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Conformal Invariant Two- and Three-Point
Functions in Flat Superspace

Some of the representations of conformal group acting
in flat superspace are found. The invariant two- and
three-point functions are analogous in form to the corres-
ponding functions in ordinary space-time.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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In the last years the quantum field theo-
ries invariant with respect to relativistic
supertransformations and to superconformal
transformations are investigated /1%, 1t is
natural such theories to be considered in
the superspace’m/ which is an extension of
MlnkOWSky S space-time with some anticommut-
ing (Fermi) variables.

This superspace flat in the space-time
sector (if ignoring gravitational .effects) is
curved in other sectors/?/, 1In papers/39/
the superconformal algebra acting on the
flat superspace was Proposed.

Because of attractive properties of con-
formal invariant QFT in the ordinary space-
time 710/ ¢ is interesting to invastigate
properties of such a theory in the flat
Superspace. Indeed here, the total two- and
three-point functions up to normalization
constant are determined also from the inva-
riance condition only. The four- -point func-
tion depends only a function of two harmo-
nic ratios.

Determined in such a way two- and three-
point Green functions may be used to con-
struct the higher Green functions using the
skeleton dla ram /1 or the operator product
expan51on techniques.



Consider the proposed in /8:9/ graded
Lie algebra of conformal transformations in iy
a flat superspace o _ c-( - ) )

, BC AB oy
(MypMcp! = ilgcgMap ~D  gpp My =D gep Mpp +

and A=0 if A=yp and A=1 if A=a.

AB4AC In the case when r=0 algebra (1) coin-
+ (=D gpaMpc !y cides with the conformal algebra in the
Minkowsky space with 2h-1 space-like dimen-
sions.

BC ' . . .
[P, M.l =ifge,P. ~<1) —gn, Py}, Consider the field VY(z)=W¥(x,8). As in
A 77BC BA"C CA™B the case of ordinary superfields/6/ ¥Y(z) 1is
5 : a polynomial in ®, i.e., in the Taylor
(K, My ) = ifgg Ko =D~ g, Kpl, expansion in

(1)

[D, P ] = -P 3 [D,K ] =1KA ’ J a, a9y
A A A ‘P(Z)=‘P(X)+®a(‘\ f )@ 0 +...+~———'® .u® (—"gz-"n.—(za—;q’G
i —| T B=0
o0 (2r)! 96 o
- . - . =0, the terms of order k>2r vanish. Here we
(D, M, ] PPy l=0K, K]

use only the left derivative with respect to
Grassmann variables.

The transformation properties of ¥(z) with
where respect to superconformal transformations

(A+B) (C+D) are the following:

[(XypiXcpl =D [(XcpiXag| [P, Y@ - id, ¥,

AB
MAB=_(_1) MBA ) A’By‘°'={ﬂ=0»1a"" 2h-1'a=1"“’ 21'] -——

AB
M, H@] = liz, 95 - (<D 2,9 )+ 5, (D) ,

(h =1,2, 000, r=0,i,..0), gAB=(g#V ;CaB AL =78 =1’Ca/3='.C/3a

. D, ¥@] = Gz, + AW,
can be given by
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1 B, 2
[KA,‘P(Z)] —h[zzAz aB z BB +

B (3)
+2iz (g, g0 = EBA)] +kA¥‘l‘(z).

where 2,3,A and k, are generators of the
stability subgroup, i.e., the one which
leaves z=0712/ We restrict ourselves to the
case kA=0/‘% For the scalar fields X ,g=0
and A =id. For the generalized graded tensor
fields we apply the formalism of homogeneous
polynomials in superspace, i.e.,

Ay
Y(z,&) =V
fal . .
where V¥ is the graded symmetric trace-
less tensor, i.e.,

,...,Az
W, b, (4)

Ay AprnAp  AjAL

AgsensAjs A Ay
k4 =(-1) y

’

Al,Az yeve

2 A
gA1A2W =0 and £=£¢&,=0.

In terms of the homogeneous variables ¢, ,
2 ,g and A have the following form

. AB
L, p=i€, Yy —D " £y vy,

A
A =id+ ¢ V).

¢
. ag A
sion of the corresponding scalar field.

From (3) and (5) it follows that the Fermi
components ® of z have the same dimensions
as the space-time components.

Consider the n-point function

and d 1s the scale dimen-

where VA =

F le,fl;";zn,fn)=<0ma(zl,fl)“.Wn(zn,an0%(6]

Assuming that the vacuum is superconformal
invariant, i.e.,

J,, 10> =0

the invariance condition (in the infinitesinal
form) for is given by the following system
of equations:

n .
]
EdaF 8 =0, (7)

where J:b (see 12/ ) are superconformal
generators acting on the field Wj according
to (3).

The solution of Egs. (7) for =n=2, i.e.,
the invariant two-point function Fy 1is given
by

(z, &Nz &)

e 2 \d 12°17°712%2" ¢
Fy &3z, ) =N ) 168, - ————1"
212 (8)



where Z19=2; —2Zy , z2= zAzA=zAgAHzB, d :dl=d2 ,

=0;-¢5, and N% is a normalization constant.
The form of (8) is analogous to the corres-
ponding conformal invariant two-point func-
tion in the ordinary space-time given else-
where /10/,

Taking into account (4k), from (8) we have

{A,B} [P AB A,B
F, @=N &Y% 8 2 ' 2@ ¢ Lo traces,  (9)
{aliBl
A_B
where rABuh=gAB-4—DAB z ;—— is graded
Z

extension of the well known conformal tensor
and | is the graded symmetrization ope-
{A}FB} P

rator, i.e. symmetrization with respect to
Bose indices and antisymmetrization in Fer-
mi ones.

Two-point function (8) is a polynomial in
anticommuting variables. In the simplest
case (scalar fields) from (8) (or (9)) we have

0, 2.-2 0 2 -2 0, 1
Fz(z)—Nd(z ) ~Nd(x +0C0) "= Nd{ -

(x2)d
\ (10)
_g 000 ddr) BCO)° L rddiD)... der-1) (OCO)"
(x2)d+1 28 (xhd+ 2 r! (x2Hyd+r

It may be checked that for

0 ~h d
Ny= en ™ ! LD

Fth-r-d

the two-point function (10) satisfies the
following normalization condition/10/

d (2h—2r-d)
_ﬂdz)F2(z1—z)F 9 (z~2z,) =8(z, -z

9)s (11)
(2h - 2r—d)
where Fy is the two-point func-
tion for the field with scale dimension
d=2h-1r)-d. We shall prove that the fields
with scale dimensions d and d are transform-
ed according to the equivalent representa-
tion of superconformal group. (In the case
of r=0 +this is well kncwn). Indeed, the
second Casimir operator of superconformal
group is given by

Cpy =+M*®_ +k*P -D? +2ith-rD -
2 BA A

1

AB 2
=53 Zp, 4k P, -AT 4 2ih-pA.

Consequently, for scalar fields we have

C d(2h-2r- d).

11~
In the case of scalar fields the invariant
three-point function is given by

'Fa(zl,z2,z3 ) =
(d) dg~dy=dy 5 d1=dy=dy dg—d |—d 4
12 23 31 ?
(12)
ldj}

where z; =z;-z; and C is a normali-
zation constant. For two scalar and one tensor
field from (7) we have



Folzz,.2,,8) =

{d.} g dg=d) —dy 5 dy-dy—dy dy—d|—d,

=Cqlz ) (z,,) (zy ) x
(13)
2138 zg3¢ !
x ( pr )
13 23

The transition of (13) to the index for-
malism can be performed by replacing the
latter factor in (13) by the following
(graded) symmetric traceless tensor

2156 2,0 3 M 3. M
(—=-—) -8 ) ..0°) - traces
z2 22 fa} 12 12 ]
13 23 ( )4)
A A 1
koA Z ik
where Qﬁ) S LS

ik Ziy

From (8 ), (12) and (13) it follows that
the conformal invariant two- and three-point
functions in flat superspace are formally
identical in form with the corresponding
functions in ordinary space/lo. In the
superconformal theory considered in papers/w
these functions have a more complicated form.
The same concerns higher functions. As an
example we consider the four-point function
for scalar fields. In this case the solution
of Egs. (T) is given by

—d Yldy~do—dq +d,) % (dg—dy=da~d,)
2 1, 2 42ld)=dg=dg+dy 2 2791743
F oz ez y)=z ) Nz 2) (2 54) 2

10

} d,) 2,2 z2 22
p Aldmdprdy—dy “15%4 14”23 )
x (z 24) f( 5 ’ (15

) 2 .9
Z19%34 Zy27%734

where f 1s an arbitrary function of two
harmonic ratios.
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