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BapGamos B,M,, Hecrepenxo B.B. E2 - 10385
PenaruBucTckan CTPYHa C MACCAMH HA KOoHuUax

PaccMmaTpuBaeTcs KJaccHyeckas u KBAHTOBAS TeOPHS Pe/ISTHBHCTCKOH
CTPYHBEI C TOYEYHBIMH MacCaMd Ha KoHuax, HakneHe! pewenus ausamuvecknx
YpaBHeHUH AN4A onpedesleHHOro KjJacca [ABHXEeHHH, XOTda NapaMeTp BpEeMeHHOH
9BOJIIOLHH T INPOMNOPUUOHA/TIEH COGCTBEHHOMY BPEMeHH KOHIOB CTpyHb, Pewe~
HHe /IMHeHHON XpaeBOok 3agauM B I9TOM ciyyae naercs psanamn $ypbe, Orpa-
HHYeHHs Ha amnautyas $ypbe, Clleaylompue U3 yC/NOBHH OPTOroHaNbHON Ka=—
MMGPOBKH, CYWeCTBEHHO OTJMYAKTCS OT yclosdit Bupasopo ana cpoBonHol

Introduction
cTpyHel. HalineHr Macca, HMOynbC M yriaoBOH MOMEHT CHCTeMbl,

Pa6ora Boimonnena B JlaGoparopuu TeopeTHueckoH ¢uauxu OW AU, The study of the relativistic string is important for
elementary particle physice for two reasons. First, quantiza-
tion of the free string gives the mass spectrum of the reaso-
nance states in dual models that allows this object to be con-
pidered as a dynamical basis of the dual-reassonance approach/1/.
Second, the relativistic string can bind quarks ingide had-
rons/2’3/. For thie purpose the relativisetic string should be
considered with masses at the ends. This essentially compli-
cates the mathematical problem compared to the massless string
due to the nonlinear boundary conditions. Only the simplest
classical mo't:ionsj/4 have been investigated for the massive
string. In the case of two~-dimensional space-time ;27 moet
successful study has been made by authors of ref. « A rela-
tivistic string with continuous mase distribution has been
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Relativistic String with Massive Ends

The classical and quantum theory is discussed for the
relativistic string with point masses at its ends. The dy-
namical equations are solved for the class of motions when
the time evolution parameter r is proportional to proper
times of the string ends. The solution to the linear boun-
dary value problem is given by the Fourier series. Con-
straints on the Fourier amplitudes resulting from the ortho-
gonal gauge differ essentially from the Virasoro conditions
for the free string. The string mass, momentum and angular
momentum are found.

The investigation has been performed at the

Laboratory of Theoretical Physics, JINR.

proposed in ref.

In this paper we consider the relativistic string with
point masses attached to ite ends in such a parametrigzation
when the time evolution variable T is proportional to the
proper times of massive siring ends. Thie gives a possibility
to linearize the boundary conditions and the boundary value
problem can be solved by using the Pourier series. The para-
metrization under consideration allows one to describe only
- a certain class of motions of this system . We find constraints
on the Fourier amplitudes which follow from the orthogonal
gauge. These constraints do not coincide with the well known
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Virasoro conditions for the free string. Also the mass, momen-
tum, and angular momentum of the system are obtained.

2, Lagrangian, Equations of Motion and Boundary Conditions

The action for the relativistic string with point masses
attached to the ends is taken as follows

S N -4 J (amoy,,

Ty Gy(T)
where is the constant of [ —dimensions, ’m‘,)n2 are

the masses of endpoints, -' 361 D) d,- -I/ =

=0x,,7)06 , o/x (6.0 “')/o/‘” =x (8 @ T)-rx CYGR LN )

The functions 6 (7), (t 1,2) descrlbe the motions of ends
of the string in coordinates 6 T .

The equations of motion and subsidiary condltlons are the
same as in the free case

.. "
X (6T)~ X, (6,7) =0, (2)
xi+di=0, xA=0 (3)

but the boundary conditions are nonlinear

Jui(&i-l& x+1é é=6,a),

dT\Wxt(1-52 '

w4 (.J_ELﬂré_ = —X,-%,%, =64,

AT \V 24— &2 =M p, i=1,2

and are the main problem to be solved here.
The vector xy(b,‘l’) obeys the D'Alambert equation (2)
with the general solution

(4)

X, (6,7) =y, S+ D) +y, (6=T) =y, (@) +y (B), (5

-~

where (=4 + ¢ , =6 -9 . Substituting (5)
into (3) and (4) gives the constraints on ¥, and ¢
12 /z
Vi = o) ©

and the boundary conditions

jll‘ ZT(VU’(d-)d + %v(ﬁ)ﬁ)= %y(ah {‘/2y(,3)ﬂ,
V2 ¥ ¥ (p)x
A=A (N)=6T)+T, P=f(T1)=6T-T,
(7)

Ju (@) + Y2y (B
TW2yevnma s
X=0,(M)=6,(D)+T, f=L,(N=4(D-T.

denotes the differentiati-

)—-%’faki + ¥ (B,

The prime over {/., (¢=1,2)
on with respect to argument.
From eqs. (5),(6) and (7) it follows that the parameters

a and ﬁ can be changed by new variables such that

&=fe), p=fcp). 8

The boundary conditions (7) can be integrated over ¢

Ep By o)) 0= Enof),

¥ Vx 28t

Xy + X85 - =&
o

These equations being squared give
2 2 .
61.(°L4-,/5‘-)=}1. , 1=1,2, (10)

Next, we prove that d (T)= . For this purpose we
project conditions (9) onto x (é (7),7) and because of

(9)



1"‘,(6‘.(?),7) =£‘-' (d‘.,ﬁ‘.) we obtain

_11,28‘. - - ) J _ _’ a ?
M m E;y(“i’/ec‘) é,‘(ai'piv)_ 2 aréi (a;,ﬂi) =0,

£=1,9.
The latter equality follows from (10). Thus we arrive at the
equality '6‘.:0, ({=1,2) and the string ends can be defined
by setting 6‘(7')=0, 6z(f)= Z - The bound?ry con-
ditions {(4) are now gimplified but atill nonlinear in I}‘

d _&_ = 4 —
ﬂ‘c"l?fﬁ) X, , é=o0,
1 CI .iihi) = - / <;==£. (11)
./"z dl F—Ix,. ‘I"

Hext, let us change the variables (8) so that in the new vari-

ables z > T the string ends be again described by equa-
tions 8" =0 and 8'2 = Z « This condition is ful-

filled by the following change

& = 4lerv-fa-o1, 7= fefsrn +fe-41,

’
where [(T*[)—[(T-[)’-’ZZ and, consequently, (7) is
a periodic function with period 9f [’(T)=[’(T+ l) .
If one introduces the new Lorentz vector f'(z,f)il"(é(g),ﬂf))
then .1‘:(6{,?'), (£=1,2) may be expressed in terms of X,
as follows:

'y - 2,12
x fto,r) =[% x,(0,0)] [ (@),

The function j(‘r) is to be chosen so that the new parame-
ter T  be proportional to the proper times of the string ends

~ ~ ~at o} |
[}g?:ry(6{)11]== 5%%_’ t:=1-2.

< (13)

The masses are introduced here to meke arbitrary constants C{.
dimensionless. Equations (12) and (13) give

o | 2, 22
/(T)zc—sfr,w.?) 5 /(/ﬂ):?i‘f,(g?), (14)
Equations (14) define function @) %in a consistent way
provided that the following conditions

2,2 2.2
20\ 3 078 = (22
&) %,(a7+4) ( Cz) x, (47),
.2 .2
X,(6.7) = X,(6,0v24), 4 =0,¢

hold for Vi’:(é,"r) at the string ends.

Thus, only this class of motions of the massive string
enables one to introduce the time evolution parameter 7 pro-
portional to the proper times of the string ends. In this case,
Eqs. (11)under the condition (13) become linear

- /
X,07) = g 1,057),

s /
Z(be)= -9 %,d7), -

where
= g—"— = (‘—‘Lz 2 t‘ =’,z .
‘ ”Q}ﬂ ”uz
Note that the linear boundary conditions (15) can be de~
rived directly if the action for massive end pointe is taken
in the form proposed by Fock/6/

zq‘
Sm= ",Q”' ji’mdr, (16)
T

For the aqgtion (16) to be equivalent to the conventional one
sz -mfh'Va':’ it is necessary to impose conditions
(13) on 2 Xt .

-3+ Solution to the Boundary Value Problem

To find solutions to eqs.(2) obeying the boundary conditi-
ons (15) we aprly the separation of variables



X, (87) =¢@udd).
r,(67) =g @UE)
Substituting this .}:u into (2) and (15) gives the following
boundary value problem for function ¢/(8)
" '
U6) +w’u©) =0,
2. /
w'lo) =~g U(0),
.9 /
wudy=q ucl).

—t (17)
Further we put /77, =Mz = 7 and (: =C; = C , hence

1}{ = c}z = Q, , a8 well,

Solutions to the problem (17) are of the form

U &) =N [ coscn,6) + L2 sin(u5,6)], -

4 (18)
where /1{1 are the normalization constant s, wn are the
roots of the transcendental equation

; 24
éj(“],g) = - ﬂq/ .
w'-g? (19)

wn are symmetrical with respect to zero therefore these

may be numbered so that (g =0, «w =-w n=r{,*2, ....
The functions (18) then obey the conditions &l b8) —L{ 6).
Equation (19) is equivalent to the two follovung ones

tf(ﬁ]a—[) = w > (n even);

¢ ’:}(‘%“—Z) > (n odd).
Similar equations but different in sign have been derived in
paper for the massive relativistic string in the framework

of another approach,
The eigenfunctions (18) of the boundary value problem
(17), obey the orthogonality condition with weight/7/

14
‘ 1 1 "l — (20)
bfdbllﬂ(é}llm 6)+ 3 U 0)u o) + 912(//4(”’(//_ S .

nm

It is convenient to introduce the weight function
E6)=1(~+ 2}’-[8(6) + 8w-4)1

in terms of which the orthobgonality condition (20) is written
as follows [

of EG6)U ©)U, )6 =8 .

The normalization constants /V” are

ASHOS T

2 +g'
A (Lr )

Further we need the condition of completeness of the system 24n(6)

Zu )1, 65 5(8) =006,8). (21)
The functlon az 3(6,6) is defined by the requirement
Jde'86,6348) = feo),
where (6) is an arbitrary smooth function given in the
interval 0<£é6 ¢ Z. fw, @
Because of P,, = /MB , ‘%u(é’ 7) is ex-

panded as follows
-tw(“'

ren=g.+ % BT, £
zju(o,t)-@, T, f 2]”Z o, bl ) =

- @+ BT, 12’(a94-ae)”(6),

/“ 2"‘9’[ f .‘/_‘n VZ—L'O" (22)
where
d)-:"/“_’;"an ) O(.,,=O(+= V—‘ a+; n>o0.
For @ — == , W » %5-7 ,u,,(b)-.v.z,/ﬁ co3(ngié/!t)

n
and solution (22) turns into the solution to the free string.
The subsidiary conditions (3) result in the constraints

on amplitudes o(” :



A A =0 at n#F-m,; n,m=x1zxg(23)
*, P =0, n¥0, (24)

2 2 .
PG g,

In addition it is neceasary that at the string ends the condi-
tions (13) hold which leads to the equality

. 2
QEI/V * aJ; A A=~ (52)-
n¥o g m
(26)
By using (26) constraint (25) may be simplified as
follows

PL-L(2tf

The congerved total momentum of the string with massive
ends is of the form

SN e (1+?’—")

n¥o

| ¢ ¢
[Zf {[,‘z/’u(o T)+ X (ZT)]+/”IJL (6‘[)(/6— f : (67)016 ,(27)

where 5/1(6,‘7) =/"§(6)I (6,7) is the canonical momentum den-
sity. Inserting (22) into (27) gives

-

For the squared mass of the string we have

M2= P2= 2 (9+£)Z/Vda+‘lm (1+9’—£) . (28)

nxo

If the string does not vibrate then its squared mags differs,
nevertheless, from 41% LI

M02= 4m2 (/-r- —%Q)z, x, =0, n#0.

10

Proceeding from action (1) one may construct the conserved
tengor of the angular momentum of the system under considera-
tion

MY
+ ?}C[x 47)x,4%) - z, w’rn 0] +

M = {[x 0T)X,07) — X, (GDE,00] +

/‘falé[.t (6,DL,(6,0)~ X (6, VL 60] =
= fdé[l‘ GOT, G1) = X,&DT, D],

On subat1tut1ng expansion (22) /N(“y takes the form

/ , {
M= 7O R-LaQ)- 31 (%, @, a ).

-n, ny -y n
n¥o n ol M

4. Transition to Quentum Theory

The obtained classical solutions for the string with
massive ends allow a direct quantization of this system as in
the case of the free atring/1/. Indeed, the quantities 04: and
c{. may be congidered as usual creation and annihilatiop opera=-
tors acting in the PFock space

[c%',og"1:=cq'éi*””o.
Using the condition of completeness (21) this gives the follo-
wing commutators

o / - . ’oa ’!"~ =y ’
[X,(6), 5,601 =[x, 4D, §6)%,(6,7)] f/,,g(é,é),

/ _ Frd / -
[x,(6,9), X,(6,7] =[%, 6D, J‘Tf(é,m =0.

The Bamiltonian of the system which yields the correct,
equations of motion may be chosen in the form

2
I
R TTAR P



In the quantum theory constraints (23) and (24) on the
normal modes (Xn should be imposed as conditions on the phy-
sical state vectors /¢)

Lm $)=cl o [P)=0, n,m)0, (29)

G, 12>= & PI®)=0, nyo. (30)

Conitrary to classical theory, it is enough to require that
these constraints are valid only for 71 ,m)(Q 8 . Then, obvio-

usly, the commutators between constraints will be zero and mo-
reover [,‘ﬂ and Q" will commute weaklylg/ with the Hamil-
tonian H.

Following ref./g/ y condition (30) may be used to construct
the physical space of state vectors with positive definite norm
in the center-of-momentum frame of the string where ﬁ—' o .
In this frame

o, PPy = "P°IP) =0, n»o0.

Agsuming that P°/¢} #* 0 we obtain
/) =0, n)o, :

i.es the time components of operators O(ﬂ which just produce
the negative norms ( '"ghost"® states) in fact are zero.
Vectors of the Pock space in this system are constructed by
the action on vacuum only of spatial components of the crea-
tion operators n « In particular, formula (28) for the

squared-mass operator of the system now takes the form

M =f(§+/)ﬂzz/\ﬁ, w, a,d, +m.,
- 2
where mo’- contains in addition to the classical term /z =

12

= 4m2(1 + ég’)z the arbitrary constant arising in the transi-
tion to the normal product of a' ; o It is clear that
for N+ oo and W, w the spectrum of operater M!yecomes
equidistant.

The dynamical variables M /7 M in the case under
congideration are expressed in the same fom as in the theory
of the free massless string, but the frequences w, do not equal

ny /5 and the subsidiary conditions on the physlcal sta-
te vectors (29) essentially differ from the known Virasoro
conditions 1 . \
Conclusion

Iet us discuss in short the geometrical approach to the
theory of a string with massive ends. The action of the free
nassless string is proportional to the area of its world sheet
/1,10/ 8o that it is invariant under the transformation of pa-
rameters of this sgheet . Other invariants of the string world
sheet may be considered, as well, e.g. its integral Gaussian
curvature, and the string mass may be introduced into its ac-
tion by means of this invariant

f j 0/2: R (x, 1‘)

, r 1161 (31)
where R(i, X ) is the Gaussian curvature, The conclusion
in paper/12/, that a Lagrangian of this type will produce the
equations of motion of higher than second order is not correct.
In fact, this Lagrangian changes only the boundary conditionsg
because action (31) can be transformed, by the Gauss-Bonnet
theorem " » to the contour integral

TG T,
= ’"jds fcél,'r) Sdsﬁ 6,.7),
7 (32)
where is the geodesic curvature of the world lines of

the string ends. Mathematically, the boundary conditions follo-
wing from (32) are more complicated than those considered above.,
However, physically action (32) is interesting since its varia-

13



tion minimizegs not the length of world line of massive ends
of the string but their geodesic curvature. For a free point
these two requirements give the same equations of motion,

After completing this work it was pointed out to us that
a gimilar model was considered in paper/13/. But these authors
do not use the reparametrization invariant Lagrangien and as
a consequence have not obtained the conditions (29) that in our
case replace the Virasoro gauge conditions.

The authors are pleased to thank D.I.Blokhintsev and
N.A.Chernikov for interest in the work, ’
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