25) disappears and that 
corresponds to the equilibrium condition in 
newtonian approximation. As S*=_!p_aR 3 T 3 , 

3 q 
then according to the equilibrium condition 
in newtonian approximation the temperature 
of the quasar should be 

4c; -
T = v- 1 -vM 

q a 4 jv 2 ( 26) 

The presence of ihe subtrahend in (25) 
however shows that by more strict conside­
ration there will be no equilibrium. There 
remains the post-newtonian force which 
could be balanced by the repulsive force 

·yq due to the strong gravity. In this case 
instead of the equilibrium condition (25) 
we should have the following equilibrium 
condition: 

G + N + P + Y = 0, q q q q ( 27) 
I 

where Yq is the interaction force between 
the two parts of the quasar, generated by 
the Yukawa force. 

The Yukawa force is essentially depen­
ding on A. 

Let us consider this question in more 
detail. 

A. Le~ us suppose that A= rH, where rH 
is the radius of the nucleon. Then, it is 
natural to suggest~/ that the potential 
of strong gravity is identical to the or­
dinary Yukawa potential from the theory 

16~7 

of strong interactions, i.e., to the po­
tential of the nuclear forces. If this is 
the case, then the contribution of the force 
could be described by means of the right-hand 
part of.the Einstein gravitational equa­
tions. In other words, as in the studies 
of 0penheimer and his assistants, it is 
necessary by the. calculation of Tik to take 
into account the nuclear forces. By that 
approach however it is known/ 29/ that the 
object loses stability already at M=2M 

B . Let us c on s id er now the c a s e Rq > A > r H 
The strong gravity is supposed to be repul­
sive. In this case because of the counter­
action of the strong gravity, the macrosco­
pic effect will consist in the formation 
of surface tension on the surface of the 
quasa~, as well as·stat~ of strain inside 
the quasar with isotropic tension a< 0. 

C. Finally, let us suppose that A> Rq 
In this case the potential of strong gravity 
would be equal to the newtonian potential. 
And that means~that (27) will coincide with 
(25). Therefore, in .that case there will 
be no equilibrium. 

And so, from our analysis it follows 
that the strong gravity could generate 
a repulsive force with the necessary pro­
perties if we have case B, i.e., if the 
specific Yukawa forces were acting at lon­
ger distance than the nuclear forces under 
the condition that their radius of action 
was smaller than the radius of the quasar. 
It is interesting to note that short-range 
action of a similar type has been proposed 
on other grounds 129 ,3o1. 
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For the sake of simplicity let us sup­
pose that the plasma consists only of nuc- • 
leans and electrons and let e be the ave­
rage distance between two nucleons. In 
principle, however, this suggestion could 
not be true, but in such case it is easy 
to adjust the conclusions we are to make 
further. 

The force F 8 of the Yukawa type gravita­
tional interac.tion between two nucleons 
with a distance between them. equal tor can 
be written down approximately as follows: 

F. = 0, r>A, 
s 2 

F "' .§;;_f!_ (l ➔ .L ) r <,\ • 
s I'2 ,\ ' 

Let us make an estimation of the repul­
sive force Y,~ acting between the two halfs 
of the quasar, which would be necessary 
to maintain its stability. It is sufficient 
to investigate the case,\"' P. For the sta­
bility to exist it is necessary that the 
post-newtonian force~ be equal to the 
repulsive forceYq. As the latter is due to 
short-range forces we can put~ =rrR: a. 

For the special case ,\,,,P 
Fs 

a "' ::;-z-P . 
so that in a rough approximation we have 

R 2 
y "'" (~} F . q l S 

Now~ equating the expressions for Pp 
and Yq for a quasar with a mass Mq "' 10 9 M 
and radius R == 10 16 cm, we get q 

f' -6 = 1,5. 10 cm 

F == 1,5. 10-I dyn. 
s 

As 
F 

s 

. r 
=_<L ( Wo e -x-
. dr r 

} 
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forr == P= ,\ we have 

F 
__ 2Wo 

5 - e2 
From the latter formula we derive 

q -13 
W0 =W O "' 1,7 -10 erg-cm. 

So, we obtained an estimation for the 
value of whic~ would ensure the stability 
of the quasar. 

Let us now look for the possible value 
of w;} as derived from the behaviour of 
the H atom. 

From (17) we have 
IO~ 

LiE == -- • W . w 4,5 0 

Taking for LiEw as above the value 
0.8 . 10-27 ergcm we have 

II -26 
W = W "' 1,4 • IO erg.cm. 

0 0 H m 
For the comparison we must take WO *"' _ _e_ 

I 
. me 

H I · -23 • H · w0 = 184DW-o = J.,5 -10 erg.cm instead of W0 • 

• # q H * The comparison between W0 and W0 shows 
. 101n that even if shortrange forces would be 

times weaker than is necessary to maintain 
the equilibrium of quasars, they would be 
discovered from the behaviour of atomic 
systems. As is easily seen, this conclusion 
is true not only for r,,,f,,,,\ but also for 
r ~ ,\ ~ 0;01£ 

So~ one is led to the conclusion that 
the strong gravity does not explain the 
observed stability of quasars and probably 
of objects much smaller than quasars. 

The author is indebted to Prof.Ya.B.Zel­
dovich for an essential comment which 
prompted the investigation of the problem. 
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