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Lagrangian Field Theory and Quark Confinement 

In the Lagrangian formalism of quantum field theory 
we have constructed a quantized field q(x) which we call 
the virton field satisfying the conditions: 

(l) the field of free virton quanta is equal 

identically to zero, 
(2) the causal function of this virton f~eld differs 

from zero. 
We consider this virton field ~0 can be a good 

candidate for description of quark confinement. 

The inVL3~igation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. INTRODUCTION 

The progress of the Quark theory compels 
to think that Quarks exist objectively, 
perhaps, in some very unusual form. The 
fact that they have not yet been discovered 
experimentally indicates that possibly 
quarks are such objects of the microworld 
which we did not yet meet. Therefore the 
standard methods of local quantum field 
theory are not, probably, applicable to 
describe Quark fields. 

During the last years there appear a lot 
of models which make attempts to explain 
the Quark confinement. A good review of 
progress in this field has been made by 
H.Joos in /I/ where recent (until March 
1976) scientific publications on this subject 

are listed. 
The basic idea of these approaches con-

sists in the assumption that Quarks are 
the usual Dirac particles which interact 
with a "gluon" field. This gluon field 
creates such a potential between QUarks 
which secures complete Quark confinement. 
The models of bags suppose that inside a bag 
QUarks are almost free but they cannot get 
out of the bag surface due to boundary 

conditions. 
In this paper we propose another way 

of solving the Quark confinement problem. 
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We introduce a new quantized field descri
bing particles which do not exist at all 
as usual physical particles, like electron, 
proton and so on, and exist in the virtual 
state only. These nonexisting particles 
wi 11 be called "virtons 11 and the field q(x) 

describing these particles the virton field. 
This field can be constructed in the fol

lowing way. The fact that the usual elementa
ry particles are observed in experiment is 
expressed mathematically in the quantum 
field formalism that the fields of free 
particles satisfy the Dirac or Klein-Gordon 
equations. 

We will suppose that virtons are pure 
quantum field objects of such a kind that 
the field of free virtons is equal to zero 
identically, i.e., 

q(~ = 0. ( 1 .1) 

We will use the Lagrangian formalism for 
describing of elementary particles. Then 
our hypothesis means that in the Lagran
gian of the virton field 

£'>
0 

(x} = q(x}Z(p}q(x), ( 1. 2) 

" .. a " where p = ia = iy -a-, the operator Z(p} should 
f1- xf-1-

be chosen in such a way that the un1que 
solution of the eQuation 

" Z(p)q(x} = 0 ( 1 . 3 ) 

shouldbe (1.1). 
Thus we postulate that the virton field 

is described by the Lagrangian (1.2) and 
satisfies the equation (1.3) the solution of 
which in the classical case is zero (1.1). 

4 

On the other hand, we want the Green 
function of the field q(~ obeying the 

equation 
" Z(p}G(x- y} = io(x- y} 

to be nontrivial 
-1 " 

G<x- y} = iZ (p}o(x- y). 

( 1. 4 ) 

( 1. 5) 

It means that the virton field which equals 
zero in the free state can exist neverthe
less in the virtual state. If this virton 
field is connected with fields of usual 
physical particles, this will lead to the 
nontrivial interaction of these particles. 

In the framework of the standard methods 
of local quantum field theory it is impos
sible to satisfy the equation (1.3) with 
solution (1.1) and the equation (1.4) with 
solution (1.5) at the same time. However, 
in the framework of the nonlocal field 
theory developed in/ 2/ this problem can 

be solved. 
The idea consists in the following. We 

want to construct a regularized quantum 
field q 0 (x) defined on a Fock space J{ 
which satisfies the imposed conditions 

fim q 0 ( x} = q( x} = 0 , 
0->0 

o· \ 0 - D }}jO> . -1 " .,, Llm <0 T(q (x}q (y = 1Z (p}U\X - y}. 

( 1. 6) 

o .... o 
In this paper we give a solution of this 

problem. 

2. EQUATION FOR THE VIRTON FIELD 

In the Lagrangian formalism the nonin
teracting fermion field q(~ is described 
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by the Lagrangian density 
A 

f
0

<x> = q(x)Z(p) q(x), ( 2 .l) 
A 

where ~p) is an operator. For instance, for 
the Dirac-and Klein-Gordon equations it 
has respectively the forms 

A A A 2 2 
Z(p) = p - m, Z(p) = p - m . 

By the variational principle the field ~x) 
for Lagrangian (2.1) obeys the equation 

Z(p)~x) = 0. { 2. 2) 

The equation for the free Green function 
G(x- y) of the field q(x) is written in the 
form 

A 

Z(p)G(x- y) = io(x- y). ( 2 . 3 ) 

For the Dirac or Klein-Gordon equation 
the solution and quantization of eq. (2.2) 
is the well studied problem. 

Our first task is as follows: to find, 
within the standard Lagrangian formalism, 
classes of such operators Z(p) defining 
equations which could pretend to desctibe 
the virtons in the framework of our hypothe
s lS. 

As stated above, we proceed from the 
assumption that the virtons do not exist as 
usual physical particles. This hypothesis 
can be realized in the following way. We 
suppose that the field describing the free 
virton field satisfying the equation (2.2) 
is identically equal to zero 

~xhO. {2.4) 

In other words, in Lagrangian (2.1) the ope-
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rater Z~) should be chosen in such a way 
that the unique solution eq. (2.2) should 
be the zeroth solution (2.4). 

Consider now that conditions on the 
form of Z(p) follow from our require-
ments. First, from the requirement that the 
Lagrangian should be real and the action 

S = f dxf0 (x) 

should exist as a functional on rather 
smooth functions in the Minkowski and Euc
lidean spaces it follows that the function 
~~ should be an entire analytic function 
of variable z and [Z(z)]* = Z(z*). 

Second, the requirement that eq. (2.2) 
possesses the unique solution (2.4) implies 
that the function Z(z) has no zeros at any 
values of z. 

The general form of entire functions of 
a finite order N satisfying these require
ments is as follows 

PN(z} 
Z(z) = Ce ( 2. 5 } 

where PN(z) is a polynomial of degree N with 
real coefficients, C is a constant. 

We will use the methods of nonlocal quan
tum field theory. It means that the Green 
functions (1.5) should decrease in the 
Euclidean region. This requirement leads 
to the following condition on the function 
Z(z): 2 N/2 

Z(z) = O(e (-z ) ) when 2 ( 2. 6 J z -+-00. 

Further, if we introduce a principle of 
minimum in the sense, that we take the lowest 
degree of polynomial PN(~ in exponential 
function (2.6) which allows all the above 
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requirements to be satisfied, then we ob
tain 

L2 
Z(z) = -Mexpl-f z- 4z 

21' ( 2. 7 ) 

where M,f and L are constants. 
The constant M of the dimensionality of 

mass in this approach gives the scale of 
the virton field q(x). It is not independent 
variable because no physical characteristics 
depend on it directly. In fact, this cons
tant will enter only into definite combina
tions with the coupling constants of inter
actions of our virtons with other elementa
ry particles we will consider below. 

The constants f and L are fundamental 
in our approach. They will define the dy
namics of all possible virton interactions. 
The meaning of these constants will be 
considered in Section 5. 

Thus our re~uirements permit us to find 
the opera tor Z(p) with two independent para
meters f and L only and to avoid any func
tional arbitrariness. 

Finally, the operator 

A A 

Z(p) = -Mexpl-ep 
2 

L 2l -p 
4 

obeys the above conditions. 

( 2. 8) 

3. QUANTIZATION OF THE VIRTON FIELD q(~ 

Our further problem is to quantize the 
system described by Lagrangian (2.1) with 

. " opera tor Z(p). This task is rather pee ul iar 
as the corresponding classical solution of 
eq. (2.2) is identically equal to zero. 

8 

To solve the problem we use methods deve
loped in the quantum field theory with 
nonlocal interaction 131. The idea of our 
method of quantization is as follows: in 
Lagrangian (2.1) the operator Z(;) is 
changed by a regularized operator Z 0 <P> 
such that' first' the function Z0(z) has an 
infinite number of zeros 

0 "" 
Z (z) - Il (1 -

j =I 

at points 

z 

M i (o) 
( 3 .1) 

z i = M i (0) > 0 (j = 1,2, .•• ) 
which in the limit of removing the regulari
zation (o ... 0) 

M . (o) ... "" ( 3 • 2 ) 
J 

and, second, 

0 
fim Z (z) = Z ( z) . ( 3 • 3 ) 
0->0 

In our case this can be achieved, for 
example, in the following way: 

2 
-I 1 L 2 

Z (z) = - M exp I f z + 4 z l = 

2n 
( z + 11) 

2 n 

.... 
-'hfl1 "" 

....5:--l 
M n=O ---nT 

L 
.(4) 

( 3. 4) 
o -I 

-+ [Z (z)] 
L 2 n 

-'h£11 
e l 

1 0 n. n= 

"" (4) 

M 

j 
"" (-1> A . (o) 

J =l 
j=I M .(o) - z 

J 

2n 
( z+ 11) 

2n+n0 

Il (1 - 0 a (z + 11 )L) 
j = I j 

9 



Here 
.a 

M i (o) = (~- 11u{ (j = 1,2, ... ) , 

2£ 
Jl = --;--]-,the parameter a < lf.! and 

L 
A. (8) 

l 

( 3 0 5 ) 

are po-

sitive coefficients which can be determined 
easily. A parameter no defines the decreasing 
of the regularized function [Z 0 (z)] -l in the 
complex z -plane~ 

8 -1 1 
[Z (z)] = 0(--) when lzl-+ "" • 

j zj no 

Let us introduce the system of fields 
Q A 

0 ---· z (p) 8 . 
q.(x)=yA.(8)-;-----q (x), (J=1,2, ... ), (3.6) 

1 1 p-M.(8) 
J 

o 00 ·---a 
q (x) =I (-1> 1 yA .(o)q .(x) 

i= 1 J J 
. ( 3 0 7) 

and 

f
0

(x) = q(x)Z(;)q(x) ... 

( 3. 8 ) 
0 _0 8 A 0 OO j 8 A 8 

...,f 0 <x>=q (x)Z (p)q (x)= I (-1) q.(x)(p-M .(o))q .<x>. 
j =I J J l 

These fields qt(x) correspond to the fic
titious or "ghost" nonphysical quanta with 
mass Mi(m and have no real physical sense. 
They play an auxiliary role and should dis
appear in the limit 0->0. 

The solution of these equations can be 
written in the usual form 
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0 
q . (x) 

J 
- _1~ --> 0 
(
2 

)3/2 fdk[v .... d -ikx 
" jk jk e 

0 + ikx 
+w .... h .... e ], 

jk ji 
( 3. 9) 

- a 1 ·~ - a + ih - a -ikx 
q . (x) = f d k [ v -+ d .... e + w -+ h -+ e ), ( 3 • l 0 ) 

J a (2rr )3/2 0 jk. jk. . jk. jlr. 

where v .... and w .... are the DJ.rac 
d 

jlt. jk an ______ __ 
spinors 

2 .... 2 
vM . (a) + k : 

J 
k ." = E _, (0) 

ju jk. 

The Hamiltonian of this system of fields 
has the form 

a "" i 4 + + 
H 

0 
= I (-1) f dk E _,(a) [d _,J .... - h + h ·~ ] 

j = 1 jk jk. jk. jk. jk 
(3.11) 

As the energy of our system must be positive 
the spinor fields q~(x) should be quantized 

• J • f accordJ.ng to the canon1.cal procedure o quan-
tization with the indefinite metrics: 

+ + j -> -> 
ld-> ,d , ... ,\ = lh .... ,h, .... l =<-u a ,o<k -k'). 

jk j k + jk j k , + jj 

The rest of anticommutators equals zero. 
The space of states ~ containing all ghost 

particles is a vector space with the indefi
nite metrics. It consists of (l) a vacuum 
state IO>, that is unique, defined by the 
conditions 

d -+ IO> = h -> !O> = 0 
jk jk 

and normalized to <010> = 1, (2) one-particle 
and many-particle states which can be const
ructed with the help of the basic vectors 

1 + + + + 
lin,im>= d.-> • .. ·.·d. ·-•·h. _, .... ·h. _,jO>. 

y n! m! l 1 k I. J n kn 11 P 1 • 1mPm 
All the one-partJ.cle, many-part1cle states 

and vacuum generate a complete system of 
eigenstates in the vector space ~- It is es
sential that vacuum jO> and opera tors d "k and 
h.k are independent of the parameter 

1
of 

l l . . ~ regu ar1.zat1on u. 
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We define the space J{(E) which consists 
of normalized physical states of this system 
with the energy nonexceeding an energy E: 

n-+ m-+ - ~ ~ 

\l'(£)= I {d kfd p r.1 .. l(k,pW<E-IE ... (o)-IE _,(8))\jn,im>, 
{jn,im JD,Im jk ip 

where 
n ~ ~ ~ n 

d k =dk
1
• •••• ·dk , IE-> (o)= IE .... (o), 

n jk v=l j k 
v v 
, ... , p ) ~ 

. m 
....... _, _, - -+ --1> --+ 

ft .. l(k,p)=f ... .(kl, ... ,k ;pl JD,Im J ... J ,1 .. .1 n 
l n l m 

z 2. 

Let us define the space of test functions 
Z 

2
• We say_ that the function s>f N variables 

ul' .... ,uN f(u
1

, .... ,uN)~Z 2 if f(u 1 , .... ,uN) is 

differentiable and 
- 1 N 2 

I f(u 1 , ... , uN)\ < Cexpl-- I iuv I l 
- ( ( V= I 

for anyf>O and a constant Cf>O. 
The space Z2 which is the space of 

Fourier transformations of functions f ~Z') 
consists of entire analytical functions -
f<t.: 

1
, ... ,t.:N) for which there exists Cf> 0 such 

that N 

\f<t.: 
1

, ... ,t.:N)\ :S Cexplfv:)t.:v !
2

l 

for any f > 0 and 
00 00 

J d~ l"' J d~N\f(~l + i17l '"''~N+ i7]N)\< 00 

-oo -oo 

for any 17 1 , ... , 1JN. 
Then for \l'(E) ~ J{(E) we have 

(\l'(E),\l'<E)) = I [l k J dJ; e<E-I E .--(o)- IE .... (o)) x 
{jn, im ]k 1p 

Ii + Ii _ _, _, 2 
X (-1} \f 1 .. l (k, p)\ < oo 

]ll, lffi 

We will consider the vector space 

J{ = v J{(E) 

I 

' 

\ 
I 

as the inductive limit of the spaces ~(E) 
r e l at i v e to the imbedding ~(E) ... ~. 

Thgs we have the field operators q~(~ 
and q (x) and the vector space ~ wherd 
these operators act. 

4. REMOVAL OF REGULARIZATION 

What does happen with the field q 0(~ 
and the Green functions of this field in 
the limit o ... 0? Physically it is clear 
that in this limit any physical states 
characterized by a definite value of energy 
cannot contain ghost quanta because the 
masses of all ghost quanta increase accord
ing to (3.5). In order to treat this problem 
mathematically we define the convergence 
on space J{ as the convergence on spaces J{(E) 

for any fixed E > 0. Then 

~i~o(\l'l<E),:qo(xl ) ..... qo(xn):\1'2 (E))= 0 (4.1) 

for any \1'
1 

(E) , \1' 
2

<£) ~ ~(E) and n, because for 
any fixed E there exists 8(£) such that for 

all 0 < o(E) 

(\1' <E> :q0 (x ).; ... q 0(x ):'11 <£)) = 0. 
1 ' l n 2 

It means that according to our definition 

q(x) = fim q 
0 

(x) = 0. 
0->0 

( 4. 2) 

Thus the quantized field q(x) of the free 

virton is equal to zero. 
The Green functions in the limit 8 ... 0 are 

distributions defined on z2. Therefore we 
have to consider the improper limit 

E 
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o ~3 -
firnfdxG {x)f(x)=firnfdpG (p)f(p). (4.3) 
o~o o~o 

Let us introduce the Green functions 

0 0 -3 
G (x -y)= lq (x),q (y}l+' (h. h) 

0 3 -0 
G(_jx - y) = <Oiq (x)q (y)\0>, (l+. 5) 

0 0 -0 
(1+. 6) G (x- y) = <OtT<q (x)q (y))!O>. c 

It is possible to show that 

0 0 
firn J dxG ( x}f(x) = fim f dx G(-)(x)f( x) = 0 . ( 4 . '7 ) 
3~o ~o 

We will not perform here these calculations 
because they are the same as in /3/ for the 
scalar case. 

0 
Consider now the causal function G c(x). 

We have 

0 0 -0 
G c (x- y > = <OIT<q (x)q <y>>IO> 

00 

0 0 
=~A. (o)<OIT<q .(x)q.(y))\0> = (1+.8) 

j = 1 J J J • 

1 -ip( x-yl "" (-H1 A. (0) 
= ---fdpe ~ 

<21T)
4 i i=IM.(o)-p-if 

J 
Then in the limit 8 ... 0 one can get 

i . 
o 1 - "" (-1) A j (0) 

fim J dxG (x)f(x)=fim -- J dpf(p) :t ---... ---
~0 c ~o<277)4i i=lM.(o)-p-h 

J 

2 
1 - 1 " L 2 (I ) = -- f dpf(p)-explf p + --p I 4. 9 

(277)4i M 4 

according to (4.4~. This means that the 
causal function Gc(x) changes in the limit 

14 

; 

1 
~ 

o..., 0 into a non-local nontrivial propagator 

- 8 - 1 L 2 2 
fim G (p) = G (ph -M-explf p + -

4 
p I 

B....o c c (4.10) 

Thus we satisfy th€ conditions (1.6) 
formulated above. 

The limiting causal Green function G (0 
c 

can be written in the form 
2 

G ( ) 1 J -ipx 1 1o ,.. L 2 1 x = --- dp e - exp c. p + -- p 
c (277)4i M 4 (4.11) 

This representation is formal in the Min
kowski metrics and can be understood as 
a distribution defined on Z 

2
• But in the 

Euclidean metrics the causal function is 
a well-defined continuous function: 

1 -iPr.xE-
G (x,) = --JdpFe G (pr.), 

c r. (277)4 , c r, (4.12) 

where 

2 
G c (pE) 1 I o" L 2 I -exp - tp E- --p," 

M ~ 4 "· 
2 (4.13) 

L 2 
1 . -- " sin£ y'p~ - - 4-p 
- fcosfy'pt-pr.--::::....~1 e M r. ~ 2 

v' p F. 

In the Euclidean x~space the functionGc(xE) 
can be represented 1n the form 

2 . "' 2 G c ( x F:) = A ( x E) + m F:B (x E) , (4.14) 

where 

- 2 
2 1 2 L 2 . 

A(x E) = --- f dpEcosfy'p Eexp{- -p F:- IPr.Xr.l, 
~ (277) 4 M , 4 r. r. 

. (p0 E) sinfy'p~ L 2 2 . l 
B(x2) = __ I_ f dp ---:::::=-. . exp{-4p E- IpExE 

E (277)
4

M E y'x2 y'p 2 (4.15) 
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E .... . 
y =(y4 =-iy0 ,y)matrlces ln 
rics so that 

the Euclidean met
E 

E E E E OS> A E E E 
Y Y + y y - -= n - y n n 

11 v v 11 - 11v ' E- 11 11 ' 11 

and ~i = -1. 
It is just the representation 

use in what follows. 

~ 
yx~ 

we shall 

Later on it will not be important for 
us to know the explicit form of regularized 
expressions. It is essential only that the 
regularization, first, does exist, second, 
provides the transition to the Euclidean 
metrics and, third, can be removed. 

5. INTERACTION OF VIRTONS WITH OTHER FIELDS 

There exist two different possibilities 
to consider the interactions of our virtons 
with fields of stable particles (mesons, 
baryons and so on). One way is the follow
ing. We do not need any gluon fields to 
"glue" virtons in our approach, therefore 
we can introduce the Lagrangian of virton 
field of the type 

A 

f< x) = q(x)Z (p) q (x)+ ..\ (q(x>r q( x))(q(x)['q(x)) ( 5 .l) 

and look for bound states of systems of vir
tons. Along this way usual stable particles 
should be bound states of virtons. This 
idea deserves an independent research and is 
not simple because the problem of finding the 
bound states in quantum field theory is not 
solved yet. 

Another way consists in that the usual 
particles (mesons, baryons and so on) .are 
considered as elementary particles and are 

16 

described by standard quantized fields sa
tisfying a Klein-Gordon or Dirac equation. 
However, fields (for example, a meson field 
rr(x) or a baryon field B(x) ) cannot interact 
with each other directly but through an 
intermediate virton field q(~. For example, 
the interaction Lagrangian can be as fol-
lows 

f 
1
<x)=grr(xHQ(x)y

5
q(x))+ f[(B(x)y q(x))(qc(x)y q(x))+ h.c.J. 

11 11 (5.2) 

Just this second possibility will be con
sidered further. 

The S-matrix for the interaction Lagran
gian (4.2) can be constructed in accordance 
with methods of nonlocal quantum field 
theory . I n s t e ad o f f 1 (x) in ( 5 • 2 ) 1 e t us 
introduce the regularized interaction Lag
rangian ff<x)dependent on the regularized 
field q 0 (x) : 

C<Jo - o o - o -oc o 
~ 1 (x)=grr(q y

5
q )+f((By

11
q )(q y

11
q )+h.c.L (5.3) 

The regularized S-matrix is defined in the 
usual way 

0 0 
S = T exp I i J dx f 1 (x) l . ( 5. 4) 

In papers / 2/ it has been shown that in the 
limit o .... 0 there exist a finite unitary 
causal S -matrix in each perturbation order 

.. 0 
S = fun S , 

o-.o 
( 5 . 5 ) 

if the causal Green function is an entire 
analytical function and decreases in the 
Euclidean region. All details can be found 
in 121. 
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Thus we can consider any interactions of 
mesons and baryons through an intermediate 
virton field q(x). The essential point is 
that these virton cannot create because the 
field of free virton is equal to zero. 

6. PHYSICAL MEANING OF PARAMETERS f AND L 

In this section let us consider the phy
sical meaning of the constants f and L in 
(2.8). For this aim we examine the potential 
corresponding to the causal Green function 
Gc(x) (4.10) and (4.11) as usual when the 
Yukawa potential is deduced. We introduce 
an interaction between the field q(x) and 
two fermion sources W1 (x) and W

2 
(x) of the 

type 

- -
f 1<x>= g[(W 1 (x)q(x))+ (W

2
(x)q(x)) + h.c.] ( 6 .l) 

and calculate the energy of interaction 
between them due to the exchange of the 
quanta q(x): 

2 -
W = g ff dx1 dx2 [(IJI

1 
(x {G c <x

1
-x 

2
>IJI 

2 
(x 

2
»+ h .c.] • ( 6 . 2 ) 

Let us suppose that these sources are point
like, i.e., 

(3) .... .... 
'I'. (x) = u o ( x - r. ) , (j = 1, 2), 

J J ( 6. 3) 

where u is the Dirac spinor describing 
the s p in of our sour c e at rest s o that uu = 1 
and ~Y u = 0. Then we obtain 

f1 

18 

2- .... 
W(r) = g u Gc(r)u 

[ 

2 
(r+l'l 

f - --2- e -
= const 1- -)e L +(1+ -)e 

r r 

2J., (r-f) (6.4) 

L2 ' 

.... -> 
where r= lr 

1
-r

2 
I and 

->-> .... 

G (;)=fd;eiPTl G~(p),, --] L 2 ->2 (6.5) 
c [ - .. t->2 --4p 1 .... 2 ........ sm e v P 

Q(;)=-coseyp-yp ..... 
2 

e 
c M VP 

The potential W(r) decreases with r .... "" as 
2 

exp!- ~I in contrast to the Yukawa poten-
L 1 

tial 7 exp!-mrl. 

• -> 2 Let us def1ne the average value <r > of 
the distribution described by the functionWW, 
then one can obtain 

-> -'>2 
.... 

2 
f d r r \\ (r) 3 2 2 < r > = = - (2f + L ) . 

f ck\\ (r) 2 ( 6. 6 ) 

This means that the Green function Gc(x) 

consid~rably decreases at distances of order 

-v:d_ 2 +L 2 .Let us compare the behaviour of this 
Green function with that of the Green func
tion of usual particles. We can see that the 
latter noticeably decreases at distances of 
the order of the particle Compton wave 
length ,\ = ~ (the Yukawa potential). 

Now we may suppose that the "mass" of 
our virton described by eq. (2.2) with ope
rator (2.8) is defined by the expression 

2 
M = q 

6 4 
= -------. <; 2 > 2f2 + L2 

( 6. 7) 
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r It should be noted that it is not real 
mass of the virton because our virtons do not 
not exist as real particles. 

1. CONCLUSION 

Within the proposed method we satisfy 
the following condition: 

(i) the equation for the virton classical 
field can be chosen under a reasonable as
sumption with two independent parameters 
only and there is no functional arbitraness; 

(ii) the solution of the free virton 
equation is identically equal to zero; 

(iii) the virton field q(x) exists as 
the second-quantized regularized operator 
q0(x) in a Fock space H with indefinite 
metrics; 

(iv) in the limit of removing the regula-
rization the free virton field tends to zero 
q 0 (x) ... o ; 

(v) the causal Green function in that 
limit remains nontrivial; 

(vi) the virton field can interact with 
other fields and give rise to a nontrivial 
interaction of the latter. Thus we consider 
that this virton field is a good candidate 
to be the quark field. 

In a subsequent paper we consider the 
mass splitting of mesons and baryons 
within the broken SU(3) symmetry in the 
framework of the proposed quark theory. 

The authors are grateful to Prof. D.I.Blok
hintsev, Dr. E.Kapuscik and Dr. P.Kolar for 
useful discussions. 
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