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!!!1£2~!!£!!2!! 

Theoretical attempts to explain the experimental data on deep 

inelastic scattering have lead to the parton description of had­

rona. The basic ideas at the parton model as formulated by Feynman 

are the following 11/: 

a) In the frame where the )-momentum of hadron lirl approaches 

infinity one can consider the hadron as an approximately parallel 

beam of "partons", each having a definite traction x of the 

hadron momentum p , i.e. the hadron can be described by the 

parton distribution functions fP( x ) characterizing the number of 

partons with lonsitudinal aomentu. xP 

~ 1
( fP(x)dx • 1 , where the 

possfble linda of partons. 

, so that 

summation is taken over 

b) The essential assumption is that partons interact as if they 

were point-like particles, that is, the cross--sections of parton 

subprocesses do not depend on parameters with the le~h dimension. 

Thia parton aodel deals with the liait where all the masses 

of hadrons and partons could be neglected, e.g. for deep inelastic 

scattering with the case -q2 := Q2 ~ (P\> '>'I' -:adr'm2 a 

where l is the aoaentu. of a target hadron, q is the aoaentum 

transfer to the hadron, ma is the .... of a-tTPS parton. It is 

ueuall7 supposed that ~r>"'>•! tor ligbt quarks (partons). 

thus an approxillate aealina 12/ in deep inelastic scattering 

is explained b7 the parton aodel as a phena.enon due to the as,m­

ptotical automodel behaviour at saall distances a it only variables 

~ 
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l<
2 aY!d( Pq) are significant, the dimensionless structure functions 

,f(Q2,Pq,1P) of deep inelastic scattering should turn into the func-

tions of single variable X = Q2/2Pq • 

Due to its attracting simplicity and also due to a qualitative 

(massive dilepton production, high pT hadron inclusive production) 

and sometimes quantitative (deep inelastic lepto-production) desc­

ription o:£' high momentum transfer phenomena, the parton model has 

become widely popular. Our task here is to consider the theoretical 

status of the parton model, i.e. its validity from the view point 

of renormalizable quantum field theory (RQFT) rather than achieve­

ments and applications of the parton model. RQFT is now the only 

known theory satisfying all the basic postulates of relativistic 

elementary particle physics (causality, unitarity, Lorentz- and 

renormallzation-invariance, etc.). Ne will a~so briefly review some 

new developments connected with an explanation of the precocious 

scaling. 

h_!f§E!L~l!~!!!I!!~_£L!1~E!=~~!::hY~H2!L£L!~_£!!!:!2!U!!2~~h 

An attempt to derive the parton model from RQFT was undertaken 

by Drell, Levy and Yan /3/. But to obtain the Bjorken scaling law 

they have to add the assumption that the transverse momentum of 

bare particles is limited. Essentially the same assumption is 

needed in the covariant parton model of Landshoff, Polkinghorne 

and Short/4/ where it is required that the integrals over trans­

verse momentum are convergent. This assumption is considered to be 

well justified by experiments on high-energy hadron-hadron colli­

sions where the mean square transverse momentum of secondaries is 

of order (JOO MeV) 2• But it is by no means justified in realistic 

renormalizable quantum field theory. 
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Chang and Fishbane / 5/ have shown in perturbation theory that 

in renormalizable theories the integration over transverse momen­

tum leads to the logarithmic violation of scaling due to the terms 

lnn(-q2 ) with n rising with an order of relevant Feynman dia­

gram. A detailed summation of these logarithmic terms in the leading 

logarithmic approximation was performed by Gribov and Lipatov/61, 

but the effective coupling constant for the theories they have 

considered increases with q2 in this approximation, hence, it is 

impossible to consider the limit Q
2- 00 • The summation of all 

the logarithmic terms 171 assuming finite charge renormalization 

leads to a power violation of scaling depending on the value of 

bare coupling constant. 

A lot of papers represent the tensor of deep inelastic 

scattering through the current commutator 

\J f~(P,q) = ~ r: r e ~qY<P,I5"1[ ~l4(y) ~ JvW)]IP,~> · 
1[ 0' J {1) 

It was first shown by Ioffe/S/ that the Bjorken limit of 

this tensor Q
2 , (Pq) - 00 , (Pq)/Q2 -fixed is determined by 

singularities of the commutator on the light c. one l •0. Light 

cone expansions of a product of two operators have been investigated 

by Frishman/9/ and Brandt and Preparata/101. Fundamental investiga­

tions of automodel asymptotics in quantum field theory performed 

by Bogolubov, Vladimirov and Tavkhelidze /l 1/ with the help of 

Dyson-Jost-Lehmann representation have provided a rigorous support 

for the light-cone analysis. It was shown that to obtain the auto­

model behaviour one has to add some assumptions concerninl the 

behaviour of the spectral function of the DJL-representation, that 

·s 



;s concerning the singularity on the light cone. In particular, 

the parton model results were obtained by Fritzsch ancl Gell-Uann/12( 

by Frishman/9/ and by Llewellyn Smith 1131 , who postulated that the 

leading singularity Ls that of the free field theory, i.e. the 

electrouae;netic current J r ty) is essentially constructed from 

free quark fields 

~f4( IJ) ~ ~ t (~) t? ~a (tj) Qa· 
{2) 

where Q8 is the electric charge of a-quark. This light cone ap­

proach is equivalent to the parton model for deep inelastic scat­

terin,_; / 14/ , but from the parton model there follow some predicti­

ons for the process pp ___, ~+.Jfx (the Drell-Yan mechanism/151) 

and for the large pT inclusive reactions 1161 whereas the light 

cone technique says little about these processes 1171 

The most interesting is the use of operator product expar.sions 

(OPE), first proposed by Wilson 1181 

J~(~)~"(O) = ~ C~~,n (y) O~~ ... ~n (0){~~--Y~n}~ 
,,n <3 > 

where C ~~,n ( lj) are some singular as ~ 2 ~ 0 func­

tions describing the behaviour of product !]14(y)J.J {0) and 
H) 0 _t -:1 ( ~) are some local operators • .... ., ' .. "'n. 

The validity of OPE from the view point of perturbation theory 

was investiga<lled by many authors 1191. In these papers it was shown 

that the use of OPE is justified in perturbation theory. The pa­

per by Anikin and Zavyalov/20/ is also very interesting because 

they have treated the perturbation expansion as a whole. 
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Using Nilson expansions and assuming scale invariance, Polyakov 

has obtained a nontrivial sum rule 1211, analogous to that derived 

by Cornwall and Norton in the light cone approach/218/: 

~ ~ ~' V ( w, q_2) = f. ( ~2 ) t ~ .M i ( n, \ m 2) 

" .. (4) 

The sum rule (4) expresses a very specific violation (of the 

same pattern as that given by diagram summation with finite 

charge renormalization assumed 171) of the Bjorken scaling law. 

The next important step wasperformed by Christ, Hasslacher 

and Mline~221. They have investigated the functions ( tl: n ( y), 
corresponding to the contribution from the parts of Feynman di­

agrams with highly virtual momenta,with the help of renormaliza­

tion group 1231 methods. We will discuss this in more detail la­

ter. B,y the use of RG they have easily obtained the result$of 

direct summation of Feynman diagram asymptotical forms /5-71. 

Very important result of the investigation/221 is the dependence of 

Fourier transform Cr.~) ( q,', ft) on effective coupling constant 

1241 of RG. The deviation of C (q_2,~,i) from its free field value 

weuld be small when g2
(Q 2 ) is small. The important fact is 

also that in the renormalizable theory one should introduce the 

dimensional parameter J\ of renormalization which remains even in 

the limiting case Q
2 

"1 ..., ~adr , thus giving the possibility of 

scaling violation. 

The case of nonzero anomalous dimension g2(Q 2)-. g~ = const ~ o 
as Q2~ oo is that considered by Efremov/7/ and by Polyakov/211 

The closest to the free field theory are asymptotically free the­

ories where g2(Q2 ) ~ 1/ln(Q2/ A 2 ) at large Q2• It was shown by 

7 



Politzer and by Gross and Wilczek 125/ that this possibility is 

realized in nonabelian gauge theories. The predictions of these 

theories for deep inelastic electroproduction in the region Q2 )) 

)) 112 have been investigated by Georgi and Poli tzer 1261, by Gross 

and Nilczek / 27/ and by Bailin, Love and Nanopoulos 1281. Ahmed and 

Ross 129/ have considered, in this framework,the spin-dependent 

deep inelastic scattering. The authors of the present paper have 

investigated the connection between the sophisticated treatment 

based on operator product expansions on the light cone and the 

original "naive" parton model. Let us consider this connection/30/ 

in more detail. 

~:-~=~:=~~~=-=:~~~~=~~~-~~-~~::~~-~~~=~-~:-~~~~-~~1~: 
Operator product expansions have appeared to be the most 

effective tool to provide the field-theoretical basia for the part on 

model. ·rhe connection between the two approaches is based on the 

sum rules that have been first obtained from the OPE by Polyakov. 

The standard form for these rules 1221 is the following: 

WI\ (Q2): r ~., \.[((.l,q,'l= ~ Ew ( <i/~1,n)M '<n, JU'). 
1 

(5) .-.; 2. 
where C !l) ( Q ftJ2., tl.) are, roughly speaking, the Fourier 

functions C U),n ( ~' Jl'2) , appeared in the 

JU 2 , m2 ) are the coefficients in the matrix 

transforms of the 

OPE (3) and Mi(n, 

elements of operators 

[ < P, cr I 0 ~t) ~ ( 0) I P, a)= ( Pc~ ... P-' ~ M ~ ( n, f 2) • 
Cl' 1 · ·· n 1 n <

6
) 
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To obtain W(Q 2 ,Pq,m2 ) one should perform the standard proce­

dure of analytic continuation of eq. (5) into the complex n-plane. 

The problems connected with the Mellin transformation 

1 W ( w,~l) = 2ni. 

n0 +i.oo f Wn (Q~) wndn.. 
no-i 00 (7) 

have been treated by Parisi/31/ and by Gross/321. Defining the 

"distribution functions" F i (X, Jl:l.) 

1 

~ F ~ (X \ ru ~) X n-., d :X: = M I. ( n, ~ ;;t) 
0 

or, in the equivalent form 

'1 F l c :x, !"';t) = 2:"il 
no+ioo 

S M L ( n,.Jl'2) :x.-ndn 
n. -.:oo 0 

(8) 

(9) 

and using (5),(7) and (9) we obtain the representation for the 

structure functions W ( W, 9,:1.): 
4 

W ( w, ot-'l): 5 C i. ( Q~/ .1"2' X(.)) F i.(-x ~ rn2., ttl) d: 
0 

( 10) 

which has just the "part on type": f describes the splitting 

of the parton with fraction x of the total hadron momentum, 

and the function C t (Q4/~11 'XW) describe a an interaction between 

the parton and a virtual photon with momentum q. To get the full 

correspondence with the part on model one has to "untangle" the 
- • 2. 

expressions for c t c Qlf~'l., :x w) and for F ... ex, m) ~2) : to 

single out the dependence on parton charges explicitly, to separa­

te the contributions from particles and antiparticles, to clarify 



the meaning of parameter )" 2 and to dete:nnine under what condi tiona 

one can neglect the dependence of the functions on Q2 • 

For this purpose let us turn back to the operator product expan­

sion on the light cone (3). For definiteness we consider the standard 

gauge theory of strong interaotiona. 

All singularities of the product J(y)J(O) are concentrated in 

functions Cm \'\ ( ~2., j\'2) and o~L) J (C.) are operators 
' "''I··· "'l'l 

of the following type 

o(i) (c) 
al'\ ... Cl(n 

~ c-, . 

,..... S 't'Q (1!) oo~., :n"'l"' Do~" ~~b 1t'b (2), en) 

where S denotes the symmetrization over oi.., ... o(n. The notation 

cli.,,n ( ~2., ~'2.) emphasizes the fact that the singularities 

of the functions C ( y2) are not in general canonical, hence 

one must introduce the parameter 1/~ with the dimension of 

length serving as a unit for measuring distances, i.e. the quanti-

t~ 1/~ can be considered as a boundary between small and large 

distances. It is reasonable to choose J-A ~ lbadr , but the parti­

cular choice of parameter J'4 within this region is arbitrary. 

The fact that <.PI ~)(~)~(0)1~) does not depend on t' implies 

that (p \ 0~ \ P) do depend on this paraaetera ~ is the re­

normalization parameter for these operators. ~is can be easily 

understood by noting that when calculating the matrix elements 

of operators with a sufficiently large nwaber of derivatives (n~ J), 

the divergences can be removed only with the help of counterterms 

of the new type which are not present in the original Lagrangian, 

i.e. the divergence a from these matrix ele11111nts cannot be elimina­

ted by the ordinary R-operaUan 1241. One should add also the receipt 

of 
n) 

0 cl~ ... cl" reno:nnalization characterized by the new para-

meter ~· 
In the standard gauge theory of quark j_nteractions there are 

three types of terms in the right-hand side of the i{ilson expansi_-

- ~ cl 
ons: C v ( Y'du2, nl ~ (1'r Fo~o~<\ :D~ ... Do~h-1 F c~"' 1 ' 

L Cf.o(y2,~ 1,n~ Sf 11-'aoo< Do~ ... Dq lf4 ~, 
Q " 2. 

11 
• ( 12) 

)1 (f,i ( u2 ru2 n~ srii: --~-~1 ~ I> ~~~b 111 "1.' 
L.. :J 'r· ' \. \Q Q<;~~1.Uo(l. •. c(n 2 Tb ~ 
ct," 

where Q' b denote the quark flavor. It is convenient 

to introduce the following functions 

~ C F, ~ ( y2., f-12., n) /.. ~o.~ 12. = C Q~ - < Q 2 :> ~ bo. \1 ENS ( y~ f'i ~ n} 

( F',O(y2
1 

t"2.., n):: <Q2> £S (y2, t-i\YI) (1J) 

('~ ( ~2 
1 

f42., n) :: < Q2) E. ':6 ( 'j2., \"12, n) 

to take into account quakr charges explicitly. ES and ENS mean 

singlet and nonsinglet quark contributions. Matrix elements of 

corresponding operators can be represented in the form 

'-4n-
1 .[.<'P,<riS{~a~otAnoe ... Do~ \fQ}IP,cr/= 

(f ., 2. n 

= ('P~~~. 1 ... 'Potn} (f0 (n,!U2)+ (-1)nfaCn,r-t2)) 
(14) 

Ln [:<.P,alS{Tr Fo(ol De~ ... Dot F~ }\P\tr):: 
4 a 1 2 n-1 , < 15 > 

= { p p 1 ~ + (-1) n f ..... ~ ( n IIA 2) • 
ol1 .. . al n J 2 ' J 

Defining Fourier transforms of functions E(y2,f 2 , n) 

as usual 127 I one can obtain for '' := -.'1 f"',.. 

10 11 



~ n n ~ 

\[(w~q})= 2 lm L w +4C~w) { <Q2>[E8(Q2jf2, n.)i1<n,~2) 
n=O 

-+ ES(Q2/jU\n) L. { f 0 (n,~l) + .fa en,~'-))]+ 
ct 

+ E tr~ ( Q zr !'At, n. 1 L: ( Q ~ - < Q 2 '>) . 
Q 

. {fa (n,jUl) + .fo Cn, iU2.1}}. (16) 

Note that the sum 

( 1.. w (!.)) 
2 

Im T(l.) ) 

runs over n even. The imaginary part 

: l T ((.)+~[) - T ( w-.:(. )] /2i) 

can be easily obtained with the help of the Sommerfeld -Watson 

transformation 00 n ) n 
[ 

W + (-W 
w=2.IYY\T = 1~ 0 n 2 -rr = 

. n=o . 
n., ... loo n~+\oo 

-I ~ Sdn 1l: a c.Jn+(-W)n_ w"a dn_. 
- l'l'l - r· n. 2 - Yl 2TCl 2Tti. ... ~.n.n:n 7r n-· (17) 

no-~00 o lOO 

To derive the consequences from the OPE the dispersion relation 

for T( ~ ,q2 ) is usually used, As a result, the moments of 

''( I.V ,q2 ) are proportional to the matrix elements of operators 
,.... OQ 

vh ( 0 2) = s :~.1 '\.[(w,q2.)= Qh; n even. 
1 (18) 

For n odd the momenta are not proportional tothe matrix elements 

of operators, since~P\0\P)"'fa(n, f-1 2 >-ii(n, f-1 2 ) whereas 

N(n,q2 )"'fa(n, f-' 2 )+fa(n, t-~ 2 ) for n odd also.~is reflects the 

positivity property of W( W, q2 ), 

All the singularities of an are on the left from the line 

of int~gration in (17). 

12 

Now we can introduce the parton distribution functions 

fP(x,jU2): 
n0 + ioo 

fP(-x,tu2.)=-1-. S fP(n Mz)x-ndYl.~ 
J 21l~ 'J 

no-i. 00 (19) 

where p = a, a, g, The continuation into the complex n-plane is 

unique due to the Karlson theorem l"Ji7 often used in the complex 

angular momentum technique, The absence of singularities on the 

right from th€ line of integration leads to the property 

fP(x, f1 2 )= 0 when X ~ 1, The inverse !Jellin transformation gives 

the formula 1 

fP(n,f2)- S dx f P ( x ru 2) x n, 
X ';-· (20) 

0 
Formulae of this type were used for parton distribution functi­

ons also by Parisi and Petronzio /34/ and by Georgi and Politzer/35/, 

Nith the help of eq,(20) the function W( CV ,q2 ) cnn be written in 

the "parton" fom 

IJ(w,9?·)= 1 ~ [ ENs(Q21f2, xw) [ _(Q~ -<Q2>)frx,fj 
1/w FQ·CI•3 

+ <Q2> gt(Qlj~21 xw) 1: _ f P(:x,J-12) _,. · (21a) 
f=CI,Dt 

-+ <Q2>£8(Q'2fM2,X4>) f~(:x.,)l2)} 
which is in full correspondence with the hard scattering formula 

(see, e.g,/36/ dictated by the parton model: fP(x,~ 2 ) describes 

the splitting of the parton with momentum xP from the hadron with 

momentum P and the functions E(q2 I f-i 2, x W ) describe the inter­

action between the parton and a virtual photon, The Born approxi­

mation for E is E~ = J:~S = f ( 1-xW), E~ = 0 and leads to the 

well-known parton formula 

13 



ii( w ,q2) = LQ; 
a 

(fa ( 1 I !.V ) + fa ( 1 I W ) ) • (21b) 

The functions fP(x,,M 2 ) satisfy the normalization conditions 

of the parton model/ 11 due to the conservation of corresponding 

operators: operators { i if oo~, 1> ... 2. v- 'Tr ,:;.,_, ~jis the energy­

momentum tensor, consequently 

f { f Cl ( 2 I fiZ) + f Cf ( 2 I /12)) -f l a ( 2 I jU 2) =- J. 
, ( 22) 

or f -.xdx [ f9(:x,j1.12) ~L{ fQ(x,f42)•f'Yx,fi7.))}=1 
0 ~ 

for any choice of }12 • 
Operator "Fe. ($~ \j-1> corresponds to the vector current and 

its conservation leads to the sum rules 

Jolx.[{ fQ(x,f'-12)- farx,f-42)}~== ~, , 
0 ~ (23J 

where ca is some quantum number,coneerved in strong interactions, 

of an a-parton (ita electric charge, strangeness, the 3rd compo­

nent of isoepin) and eN is that of a hadron. 

For the spin dependent deep inelastic scattering there appear 

new operators ... .... 
S { ~ l' 0' "(5l)ol1 .. · J) «n) ' 

(24) 

where S denotes the symmetrization over (fCI(1"· c(l'l , and cor­

responding matrix elements 

14 

'l'l-1 ~ +-" 

~ $ <P,s\ ~ q"5 Q'e3 :Do~, ... Dot, 1f \ P, s >= 
= ~ ( fo.(~,s; n,t--''2)-+ (-1)"' f~(t.J,s;n,~2 )\S[1J~r'P;_.2.~~~ 

where 1.Jcr = '\.A, ( p, 'I.J)l'a~S "UCp,~)/m is the vector of parton 1'\], 
polarization (with the normalization "llcp,w) 'U (p,'l.J1)= 2m s'I.)'IJ' 
assumed) and the sum runs overtwopossible states of polarization, 

i.e. the distribution functions appear in the combination 
....._ ,.... ""C\ 
~"('\J',s-,n u'l.)-1-"(-\.J",~;n,~l'): ~ ('LS,S; n,~2). 

'r· (26) 

There are also twist 3 operators 129,37/ 
~~ r ~ ~ ~ 

.J t ~o~osJ)crDc( 1 ... Do~, '\\' 1' 
where S' denotes antisymmetrization over ~CS' and symmetrization 

over CS'~1 ... ~~ • One must introduce the new distribution func­,... 
tion d ('\J <;· n L2) 

\ ) I ~~ ~ - *""' 
< ~s\ S'( """' 0>, os.Dcr Da(1 ... Do(,., ~J\P,s')= 

=-i L. ('lJ~ ?cr-u<JP~') Po(., .. , Pc~"' clQC~,£;n,~zH27) 
'l,j 

For a free particle f ('rlt1, .. ~:dCn,, .. }.The difference f(~+11 ... )- clCn, .. ~ 
nevertheless exists in general case, and unlike the longitudinal 

form factor w1 (which is also zero in free theory and 111 = 

O(g2(Q 2)) + O(M2/Q2) in general case), there ie no smallness in 

form factor g2( IV , q2): g2= 0( 1) even in the case of asyxapt aU cally 

free theory because the properties of distribution functions are 

determined by large distance dynamics (note, that w1 does not re­

quire new distribution functions). 

The functi one E(q 2 I ~~ 2 , W ) can l·e calculated in ! ·0rt clrta-

tion theory in the rec)on where C:?(Q 2 ) is f.,fl3Jl. ~'he JilOfJt fficc-

15 



tive there are renormalization group methods based in the case 
'""" considered here on the independence of W( n ,q2 ) both of r-2 and 

of the renormalization parameter ~ of the ordinary R-operation. 

The equations are simplified by equating .A and f42. ,and are 

simply the equality 

cit dependences 

dN I dln ( fl ) expressed in terms of expli-

{ - ILI1. -T ~C~)~ !E<l\n, jtt2, ~)= ti~ Cn,~)E<j\n,~~q). 
l-·~p ~ ~ '<~) 

where ~<~')~-~fJ-1 'a , and t'i~ <1'1 0~1 P>= Q ~j \~, ~)<P\ 0~ IP). 
Anomalous dimensions 0 ij (g2 ,n) form a matrix allowing for mi­

xing between E8 and Eg. The solution to the RG equation (28) is 

E~.CQt(~l,o,t-f~ ~(t-tl)'):~ b:i. (~,n,Q2,~cQz)),. 
t:~l J \) 

(' "1'. f\ - d-t- } 
l( t ~ ex p [ ~ J ~ 1 C 2 C i) , n) t ] i j ' c 29 > 

where T means the exponential to be t -ordered. 

For detailed higher order calculations it is more suitable to 

use the~ -scheme of renormalization/3B/ for the function, e.g., 

,s ( 2/ 2 2. ( ) ) • E q ~ ,n, ~ ,g • 

sc 21 2 2 ) E q J" ,n,~ ,0=1 (30a) 

rather than the ~ -scheme, where 

ES(1,n, r2 ,g( JU2.))=1 (JOb) 

It is possible, however, to use the~-scheme and moreover to 

attribute all the q2-dependence to the parton distribution func­

tions taking ~1 =Q2 • It seems impossible for the time being to 

calculate fP(x,~ 2 ) from the theory because it is the strong coup­

ling problem, but if one knows fP(x,q~) for some value q~ such 

16 

that g2 (q~ )/4 ~ 2 << 1, then one can calculate fP(x,Q 2 ) for higher 

Q2• The essence of theparton model is the possibility to fac­

torize the large distance contribution fP(x,Q 2) from the short dis­

tance one E(q2/M2 , GU ) which in the case of weak coupling at 

large Q2 can be calculated in the leading logarithmic approximation. 

In the paper by Lipatov/39/ parton distribution functions were also 

calculated in the leading logarithmic approximation which is equi­

valent here to setting f(n, 0 )= 1, or f(x, 0) = d (1-x). Although 

the investigation /39/ is, of course, very valuable heuristically, 

it is the weak coupling result and it hardly can be considered as a 

rigorous support for the parton model in the real case of strong 

coupling at large distances. 

It is necessary to note that we have no need to consider the 

parton distribution functions F(x,kt) over transverse momentum 

kt• It is usually supposed that F(x,kt) are very fast vanishing 

functions of kt, so that < k;) = 5 \<~ P ('X 1 ~tl Q2 \(t exists 

and moreover(k;):::: (300 Mev); i.e. the mean square momentum is 

determined by the hadron size. One may expect F1d(x,kt) ,....., 

exp( - kV <~)) for small ~<<II; ,i.e.,in the region of stro~:~g 
coupling (lar~e distance contribution). But for k; ~ M~ a short 

Mstance contribution Fsd(x,kt)~ g2(ki )/ki becomes essential, 

which leads to the divergences in the integrals over kt (cf./3,39/). 

It is evident that S ki Fad (x,kt )d2kt.., CO both in the asymp­

totically free (g2 (k~)-::::! 1/ln(k~/ Jl 2) ) and in the scale invariant 

(g2 (ki)~g~ ~ o)theories. The contribution from small distance 

parton interactions is small numerically at k~ =I.l~ as compared 

to Fld because of g2 (~)/4lt 2 <( 1. 
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One can, consequently, consider f{x,Q 2 ) as the sum 

f < >< ,q2.) ~ ftQ ('X)+ f set< :t:, Q21 

' <-x.l= c ~ (-x \< )d'k . fsd<'X,Q1)::SFsct('X~\<t)d2ktK 
td 2 J lQ z , i -t , • e<Q2<'1tx-1)-l<:ie<\4-~31) 

where a (Q (I\ /x-1\)-\c-t) comes from spectrali ty properties of E-func-

tions. The singular behaviour of Fsd(x,kt) at large k~ leads to 

the logarithmic corrections to the Bjorken scaling law,or,in an­

other language, to the dependence of parton distribution function 

on the new parameter - wave length of virtual photon which probes 

the hadron structure, just as it was predicted by Kogut and Susskind 

/40/ in their "scale invariant parton model." In the region of small 

effective coupling the function f(x,Q 2 ) slow varies with Q2 ~1d this 

evolution (the second term in the sum) can be exactly calculated 

in perturbation theory whereas ftd ('X") must be taken from experi­

mental data. 

The behaviour of the function F
8
d(x,kt) with account of the 

fact that the integrals over kt are cut off at the value of an 

order Q2 (due to spectrality properties of E-functions) leads 

to the value of ( k~ ) rising as Q2• In this connection the hypo­

thesis of Levin and Ryskyti / 41 /that(kt) ..,, -2 GeV seems to 

be temporary. 

Thus we have seen that the parton model has a strong quantum 

field theoretical support: it can be derived from operator product 

expansions, which are valid at least in perturbation theory. We can 

summarize : in the region Q2 )) ~dr but g2(Q 2 )ln(Q2/ f1 2 ) /4 'li 2 << 

« 1 where the Born approximation for the functions E(Q 2 I~ 2 , W ) 

is justified, RQFT leads to the standard parton picture with Bjor­

ken scaling and parton distribution functions independent of kt• 

11 

~ 

1 

\ 
I 

Beyond this region new subprocesses become essential which lead 

to scaling violation. ~1e character of the violation depends on 

the character of charge renormalization, hence, there immediately 

arises the question about experimental investigation of charge 

renormalization. Very sensitive here seems to be the ratio R(x,Q 2 )= 

=~t( ~ T of longitudinal to transverse form factors of deep 

inelastic scattering. In the region Q2 ~)M2 and· x fixed, the 

value of R is proportional to the effective coupling constant 

g2 which is logarithmically vanishing for asymptotically free 

theories and tends to a constant value for scale invariant theo­

ries. The accuracy of existing experimental data, however, does not 

allow the discrimination between the two possibilities. 

~~-~-~~!-~EE~2~£h_!2_!h~-E~£2£i2~~-~£~!i~~ 

Up to here we have dealt with the case Q 2>~ M2 , thus leaving 

the question about the precocious scaling. There, indeed, follow 

no suggestions in favour of this property from our preceding 

discussions. But an approximate scaling is observed even at 

Q2~-: when x-variable is slightly modified by nonaeymptotic 

terms. These problema were carefully investigated by Georgi and 

Politzerl351. Thie paper, in our view, opens a new period in the 

study of deep inelastic phenomena. Starting from OPE and asympto­

tic freedom they have got a parton-like description in the region 

g2{Q2 )/41\. 2«1, i.e. even for Q2NM2• Georgi and Politzer aimed 

not to neglect masses in their analysis. Parton distribution 

functions are determined in ref.IJ5/ by matrix elements of ope-
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rators with definite spin, i.e. symmetric and traceless 

L: < P,~l 0 ~1 
c4 I P,cr) = lt~ ... Cl! x 

C' 1•.. 1"1 1 tl (32) 

" \ t P C n, ~1) + < -·1)n f 'P ( n, t41)) , 

where Tict •... ot -=-(Po~ ... 'Pd -traces)andact•o(j.rr _,_ ot· =o . 
. , )\ 1 h ~ .... ' . .. ~ ... 

One can construct Jr c~,1 ... c(l\ in the explicit form for any 

number n. It is necessary to reexpand OPE in terms of traceless 

operators using the equations of motion for quark fields. The 

weakness of coupling constant at small distances justifies, 

in opinion of authors of ref./J 5~ the use of free field equations 

of motion ( \ 8 + rn c:y) "'¥ q,= 0 as the zero order approximation. 

The result in the case g2 (lvi;)/4 -rt2 << 1 , m,=O is /35/ 

F C€,) -v~p. = :X 

\I~+ 4x2ml /Q2. 
1 r 1 CJ3 > 

2-xW: =- 4 f rn~ :x: 3 
( d~'FcE,') + 

L l Q2. 1+~x2m~/Q' J 
4 , 1 t, (34) 

+ 2 mJ :x:
4 ~2 ~ d~' S d~" Fe~"), 

Q4 (~+4x4 m~/Q1) ~ ~~ 

where f<'(~)= {. Q~ ( fQ (l,)-4 fd(~)J and~:: ._ •• 
2 

X • " - r 

is the new scaling variable .One can obtain the~ -variable in the old 

parton model from delta-function S{<~pt CJ-)2 ) if one does not 

neglect l_ 2. m~ term, ( c; was used by Greenberg and Bhau-

mik /43/ and by other authors /44~. Reexpansion in traceless opera­

tors is essentially 0(4) analysis performed by Nachtmann/45/ who 

also has obtained the C., -variable. 0(4) -analysis was also used 
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by Baluni and Eichten 1461 and by Uinomiya and .{atanabe 1471. 

In the case mi'mF 1- 0, where mi'mF are the masses of struck 

and produced quarks respectively, the variable E, is /35/ 

~ :: (Q')' 

\'P't )[ 1 + V -1 + 4x2 m2 i Q2. '] p 
2 2. (35) 

where2(Q') 2 = Q2. + mF- mi-+ VQ~+2Q2Cm~+m!)+(m}-m})2 '. 

It is shown by Frampton/4B/ that in this case also the 

~ -variable has a simple parton interpretation: ~ =P~/P; 
where PI~ (P~,Pt,Pi), PP = (P0 ,0,0,P3) are the momenta of the 

struck quark and the target proton, respectively, p+ = P0 +p3 is 

the light cone variable, and P~ • mi;P~ =: {PI+q) 2=m~~ P~= o. 
Thus, the approximation needed for~ -scaling is clear: struck 

and produced quarks are on their mass shells; the transverse mo­

mentum of the struck parton is negligible ; partons are non­

interacting particles. The assumption P~cO really was not used 

in ref./35/ {cf.our discussion at the end of part 2). The correc-

tiona < P; ') ld/Q2 due to the contribution from operators - rtll,... ... have been taken into account in the pa-"\' ~ ci~ r :D.t" ... Det,._"t 
per by De Rujula, Georgi and Politzer 1491. These contributions 

are shown to be connected with the reaonanse bumps in preasymp­

totical region of Q2• This is an explanation of the Bloom-Gilman 

local duality /50/. The first order logarithmic corrections to the 

~ -scaling were also calculated in ref./49/. Theoretical pre­

dictions for N( LV , q2 ) are in good agreement with experimen­

tal data f~om ref./421. It is necessary to emphasize that the 

only free parameter in the theory /49/ is g2(m;). But the 
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predicted value of R= ~L. /cr"T is much more smaller than that 

given by experiment (fig.1). The experimental data are very 

inaccurate, indeed, and the authors of ref./49/ hope that more 

precise measurements will show the coincidence between theory 

and experiment. 

Some assumptions leading to ~-scaling/35/ have been 

criticized by Barbieri, J.Ellis, Gaillard and Ross/5 11, who have 

also derived ~ -variable from the light cone approach and 

parton model, and by R.Ellis, Parisi and Petronzio/521, who 

have derived the formulae (33),(34) in the covariant parton 

model. A considerable part of the criticism was anticipated in 

ref./
49

/ where the constructive solutions of some problems are 

giveJl. But the whole situation with ~ -scaling is not quite 

clear. In our opinion, the assumption that the struck quark is 

on its mass shell is not obvious. 

1~-~ri£g_~££~!-~g£_i£~!~~ii£_h~£r2£:h~1r2£_Er2£~~~~~ 

Parton model/1
/ pretends not only to the description of deep 

inelastic lepton-hadron processes, but also to the description 

of massive dilepton production(the Drell-Yan mechanism/15/) and 

large Pt lepton and hadron production in high energy hadron­

-hadron collisions(the BBK-mechanism/16 •36/)where it is hard to 

use the wilson expansion formalism. Is it possible to invalidate 

the parton picture in these cases? The positive answer to this 

question can be obtained in the approach based on the investiga­

tion of asymptotical forms of Feynman diagrams (see, e.g. the 

review 1531 and references therein and refs./54,55/). The modi-
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Fig.l. Comparison between the theoretical predictions 
for R:: 6'L 16r (ref .49) and experimental data (ref .42). 
Figures taken from ref.49. 
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fied parton model described in part 2 was first obtained just 

with the use of these methods/ 56/. The use of Nilson expansions 

has given the same result/30/. An attempt to modify the parton 

model in order to allow a scaling violation was undertaken by 

Polkinghorne/ 5?/ • The starting point of his investigation was 

the covariant parton model rather than model independent (and 

more rigorous) renormalizable quantum field theory. Therefore the 

renormalization problems concerning the normalization parameter 

J-'2. and effective coupling constant have not been discussed in 

ref,/ 571. 

1be e~sence of the diagrammatic approach based on the conside-

ration of asymptotical forms of Feynman diagrams is as follows: 

A) Take the well-known o( -representation of a diagram (see, e.g. 

ref .f23/) ~ 
ico 

T < P11 ... P n) = H S Q d d. c­
o J)2(cl) 

~ Qlol,~) 
6Ccl,?)e llc•'- ~c..,~-cE)) 

' 
(36) 

where the functions D,G and Q are determined by the diagram to­

pology, and H is the product of coupling constants. 

B) Consider the Mellin transform with respect to large variables 

t1, ••• , tk'>) s1, ••• ,sl , 
\eel 

~(~~, ... t~-;s. s.,\= H L. ~ ~d~ an1 ... nk(ct S) fJ rcn,-(}t 
0~ ,, ... , .,1 "'• 0 J)2(.{1d l I. 0 

.. ( 4~ (.J) \~i ex p [I co~ s m2\} 
;l)(ol) ) , ., I , (37) 

where Ai ( ell ) is the coefficient corresponding to ti -variable 

in the function Q(o( ,p) and I( o( ,s,m2 ) is the remaining part 
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of the exponent depending only on small variables. 'l'he asympto­

tical behaviour in ti is determined by the rightmost singularity 

in the complex ji-plane. 

C) The singularities in ji can appear only from integration over 

the region where the coefficient Ai (a() vanishes. In the 

euclidean region A; ( o( ) )/ 0 and the possibility A. (Q( )=0 
- l 

c:.~n be realized onlv when d. =0 for the lines (f of subgraph V • ___ ,.. (f 

Because d. a" =0 topologically means the contraction of the 

corresponding line IS into the point, the subgraph V should pos­

sess the property that the contraction of V into the point "kills" 

the dependence of the diagram on large variables ti. The examp­

les of such subgraphs are shown in f'ig.2 for the processes of 

deep inelastic scattering, massive dilepton production, and 

large pT hadron production in high energy hadronic collisions. 

D) The integration over o( t! ( 6' (:- V) is divided into two parts: 

\ L ~It\ < '\ I~ 'L (scale regime of V -subgraph) and 
~H:V 

\ ~ cl~S\'>~{t..&'L( nonscale regime of V-subgraph). '.rhe scale 
lft-'<1 r 

regime corresponds to small distances between the coordinates 

of all the vertices in V. 

E) In many cases one can choose the variables ti in auch a way 

that 

~ C ~, ~~: 1Yv c~, ~2)fl X~ (j, ~, "'~m2)+ 'qv (J,s) 
YY\ (38) 

where 't1r is the contribution from the ecale regime of V-sub­

graph and 'X. rn are the contri·butions from weak-coupled parts of 

the diagram that would appear when V-subgraph is contracted into 

the point, and Rv is the nonscale contribution. The factorization 

(38) plays the same role as Wilson expansions do in the case of 
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deep inelastic scattering, but it has a much more wider appli-

cation. 

F) The acale contribution of V-aubgraph is the sum of poles 

'1\' v = (1 I~ 1.') l. +.,Jn-~. f .. ck <j/··-J,-Jo ,-~-1 
( 39) 

(i.e. it gives the sum tjo L. Ck(ln(t/ ~ 2 ))k where j
0 

is 

scale dimension of V-subgraph. For a theory with dimensionless 

coupling constant j
0 

is determined by the number of external 

lines ' 
Jo:: 

~ 

2 (4-ev;. (40) 

Hence it is clear that for leading singularities the subgraphs 

with minimal number of external lines (t-subgraphs) are respon-

cible. 

Note, that eq.(JB) is valid for any t-subgraph 0 Summing 

over all the possible t-subgpaphs and over all the diagrams 

one obtains that the expression (38) is true for the whole am-

pli tude 

~ C~,s)-:: ~ Cj, )'-'~) il 1-.'ff\ (~,s, rn~ ~~)+ 'iHj, ':>, rt~2 ), 
~ (41) 

where the first term accumulates all the leading singularities 

of all the diagrams (that is, all the logarithms for senior power 
j 

t o ). For deep inelastic scattering this leads to the expression 

(fig.2a) 

! (' . 2 (-1/ )~5 4~~'2. 
eA...,tX ~'S'~~1.,rrtA)= ,.1 J 

., E , 1o. (42) 
a. 'te""'t~ (~s~~Q2.,~sl J A(~!~, ~2., m~) . 
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For the process A + B~ C + X where C-particle has a large 

transverse momentum (fig.2b) the similar representation is va-

lid: ~ (' · · z _ (t11 \Ss+~t-~~u+2 
-rAB...,cx h,di,~u,~ )- !g.t.:Z.} ,. 

,._ 
)? '1.!1 c· • \ .r"( · · m2 2) L Tab.., c:x Js,Jt:, ~l.l J J A Js+Jh A ,.fU 
'~, b,c 

f"'b (r' ' 2 2 aC(· ' 2 s cJs+J'I.t, ms,JI-f) <lc Jt-+Jz., rnc,~2).C4J) 
The use of momentum variables tmmediately gives hard scat­

tering formulas of the parton model /16,36/ 

W Cw, q?) = "f L. Ea ( Qljft~ xw) 1; (x, AJ2 m}) 
o " r· 1 " 

A 

t. c;{3cr::: s olx4 d'::(l>dYc, r E. ot3~ ~-5=~(Xe, Z"\" 
c c;l!pc. o )( X '{ 1 t o( ~ ~c )k I+ J !4 ) 

p .. b c. ~ t; t.~', ~2 ( 44) 

~ t'O (\' ~ 2) ~: ( Yc 1 ~'l.) S'= Xtt :Xb S j f':: (X./3c)1: 
'IA'=(Xb/':J<:}U.. 

One can easily show that the functions f:(x, f"l 2 ) possess all 

the properties of parton distrtbution functions/53/ and the 

functions E and(cl~IS'/d3~c.)1f"~ describe small distance parton 

subprocesses. To calculate these functions, one can use the 

independence of observables both of the splitting parameter~ 

and of the renormalization point A of ordinary R-operation/2.3/, 

that is, use the renormalization group equation (cf. with the 

eq.(28)): 

[ - 2. ~ ~l + 2 j 0 - Jcg1'l+ L "(T Cj, YJ~f) J 1f~·,~)~R>· ' ~~ ~ 
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Taking '2 " ~ = p; = ut/s one can get the expression 

t ~~·} ~~~ (~ ~ ~~ < ~~~ "' ~~ (46) 

for the parton subprocess contributing to the production of par-

ticle C with high pT. The similar expression for massive dilep­

ton production is 

(~~~) 0.~~ ,~~ ...... ~ -2 Q4 ~ (Ql) 
(47) 

which differs from the Drell-Yan prediction. This is due to the 

fact that the Drell-Yan mechanism in this approach corresponds 

to the so-called pinch singularity. The mechanism given by eq. 

(47), unlike the Drell-Yan one, does not contradict the experi-

mentally observed dependence of (Qt )1"'+!1- on Q 2 
• 

Because of the small value of g2 (m
2

) we believe /5G/ that 
2 ~ p 

the scaliug behaviour ( d~ fd~ )·Q "- const. sets in later than 

the scaling law in deep inelastic scattering, but earlier than 

for large pT hadron production. It is possible that the observed 

deviation from scaling powers can be connected with the power­

-law variation of effective coupling constant g2 (p~). At very 

high pT( or m~+~-) values we expect the violation of scaling 

powers of the same type as it was observed in deep inelastic scat-

tering. 

Electromagnetic form factors of composite hadrone are, never­

theless, of zero order in effective coupling constant, e.g. 

FT\ (Q2 ) ~ const/ Q2 where const aO (1) /55/. 
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2:._£2!!£:l::!!!i!:h2!! 

Thus, we have seen that the use of parton ideas is justi­

fied in the renormalizable quantum field theory with small effec­

tive coupling constant in the region g2(Q 2)ln(Q2!}4 2 )<< 1. 

Beyond this region some modification of the parton model is 

necessary: one should take into account parton interactions, or, 

in other words, the dependence of parton distribution function 

on Q2• 

We emphasize that one of the basic assumptions of the diag­

ramatic approach is the consideration of momenta in the eucli­

dean region. In the noneuclidean region there appears a new aour­

ce of singularities in the complex j-plane connected with the lar­

ge distance interaction, the eo-called "pinch mechanism", the 

Drell-Yan mechanism being the first example of such a singula­

rity mechanisms predicting the distribution over transverse mo­

mentum of the dilepton pair Qt independent of dilepton mass Q2; 

Landshoff mechanism in large angle elastic scattering being the 

second one, it predicts the behaviour (dCJ /dt )PP...., PP "' 1/t8 

instead of quark counting powe~5S/ t-10• In the diffractive 

region pinch singularities contribute only to the positive 

signature and, hence, they can, in principle, violate the signa­

ture degeneracy of Regge trajectories. Bou o:t these possible 

effects have yet been observed: the pinch mechanism seems to be 

suppressed for an unknown reason, just because nobody knows how 

to sum up these singularities. 
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An application of the diagrammatic approach to the quark 

field model gives in the region g2(t)ln(-t/f'\ 2 )<< 1 quark 

counting rules i'or deep elastic scattering processes. 

In conclusion we should state with regret that the most 

mysterj_ous is the problem of quark confj_nement. To assert that 

the parton model can be derived from RQFT under the condition 

that only ordinary haurons are in the final state, one must 

prove that the sum of contributions of diagrams fig. Jb, where 

the "wee" partons/1/ a,b compose a bound state A, is equal to 

the contribution of diagram fig. Ja, at least at large Q2
• 

These problems have been investigated in particular by Prepara­

ta /59/ who has proposed a new approach to high energy phenomena. 

He has obtained, nevertheless, all the ordinary results (like 

scaling, etc.). We believe that the equali. ty expressed by fig.J 

is justifiable in field theory,i.e. the summation over the had­

rona can be performed by the summation over the partons, but 

the rigorous proof of this statement is to be given. 

\ y~P•\ 2. 

a) 

,...._ -

Fig.J 

b) 
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