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Introduction

Theoretical attempts to explain the experimental data on deep
inelastic scattering have lead to the parton description of had-
rons. The basic ideas of the parton model ap formulated by Feynman
are the following /1/:
8) In the frame where the 3-momentum of hadron ﬁﬂ approaches
infinity one can consider the hadron as an approximately parallel

beam of "partons", each having a definite fraction x of the

hadron momentum P s 1.6, the hadron can be described by the
parton distribution functions £P( x ) characterizing the number of
partons with longitudinal momentum xP » 80 that

D" P(x)dx = 1 s where the summation is taken over
pousfblo inds of partons.

b) The essential assumption is that partons interact as if they
were point-like particles, that is, the cross-sections of parton
subprocesses do not depend on parameters with the length dimension.
This parton model deals with the limit where all the masses
of hadrons and partons could be neglected, e.g. for deep inelastic
scattering with the case -q2 = Q* ~ (Pv > I;‘:.dr,mz.

where P is the momentum of a target hadron, q is the momentum
transfer to the hadron, m, is the mass of a-type parton. It is
usually supposed that Iﬁ.‘h))ls for light quarke (partons).

Thus an approximate sealing /2/ in deep inelastic scattering
is explained by the parton model as a phenomenon due to the asym-
ptotical automodel behaviour at small distances : if only variables
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u2 and( Pq) are significant, the dimensionless structure functions

J(Q2,Pq,m2) of deep inelastic scattering should turn into the func-
tions of single variable x = Q2/2Pq .

Due to its attracting simplicity and also due to a qualitative
(massive dilepton production, high P hadron inclusive production)
and sometimes quantitative (deep inelastic lepto-production) desc-—
ription of high momentum transfer phenomena, the parton model has
become widely popular. Our task here is to consider the theoretical
status of the parton model, i.e. its validity from the view point
of renormalizable quantum field theory (RQFI) rather than achieve-
ments and applications of the parton model., RQFT is now the only
known theory satisfying all the basic postulates of relativistic
elementery particle physics (causality, unitarity, Lorentz~ and
renormalization-invariance, etc.), ¥e will also briefly review some
new developments connected with an explanation of the precocious

scaling.

1. Early attempte of RQFT-derivation of the parton model,

An attempt to derive the parton model from RQFT was undertaken

by Drell, Levy and Yan /3/

. But to obtain the Bjorken scaling law
they have to add the assumption that the transverse momentum of
bare particles is limited. Essentially the same assumption is
needed in the covariant parton model of Landshoff, Polkinghorne

and Short/4/ where it is required that the integrals over trans-
verse momentum are convergent. This assumption is considered to be
well justified by experiments on high-energy hadron-hadron colli-
sions where the mean square transverse momentum of secondaries is
of order (300 MeV)®, But it is by no means justified in realistic

renormalizable quantum field theory.

Chang and Fishbane /5/ have shown in perturbation theory that
in renormalizable theories the integration over transverse momen-
tun leads to the logarithmic violation of scaling due to the terms
lnn(-qz) with n rising with an order of relevant Feynmen dia-
gram. A detailed summation of these logarithmic terms in the leading
logarithmic approximation was performed by Gribov and Lipatov/s/,
but the effective coupling conastant for the theories they have
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considered increases with q in this approximation, hence, it is

tmpossible to consider the limit Q2—+0@ , The summation of all

the logarithmic terms 11/

agsuming finite charge renormalization
leads to a power violation of scaling depending on the value of
bare coupling constant,
A lot of papers represent the tensor of deep inelastic
scattering through the current commutator
W< £ L [er <[ Iy, TlojiRe-
L (1)
It was first shown by Ioffe/e/ that the Bjorken limit of
this tensor Q2 ,(Pg) » 0Q , (Pq)/Q2 -fixed is determined by
singularities of the commutator on the light cone y2 =0, Light
cone expansions of a product of two operators have been investigated
by Prishman’%/ and Brandt snd Preparata’'%/. Pundamental investiga-
tions of automodel asymptotics in quantum field theory performed
by Bogolubov, Vledimirov and Tavkhelidze /1 with the help of
Dyson-Jost-Lehmann representation have provided a rigorous support
for the light-cone analysis. It was shown that to obtain the auto-
model behaviour one has to add some assumptions concerning the

behaviour of the spectral function of the DJL-representation, that



is concerning the singularity on the light cone. In particular,

the parton model results were obtained by PFritzsch and Gell-Mann/12{
by Frishman/9/ and by Llewellyn Smith /13/ , who postulated that the
leading singularity is that of the free field theory, i.e. the
electronagnetic current Jr. {y) is essentially constructed from

free quark fields

MY 2L F 1y ) Q..
a a a
{(2)
where Qa is the electric charge of a-quark. This light cone ap-
proach is equivalent +to the parton model for deep inelastic scat-

/14/

terin;; y but from the parton model there follow some predicti-
ons for the process pp —» }\ﬁ]ﬁc (the Drell-Yan mechanism/15/)
and for the large Pp inclusive reactions /16/ whereas the light
cone technique says little about these processes /17/.

The most interesting is the use of operator product exparsions

(OPE), first proposed by Wilson /18/

N MY ()
Iy J70) = Z.. Cm,n (y) 0«4 A (0){9*--5’0’"}’
Hit (3)
where Cfg,ﬂ (\)) are some singular as 52 -0 func-
tions describing the behaviour of product g”%y)Jo (0) and
‘:‘: dn(z) are some local operators.

The validity of OPE from the view point of perturbation theory
was investigaded by many authors /19/. In these papers it was shown
that the use of OPE is justified in perturbation theory. The pa-
/20/

per by Anikin and Zavyalov is also very interesting because

they have treated the perturbation expansion as a whole.

Using ¥ilson expansions and assuning scale invariance, Polyakov
has obtained a nontrivial sum rule /21/, analogous to that derived

by Cornwall and Norton in the light cone approach/213/:
m J

3 .
S El%qw(w, 2y = Z ( Qf)‘n M (n,a,m2)y .
w : A
A ‘ (4)
The sum rule (4) expresses a very specific violation (of the
same pattern as that given by diagram summation with finite
charge renormalization assumed /7/) of the Bjorken scaling law.

The next important step wasperformed by Christ, Hasslacher
and Mﬁller/zz/. They have investigated the functiong (:zaon (U),
corresponding to the contribution from the parts of Feynm;n di -
agrams with highly virtual momenta,with the help of renormaliza-
tion group /23/ methods. ¥e will discuss this in more detail la-
ter. By the use of RG they have easily obtained the resultsof
direct summation of Feynman diagram asymptotical forms /5_7/.

Very important result of the investigation/zz/ is the dependence of
Fourier transform a::m (CLZ, A‘) on effective coupling constant
/241 o RG, The deviation of E (q?\A,g) from its free field value
wsuld be small when §2(Q2) is small. The important fact is

also that in the renormalizable theory one should introduce the
dimensional parameter .a of renormalization which remains even in
the limiting case Q2 ks Miadr » thus giving the possibility of
scaling violation,

The case of nonzero anomalous dimension EZ(QZ)—* gg = conat £ 0O
as Q2-7 ©0 isg that considered by Efremov/7/ and by Polyakov/21/
The closest to the free field theory are asymptotically free the-
ories where EZ(QZ) g 1/ln(Q2/J\ 2) at large Q2. It was shown by



Politzer and by Gross and Wilczek /2°/ that this possibility is
realized in nonabelian gauge theories. The predictions of these
theories for deep inelastic electroproduction in the region Q2 >
» M2 have been investigated by Georgi and Politzer /26/, by Gross
and #ilezek 727/ and by Bailin, Love and Nanopoulos /28/. Ahmed and
Ross /29/ have considered, in this framework,the spin-dependent
deep inelastic scattering. The authors of the present paper have
investigated the connection between the sophisticated treatment
based on operator product expansions on the light cone and the
original "naive" parton model. Let us consider this connection/BO/

in more detail.

2. Light-cone expansions and parton model at Q2>) Ml?iadr'

Operator product expansions have appeared to be the most
effective tool to provide the field-theoretical basis for the parton
model. The connection between the two approaches is based on the
sum rules that have been first obtained from the OPE by Polyakov.

The standard form for these rules /22/ is the following:

~
2

W, (@) S =10 (@he, (%),

~ (5)
where C(l)(Qz/]\lz n-) are, roughly speaking, the PFourier
transforms of the functions C(L‘ n (H )‘H ) , appeared in the
OPE (3) and M (n, Pz, m2) are the coefficients in the matrix
elements of operators

_ (W) )

EAPalO) o (ORer= (R P 1M npd).

(6)

To obtain W(Q2,Pq,m2) one should perform the standard proce-
dure of analytic continuation of eq. (5) into the complex n-plane.

The problems connected with the lMellin transformation
No+ioo

W(wghzsm [ W, (@) ©"dn

Ry-i 00 (7)
have been treated by Parisilm‘/ and by Gross/32/. Defining the
"digtribution functions" Fi( x?}"‘a)

4
S FY(x,p)x™ " dx = M5 (n, u?)
0 (8)
or, in the equivalent form nQ_H.m
Fox, M= = S M (n, w2 Yx "dn
Rg-too (9)

and using (5),(7) and (9) we obtain the representation for the

structure functions W (W, CL’“)

W (w, 0"1)~ SC (Ql/ju xw)F (x, m",ju?-)d"‘

(10)
which has just the "parton type": F describes the splitting
of the parton w1th fraction x of the total hadron momentum,
and the function C (Q /p 'I(.\)) describes an interaction between
the parton and a v1rtual photon with momentum g. To get the full
correspondence with the parton model one hés to "untangle" the
expressions for E.L(Qz/ﬁ{:xw) and for FL (x,mz, Nz) : to
single out the dependence on parton charges explicitly, to separa-

te the contributions from particles and antiparticles, # clarify



the meaning of parameter }\ and to determine under what conditions
one can neglect the dependence of the functions on Q .

For this purpose let ua turn back to the operator product expan-
gion on the light cone (3). For definiteness we consider the standard
gauge theory of strong interactions.

A1l singularities of the product J(y)J(0) are concentrated in
functions C(n‘“ ( ljz-‘ ’uz) a O:‘:) dn(z) are operators
of the following type

() — P -y .
O,{ d“(Z) ~ S '\h (?3?d4Ddz‘..an ﬂ;b Y, (B an

PREY

where S denotes the pymmetrization over d4.“ dp . The notation
Cli\r\(yz\ Nz) emphasizes the fact that the singularities

of the functions C (Hz) are not in generel canonical, hence
one must introduce the parameter 1/H with the dimension of
length serving as a unit for meapuring distances, i.e., the quanti-
ty 1/“ can be considered as a boundary between amall and large
distances. It is reasonable to choose Ju >3 ¥ .4y » but the parti-
cular choice of paranetez‘rl within this region ie arbitrary.

The fact that <P1D(Y)I(NIPY does not depend on M implies

that <P| ot \P) do depend on thie parameter: rd is the re-
normalization parsmeter for these operators. This can be easily
understood by noting that when calculating the matrix elements

of operators with a sufficiently large number of derivatives (n> 3),
the divergences can be removed only with the help of counterterms
of the new type which are not present in the original Lagrangian,
i.e. the divergencee from these matrix elements cannot be elimina-

ted by the ordinary R-operation /24/. One should add also the receipt

10

of ()(;Z‘--dh — renormalization characterized by the new para-
meter N,

In the standard gauge theory of quark interactions there are
three types of terms in the right-hand side of the wWilson expansi-

et CV (g2 Y G {Tr F«a‘—ﬁ-(z--.an_,Fddh} ’

A

;CEO(BZ,J\;Z‘MS{Q«QT(‘* ‘T)d . D, %}, ()
L CH O i m S, 14, Dy, Do 222y,

Q‘b

"where a, b denote the quark flavor. It is convenient

to 1ntroduce the fOIIOW1ng functions
ZC (g2 p ) Nay /22 (Qq - <@ 6,y VS (@2 N2n)
C.‘”(r:;Z 2 0) = Q% BS (4% w2
Vg2, p2n) = <@ E3 (42 2
s

to take into account quakr charges explicitly. Es and E mean

(13)

singlet and nonsinglet quark contributions. Matrix elements of

correspondlng operators can be represented in the form

;z:‘<:F’GW S {1¥G'td ])e( d \* }\‘3‘5ﬁ7 =
= (?«1... P, ) (f° (n,\u‘)+ D" £ n, u2))
Z;,(P‘clS(Tr F *]5“2.'.1)“"_1F'°:‘n}|p~ 6>=

(P . Pu} LT Finpy.

Defining Fourier transforms of functions E(y f‘ n)

/211 p
. M

(14)

(15)

as usua one can obtain for @z =¥

11



Oo ~
W (w,g2)=2 Im )27 “"*4‘;“”"{ <QP[EdQ@Yp2 nfdnwd
n=0

~

ES(@AA T { £,y + £R SLIE
*EFS(QYptn) L. (@ - K@M
(Fopnrs PR} ) 0

Note that the sum rune over n even. The imaginary part
('.‘.zw (W) = Im (W) ;{T(uﬂ()—T(w—it)] /21)

can be easily obtained with the help of the Sommerfeld ~Watson

transformation L wn + (W n
- Wor W)
W=2TImT = Tm), On 50 =
Ng+ioo Ng +1{ 00 d
- A dn—X g @D My Yt WwNa. gn..
—Irn = ! n"T 55 - nani
21 no_mstnnn 2m Ng-i 00 2 17

To derive the consequences from the OPE the dispersion relation
for T( W ,q2) is usually used. A3 a regult, the moments of

¥( W ,q2) are proportional to the matrix elements of operators
Q

W (QZ)‘J w'(coci)_ N oeven.

(18)
For n odd the moments are not proportional tothe matrix elements
of operators, since <P10] Py~ £3(n, r‘q )-f (n, M ) whereas
W(n,q )'vfa(n M )+:t’a(n M ) for n odd also.This reflects the
positivity property of W(h),q e

All the singularities of a are on the left from the line

n
of int®gration in (17).

12

Now we can introduce the parton distribution functions

£P(x, 2): .

~
{Wx,y’«):ﬁj FPin, u?)x="dn,

Nyt o (19)
where p = a, a, g The continuation into the complex n-plane is
unique due to the Karlson theorem [33] often used in the complex
angular momentum technique. The absence of singularities on the
right from the line of integration 1leads to the property
fp(x,fqz)= 0 when x 2 1. The inverse llellin transformation gives

£Pn, p2) = j =N N DEM

Formulae of this type were used for parton distribution functi-

/347 /357

(20)

ong also by Parisi and Petronzio and by Georgi and Politzer
With the help of eq.(20) the function W( & ,q2) can be written in

the "parton" form

W(w, q2)= 45 d"{'E”S(Qz/ﬁJ :rw)Z (Q -<Q@2)f g
+4Q%» E"'(o’/,uz xa) 2 FPxu?) + @@
+ <Q2> Eg(Qz/Mz xw) fg(x }‘2)}

which is in full correspondence with the hard scattering formula
(see, e.g./36/ dictated by the parton model: fp(x,lqz) describes
the splitting of the pérton with momentum xP from the hadron with
momentum P and the functions E(q2/IM 2, x W ) describe the inter-
action between the parton and a virtual photon. The Born approxi-
mation for E is E]S3 = lgs = AA (1-xW), E% = 0 and leads to the

well-known parton formula

13



- : ' n-4 - > «>
W67 = Z;Qi (£2(1/ W v £ (1/w)) (21b) e S <P.s) ¥ ¥5¥s Dy ...DanT{»\P sv=
Z{-{- (w5 N, m)+ N E3 (gin ) 4 “?(25)P 1

where We = w (P,N)'{ch'U(P‘U)/m ig the vector of parton
polarization (with the normalization 1 (P,‘LJ? U (.P,'IJ )= 2m gww'

The functions fp(x, 2) satisfy the normalization conditions
of the parton mode1/1/ due to the conservation of corresponding

operators: operatorS{L 'l}o Tq ,Dd 7./1 T" -l’E;?iB the energy-

assumed) and the sum runs over two possible states of polarization,
momentum tengor, consequently

~Q ~a_ ~ i.e. the distribution functions appear in the combination
g_{' f (2./uz)+ f (2,/412)} + f3(2,/u2): 1 -?Q(U,S',n‘w-)—;a(“*"\s‘\“&*z\E 82, 0, 2).
a (2 There are also twist 3 operators 729,31/

or fxdx[‘fg(x /[42)4-2{-}" (x /'42)4_7( (1‘,«‘2)}]‘“ \ - e & -
S {¥1¥ D Da,...Da, Y

where S' denotes antisymmetrization over AG and symmetrization

(26)

for any choice of ﬂz .

Operator corresponds to the vector current and
a OM Ty

over Gd dn + One must introduce the new distribution func-
its conservation leads to the sum rules
tion d ('\,‘J syn HZ)

A a -
2 _ _ ) €«
_lol:raZ{f (%, M2y = £ 0 02 Y G = Gy <Ps\sw TNSD D.,.. Du, YAIP 57

where Cq is some quantum number,conserved in strong interactions,

:%. % ('wz Py -ws Py Po(4.., Pa,. J“(w,s;nmz)_m)

of an a-parton (its electric charge, strangeness, the 3rd compo-

nent of isoepin) and cy is that of & hadron. For a free particle {(hﬂ,,..):a(n)..)j‘he difference 't(“**,...)-a‘(h,..)
For the spin dependent deep inelastic scattering there appear nevertheless exists in general case, and unlike the longitudinal
new operators — «» <«» form factor WL (which is also zero in free theory and v'IL =
S{"""KO’ Kﬁbdﬁ - .an.k ’ (24) O(gz(Q )) + o(1%/Q®) in general case), there is no smallness in

form factor gz(w,q ): 8y 0(1) even in the case of asynptotically
where S denotes the symmetrization over 0“"4.-. d..L , and cor-

free theory because the properties of distribution functions are
responding matrix elements
determined by large distance dynamics (note, that 'ﬂL doesg not re-
quire new distribution functions).
The functions E(qz/ M 2 ,W ) can Le calculated in perivrta-

tion theory in the region where E?(Qz) is eniall. The nost ¢ficc -

14
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tive there are renormalization group methods based in the case
considered here on the independence of E} n ,q2) both of M2 and
of the renormalization parameter,ﬂ of the ordinary R-operation.
The equations are simplified by equating A and }42 ,and are
simply the equality dwW / dln ( ﬁl) expressed in terms of expli-

cit dependences
() _ )
(-1, 8@ JE O p =ty g Eukig,

whore B(Q)=pu s, , s w R <PIOIPY= {4 (g W) <PIOSIPY.

Anomalous dimensions ’X Lj(g2'n) form a matrix allowing for mi-

xing between E° and EB, The solution to the RG equation (28) is

B QM0 M g2y = 2 Esﬁ.n,Qz\g(Qsz
@, dt

where T means the exponential to be f ~ordered.
For detailed higher order calculations it is more suitable to
uge the H ~-scheme of renormalization/JB/ for the function , €ege s

Es(qz/rk2 (R Hz vg( )):

Es(qz/p,\2 on, w3, 0)=1 (30a)

rather than the ﬁ -scheme, where
£5(1,n, 2 el f2))=1. (30b)

It is possible, however, to use theﬂ-—scheme and moreover to

attribute all the q2

2

~-dependence to the parton distribution func-

tions taking Hz =Q”, It seems impossible for the time being to

calculate fp(x,qa) from the theory because it is the strong coup-

2

° such

ling problem, but if one knows fp(x,qg) for some value q

16

that éa(qg e x 2¢c 1, then one can calculate fp(x,Qa) for higher
Q2. The esgence of theparton model is the possibility to fac-
torize the large distance contribution fp(x,Qz) from the short dis-
tance one E(qa/m2 , @ ) which in the case of weak coupling at
large Q2 can be calculated in the leading logarithmic approximation.

/39/

In the paper by Lipatov parton digtribution functions were also
calculated in the leading logarithmic approximation which is equi-~

valent here to setting f(n, O )= 1, or 2(x, 0) = & (1-x). Although
/39/

the investigation ig, of course, very valuable heurigtically,
it is the wesk coupling result and it hardly can be considered as a
rigorous support for the parton model in the real case of strong
coupling at large distances.

It is necessary to note that we have no need to consider the
parton distribution functions F(x,kt) over transverse momentum
kt’ It is usually supposed that F(x,kt) are very fast vanishing
functions of ki, so that <k§> = 5 K-: F‘(’X,k,‘)dzkt exists
and moreover (k%) ~ (300 MeV)z, i.e. the mean square momentum is

determined by the hadron size. One may expect Fy,(x,k.) ~v

exp( - ki/ (k%)) for small k%(«lz) ,i.6.,in the region of strong
coupling (large distance contribution). But for ki?:,mg a short
digtance contribution Fad(x,kt)cg éz(kg )/k% becomes essential,
which leads to the divergences in the integrals over ky (cf./3’39/)°
It is evident that S k2 Py(x,k;)a%, 9@ both in the asymp-
totically free (F°(k2)= 1/1n(2/A2) ) and in the scale invariant
(éz(ks)ﬁgg # O)theories. The contribution from small distance
parton interactions is small numerically at k% =M§ as compared

to F;y because of §2(M§)/4T[2<( 1.

17



One can, consequently, consider f(x,Q2) as the sum
'F (x_'QZ) = de(x)+ fsd('vaE)

= k )Eigkt‘
$o 0=(F (x.%,)d%, - {'sd (x,Q%) Spsd (X, K¢
td S td {) + 1'6(Q2(4/X-1)'k:)9(k-:"M,‘:)(,31)

where G(Q2(4/X“'ﬂ‘k,: comes from spectrality properties of E~func-
tions. The singular behaviour of Fsd(x’kt) at large k% leads to

the logarithmic corrections to the Bjorken scaling law,or,in an-
other language, to the dependence of parton distribution function
on the new parameter - wave length of virtual photon which probes
the hadron structure, just as it was predicted by Kogut and Susskind
/40/ in their "scale invariant parton model," In the region of small
effective coupling the function f(x,Qz) slow varies with Q2 and this
evolution (the second term in the sum) can be exactly calculated

in perturbation theory whereas ‘Ftd ('I} must be taken from experi-
mental data.

The behaviour of the function Psd(x,kt) with account of the
fact that the integrals over kt are cut off at the value of an
order Q2 (due to spectrality properties of E-functions) leads
to the value of < ks ) rising as Q2. In this connection the hypo-
thesis of Levin and Ryskyn /81 that (kb ~1 =2 GeV seems to
be temporary.

Thus we have seen that the parton model has a strong quantum
field theoretical support: it can be derived from operator product
expansions, which are valid at least in perturbation theory. We can
sumarize : in the region Q%> liadr but  2(Q2)1n(Q%/ H2) /482 <<
«1 where the Born approximation for the functions E(Qzl‘uz’ W)
is justified, RQFT leads to the standard parton picture with Bjor-

ken scaling and parton distribution functions independent of kt'

18

Beyond this region new subprocesses become essential which lead

to scaling violation. The character of the violation depends on

the character of charge renormalization, hence, there immediately
arises the question about experimental investigation of charge
renormalization. Very sensitive here seems to be the ratio R(x,Q2)§
= I! G'T of longitudinal to traneverse form factors of deep
inelastic scattering. In the region Q2>? M2 and: x fixed, the
value of R 1is proportional to the effective coupling constant

§2 which is logarithmically vanishing for asymptotically free
theories and tends to a constant value for scale invariant theo-
ries. The accuracy of existing experimental data, however, does not

allow the discrimination between the two possibilities.

3. _A new approach to the precocious scaling

Up to here we have dealt with the case Q2>> M2 , thus leaving
the question about the precocious scaling., There, indeed, follow
no puggestions in favour of this property from our preceding
discuseions. But an approximate scaling is observed even at
Qahlli when Xx~variable is slightly modified by nonasymptotic
terms. These problems were carefully investigated by Georgi and
Politzer/BS/. This paper, in our view, opens & new period in the
study of deep inelastic phenomena. Starting from OPE and asympto-
tic freedom they have got a parton-like description in the region
82(e%)/4 R %1, 1.e. even for Q2w MN°, Georgi and Politzer aimed
not to neglect masses in their analysis. Parton distribution

functions are determined in ref./35/ by matrix elements of ope-

19



rators with definite spin, i.e. symmetric and traceless

(P -
;‘ <P,~¢\ Od,‘... dn IP.G)- Tcdq"-dn x

AFP O, p e - FF(n ) s e

where JU dy... d‘n: { Pcal1 ?dh —traces} and gd‘dJ N o =0.
LXN- J

)

One can construct Irdq~‘-dn in the explicit form for any
number n. It is necessary to reexpand OPE in terms of traceless
operators using the equations of motion for quark fields. The
weakness of coupling constant at small distances Jjustifies,

in opinion of authors of ref./35/ the use of

s free field egquations

A
of motion ( \ b'\' mq,) '\\Jq,= 0 as the zero order approximation.,
The result in the case B2 (MS)/4'm2 << 1, m=0is 735/

WMoz X F (&)
" Y1+ szm;‘/a’?

1
2Iw- = m2 x3 \ oy
L 4{ QF;_ ,1+4xzmg/Q2, édi F’(E)

(33)

omy 4 14 (34)

+ p X "

Q¢ T 4xamE/an 2 Sidi LT FED,

where F(Z)= g‘ Qi (*Q @)+ faz)) aad= A +V;2+‘2x1m§/Qz. ]

is the new scaling variable.One can obtain theE,—variable in the old

parton mcdel from delta-function g((ZPT ch) if one does not
neglect 5,2 m% term, ( { was used by Greenberg and Bhau-
mik /43/ and by other authors /44;. Reexpansion in traceless opera-
tors is essentially 0(4) analysis performed by Nachtmann/45/ who

also has obtained theE; -variable. 0(4) -analysis was alsc used

/467 /417

by Baluni and Eichten and by Ninomiya and Watanabe
In the case mr,Np # 0, where mp,mp are the masses of struck
and produced quarks respectively, the variable Es is /35/
- (QI)Z
~ 1
(P‘H[ At YA+ 49:’-m$ TQ* )
(3%

! 2_ pand
wnere2(Q2 = Q2+ Me~MI +/Q4 42QAME+md) + (mE-mP2’,
It is shown by Prampton/48/ that in this case also the

é_ -variable has a simple parton interpretation: { =P}/P;
where Pp a (P%,Pt,P%), Pp = (P°,0,O,P3) are the momenta of the

struck gquark and the target proton, respectively, pt = P°+p3 is
the light cone wariable, and P% = m%;l’lz, = (PI+q)2=m%'. PE‘E 0.

Thus, the approximation needed for & -gcaling is clear: struck
and produced quarks are on their mass shells; the transverse mo-
mentum of the struck parton is negligible ; partons are non-
interacting particles. The assumption PE=O really was not used
in ref./35/ (cf.our discussion at the end of part 2). The correc-
tione < P%‘> ld/Q2 due to the contribution from operators
W Waq p““D’d«“.Dd“w have been taken into account in the pa-
per by De Rujula, Georgi and Politzer /49/. Thege contributions
are shown to be connected with the resonanse bumps in preasymp-
totical region of Q2. This is an explanation of the Bloom-Gilman
local duality /50/. The first order logarithmic corrections to the
a ~scaling were also calculated in ref./49/. Theoretical pre-
dictions for W#( W , q2) are in good agreement with experimen-
tal data from ref./42/. It is necessary to emphasize that the

only free parameter in the theory /49/ is §2(m§). But the
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predicted value of R=Gl_/Cir is much more smaller than that
given by experiment (fig.1), The experimental data are very
inaccurate, indeed, and the authors of ref./49/ hope that more
precise measurements will show the coincidence between theory
and experiment.

Some assumptions leading to E‘—scaling/BS/ have been
criticized by Barbieri, J.E11lis, Gaillard and Ross/51/, who have
also derived E, —-variable from the light cone approach and
parton model, and by R,Ellis, Parisi and Petronzio/se/, who
have derived the formulae (33),(34) in the covariant parton
model. A considerable part of the criticism was anticipated in
ref./49/ where the constructive solutions of some problems are
given. But the whole situation with E’ ~gcaling is not quite
clear, In our opinion, the assumption that the struck quark is

on its mass shell is not obvious.

4., Parton model and inelastic hadron-hadron processes

Parton mode1/1/ pretends not only to the description of deep
inelastic lepton-hadron processes, but also to the description
of massive dilepton production(the Drell-Yan mechanism/15/) and
large Py lepton and hadron production in high energy hadron-
-hadron collisions(the BBK-mechanism/16‘36/)where it is hard to
use the Wilson expansion formalism. Is 1t posgible to invalidate
the parton picture in theme cases? The poeitive answer to thie
guestion can be obtained in the approach based on the investiga-
tion of asymptotical forms of Peynman diagrams (see, e.g. the

review /53/ and references therein and refs./54’55/). The modi-
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fied parton model described in part 2 was first obtained just
with the use of these methods/56/. The use of Wilson expansions
has given the sanme result/Bo/. An attempt to modify the parton
model in order to allow a scaling violation was undertaken by
Polkinghorne/57/ . The starting point of his investigation was
the covariant parton model rather than model independent (and
more rigorous) renormalizable quantum field theory. Therefore the
renormalization problems concerning the normalization parameter
’“2 and effective coupling constant have not been discussed in
ref./57/.

The essence of the diagrammatic approach based on the congide-
ration of asymptotical forms of Feynman diagrams is as follows:

A) Take the well-known o} ~-representation of a diagram (see, e.g.
re./23/y

{0 QoY 7 (m2 (g
T(P1‘ 20)= Hy dd ¢ 60, )eg D) & },

0 aa
D% (36)

where the functions D,G and Q are determined by the diagram to-
pology, and H is the product of‘coupling constantg,
B) Consider the Mellin transform with respect to large variables

t1,..., t >% 51,...,51 Lo

é(c\w -&k)ng )Se )= H Z go E_d%:n%nhnk(dvs) rJP(n“‘A‘L)'
- NCIATE
<m\ exP(I(o‘)Sv mz)}, (37)

( d.) is the coefficient corresponding to t.-variable
i

in the function Q(el,p) and I( ol

where Ai

2y
+8,m%) is the remaining part
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of the expoﬁent depending only on small variables. The asympto-
tical behaviour in ti is determined by the rightmost singularity
in the complex ji—plane.
C) The singularities in j; can appear only from integration over
the region where the coefficient Ay (A) vanishes. In the
euclidean region Ai( X ) 2/ 0 and the poseibility Ai(d )=0
can be realized only when dG_:O for the lines § of subgraph V.
Because Ckc-=0 topologically means the contraction of the
corresponding line § into the point, the subgraph V should pos-
gess the property that the contraction of V into the point "kills"
the dependence of the diagram on large variables ti' The examp-
les of such subgraphs are shown in fig.2 for the processes of
deep inelastic scattering, massive dilepton production, and
large Pp hadron production in high energy hadronic collisions.
D) The integration over du-( q GV\ is divided into two parts:
\E*Q’\ <A /‘S\\'J‘ (scale regime of V-subgraph) and
2d6\74{y‘l.( nonscale regime of V-subgraph). The scale
regime corresponds to small distances between the coordinates
of all the vertices in V.
E) In many cases one can choose the variables ti in such a way
that
D602 b GopdLX G5+ R GO
(38)
where \P‘f is the contribution from the scale regime of V-sub~
graph and 7(rn are the contributions from weak-coupled parts of
the diagram that would appear when V-subgraph is contracted into
the point, and Rv is the nonscale contribution. The factorization

(38) plays the same role as Wilson expansions do in the case of
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deep inelastic scattering, but it has a much more wider appli-
cation.

F) The Bcale contribution of V-subgraph is the sum of poles

(39
(i.e. it gives the sum t3° D C(In(s/ M 2))* ) where j, is

scale dimension of V-pubgraph. For a theory with dimensionless

coupling constant jo is determined by the number of external

‘ A
Jo* 3 (4 -ey). (40)

Hence it is clear that for leading singularities the subgraphs

lineg

with minimal number of external lines (t-subgraphs) are respon-
b) )

cible.

Note, that eq.(38) is valid for any t-subgraph, Summing

over all the possible t-subgraphe and over all the diagrams

plitude

r one obtains that the expression (38) is true for the whole am-

. - \ ' 2 .2 . 1
§(5\S\- 'q,(é\guil) I;L“Xm (1.5, m4 MY+ R(A,a-:')‘ s
where the first term accumulates all the leading singularities

of all the diagrams (that is, all the logarithme for senior power

t o ). For deep inelastic scattering this leade to the expression
(fig.2a)

c) v
‘ §eA-u:)( (354 fq2 M) = (4/5“2

6s‘éq1 .

(42)

’ g_‘ “rea«ex(clss*.‘hl,gs\ 5:(35, p"\m"ﬂ.

Fig.2
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For the process A + B-» C + X where C-particle has a large

transverse momentum (fig.2b) the similar representation is va-
lid: @ G 5 £(, 4 ¢
N 4 4+
AR C x AS\(S‘E\AU\MZ):(/‘/SI(Z>SSt cSU 2’
Z Iq’ab., ex (ds, 3¢, (Su)jc (Js+542 8, p2) »
Nb (' \ 2 hc [
765 dstJur Mgy M2) G (futfu | My M2). (43)

The use of momentum variables immediately gives hard scat-

tering formulas of the parton model /16,36/

4
W w,q2) = £ § E, (@2 xw) F40x, 2 m)

A

ecé;g: Sd'.‘(‘d‘xhdyg{e d3s £% )

PC (-] qung 3 d3P< ':', Ix‘-)s“)t

b WM (ag)

IR S o W X, X, S f (a 749¢

One can easily show that the function (x}/gk)u .

=} fA(x,r4 ) possess all

the properties of parton distribution functlons/SB/ and the
functions E and (d36/d3‘>‘\,"‘1 describe small distance parton
subprocesses. To calculate these functions, one can use the
independence of observables both of the 8plitting parameter M
and of the renormalization-point A of ordinary R-operation/23/,

that is, use the renormalization group equation (cf. with the
eq.(28)):

(-2L5+2j,- UG 2 G} ¥53Q

(45)
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Taking rQ = p% = ut/s one can get the expression
dw} -
proy] ~ — ( 27
A
dt' § aba p2 9 \P7 (46)
for the parton subprocess contributing to the production of par-
ticle C with high Prpe The similar expression for massive dilep-

ton production is

G ~ A gy
abrcy T Qa S (a7
which differs from the Drell~Yan prediction. This is due to the
fact that the Drell-Yan mechanism in this approach corresponds
to the so-called pinch singularity. The mechanism given by eq.
(47), unlike the Drell-Yan one, does not contradict the experi-
mentally observed dependence of (Qt)H#h— on Qz .
Because of the small value of g (m ) we believe /56/ that
the secaling behaviour (dG/dQl)'Q ~ conat. sets in later than
the scaling law in deep inelastic scattering, but earlier than
for large Pp hadron production, It is possible that the observed
deviation from scaling powers can be connected with the power-
-law variation of effective coupling constant Ez(p%). At very

high pT( or m ) values we expect the violation of scaling

(N0
powers of the same type as it was observed in deep inelastic scat-
tering.
Blectromagnetic form factors of composite hadrons are, never-
theless, of zero order in effective coupling constant, e.g.

Fr (@?) = const/ @° where const =0 (1) /357,
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5. Conclusion

Thus, we have seen that the use of parton ideas is justi-
fied in the renormalizable quantum field theory with small effec-
tive coupling constant in the region Ez(Qz)ln(Qz/}42)<< 1.
Beyond this region some modification of the parton model is
necessary: one should take into account parton interactions, or,
in other words, the dependence of parton distribution function
on Q2.

We emphasize that one of the basic assumptions of the diag-
ramatic approach is the consideration of momenta in the eucli-~
dean region. In the noneuclidean region there appears a new sour-
ce of singularities in the complex j-plane connected with the lar-
ge distance interaction, the so~called "pinch mechanism", the
Drell-Yan mechanism being the first example of such a singula-
rity mechanisms predicting the distribution over transverse mo-
mentum of the dilepton pair Qt independent of dilepton mass Qz;
Landshoff mechanism in large angle elastic scattering being the
second one, it predicts the behaviour (dg /dt)pp-y op ™ 1/t8
ingtead of quark counting power/58/ t-lo. In the diffractive
region pinch singularities contribute only to the positive
signature and, hence, they can, in principle, violate the signa-
ture degeneracy of Regge trajectories. None of these possible
effects have yet been observed} the pinch mechanism seems to be
suppressed for an unknown reason, just because nobody knows how

to sum up these singularities.

An application of the diagrammatic approach to the quark
field model gives in the region §2(t)ln(—t/’42)<< 1 quark

counting rules for deep elastic scattering processes,

In conclusion we should state with regret that the most
mysterious is the problem of quark confinement. To assert that
the parton model can be derived from RQFT under the condition
that only ordinary hadrons are in the final state, one must
prove that the sum of contributions of diagrams fig. 3b, where

the "wee" ﬁartons/1/ a,b compose a bound state A, is equal to
the contribution of diagram fig, 3Ja, at least at large Q2.
These problems have been investigated in particular by Prepara-

a /59/ who has proposed a new approach to high energy phenomena.
He has obtained, nevertheless, all the ordinary results (like
scaling, etc.). We believe that the equality expressed by fig.3
is justifiable in field theory,i.e. the summation over the had-
rons can be performed by the summation over the partons, but

the rigorous proof of this statement is to be given.

s % Pag 2 UU(\ 2
P = %

a) b)

Fig.J
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