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I. Introduction

In the present paper we develop the three-dimensional
formalism /1,2/ for the description of the interaction
of two partlcles with spin 1/2 in the quasipotential app-
roach /3.4/ ThlS)Japer is a sequel to papers /)%, It was
shown earlier / that the Feynman one-boson exchange
matrix elements can be transformed to a form of the
direct three-dimensional generalizarion of the corres-
ponding nonrevalivistic one-boson exhcange potentials
(OBEP). The transformation from the four-dimensional
to the three-dimensional representation in terms of the
Lobachevsky space may be treated as an alternative one
to the Foldi-Wouthuysen transformation for two particles
since it is exact and doesn not deal with the expansion
of interaction terms in powers of v¥c 2. In/%" the
form was found for this transformed relativistic OBEP
in the relativistic configurational representatlo/n (RCR)
intriduced earlier for the spinless particles in

In the second section the quasipotential equations for
spin particles are transformed in the momentum space
to a form of the direct geometrical generalization of
the Lippmann-Schwinger and Schrodinger nonrelativistic
equations. In the third section these equations are written
in the RCR. In the fourth section we construct the local
in RCR expressions for a relativistic spin-orbital and
tensor forces.

II. The Local in the Lobachevsky Space
Quasipotential Equations for Particles with Spins

Quasipotential equations for the relativistic scattering
amplitude and thw wave function of two relativistic par-
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ticles with spins 1/2 obtained in Kadysheysky /6/ approach
in the c.m.s. have the form
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is the quasipotential dependent in generél on the total

energy of the system s=4Eq= 4\/M2+32. Since in the

quasipotential equations of Kadyshev;sk)(, like in the
equation of Logunov and Tavkhelidze 3 , all the mo-
menta of particles belong to the mass shell
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and the integration is performed with the volume ele
dk
ment dQ, = ~——=—-———_- the invariant measure on the
V1+ km?



hyperboloid (3), the momentum space in eqs. (1), (2)

is the Lobachevsky space. We stress that in egs. (1),

{2) all the quantities are defired on the mass shell and

off the energy shell l«?p/ Ky /1, like in the nonrela-

tivistic equations. The amplitude T 1 2(5.«) on the
[

energy shell obeys the relativistic condition of two-

particle unitarity (cf. /3/ ):
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and relates to the elastic differential c¢ross section as
follows

i rr sy ;o
For (_12 [ o ()'2 »

. ’l‘(rlaz ([),q)‘l‘q]u(rrzr (p,q)

da ;s y :

(—1—;—}—--— (r)’](}Z - Gl ”‘.2) -2 — . — (5)
(III’UZ; 6AnZs

The quasipotential V(p k;k,) in egs. (1), (2) is

constructed of the matrix elemen}s of the relativistic
scattering amplitude as in refs. ' »*%/. In the second
order in coupling constant (see eq. (1)) it coincides with
the Feynman matrix elements corresponding to the Born
approx,imatlon of the scattering amplitude.

In " it is shown that after separating the Wigner
rotation DV/2 {v—1(A I,L)I originating from the relativistic
spin kinematics, the Feynman matrix elements of the
one-boson exchange in notation of /7/ can be represented
as follows
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widely used in mesin theory of nuclear forces ( ¢- are
the two-component Pauli spinors normalized by the

L. *o % < >
condition ¢ lqﬁ o =509 ). ). The quantity « defined
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in /' is called the half-momentum transfer (an analog
of the half-velocity of a particle from /8/ ) in the Loba-
chevsky space. It is related to the momentum transfer
in this space
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In the nonrelativistic limit when the curvature of the
Lobachevsky space tends to zero and 1t tUI‘I]b mto the
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Analogously, the amplitude of the vector meson
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where the amplitude without the Wigner rotation
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represents a direct geometrical generalization of the
Breit potentials/%/ in the momentum space //.In/?/ the
relativistic quasipotentials (11), (12) have been writtes in
the RCR.

To facilitate fuether considerations we shall discuss
the role of the Wigner rotation D!/2{v-1(A, ,k)}in egs.
{(6), (11). As is seen from the transformatlon law for
the state vectors

UA )!k o> = 2 D /,{V_I(Ap,kmi(—)},ob (13)

these matrices describe a spin rotation under the Lorentz
transformations. Since the matrices DY %VYA, K} de-
pend on the momentum of the state, they are different
for the spin indices in the left- and right-hadn sides of
the matrix elements (6) and (11). By terminology of
ref. /10/ spin indices are ”’sitting’ eachon itsown momen-
tum because by definition of the state vectors Ik,o>=
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BUGYRE 0,0 the spin projections on the 0 -axis
are given in the rest frames of particles [0 ,0~, And, in
general, in each momentum there can be related its own
coordinate system which axes may not coincide /!,

This, the Wigner rotation in (6} and (11) perform a
removal of all the spin indices onto one and the same
momentum p. As a result, with the Lorentz transforma-
tions, they begin to transform under the little group of the
vector p . In other words, the Wigner rotation superposes
the axes in the rest frames of particles. ‘

As is seen from eqs. (6), (7) and (11), (12), after
separating the kinematical Wigner rotation the remaining

5
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which spin indices are "sitting” on one momentum ];,
is local in the Lobachevsky space as it depends on the
difference of two vectors in that space Vv ki-)p.Note that
in the i.h.s. of eq. (2) spin indices of the wave function
v, (5 )er g ery . are "sitting” on the momentum yp and
those of W (k) o in the r.h.s. on the momentum
k. We pass now to such a form of eq. (2) where all the
spin indices are sitting on one and the same momentum
;;. To this end we “remove” all the spin indices of ¥ (k)
also onto the momentum p’. This transformation has {he
form
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Since the quasipotentials (6), (11) contain the required
D -functions this removal is performal automaticaily.
As a result, we arrive at the equation for the wave

function with all the spin indices on one momentum p’
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With this form of the quasipotential equation the
interaction is described by the local in the Lobachevsky
space quasipotential V(k()P,p; Eq) of type (7) and (12),
and the integral part (15) looks hke a convolution in the
Lobachevsky space. It can be seen that the form (15) is
natural for eq. (2) when it is solved for thw wave function
of scattering of two particles /2
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Really, when substltu ing nto the r.h.s. of (16) the
expression (27)3 8(p-k)yl+ pZ/M2 bo, 90, taken as the

first approximation to Y, k), 010 and describing the
free motion it is necessary to remove all the spin indices
o102 from p to K . At the same time eqs. of form
(15) do not require such an additional operation as it
was already performed by the transformation (13).

To complete the analogy with the nonrelativistic for-
malism it is convenient to pass to the Green function
linear in E_. We therefore intriduce the new scattering
amplitude

cglo’ glo
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2

with the nonrelativistic normalization to the cross section
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If one defines the amplltude (177) off the energy shell as
follows /%
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then egs. (1) and (2) in terms of the new quantltles take
the form
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Equations (20) and (21) have a form of the direct geo-
metrical generalization of the Lippmann-Schwinger and ]
Schrodinger equation in the case of spin particles. In

terms of the amplitude AZI? on the energy shell
1’2

the two-particle unitarity condition (4) takes the non-

relativistic form
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The quasipotential Vi{p, k; Eq) is defined through the
quasipotnetial V(p k E4) by formula (9). To solve the
problem on bound stdfes in papers/4 6,19/ the procedure
has been suggested for constructing the guasipotential
V(p,k E4) from the matnx elements of the relativistic
scattermg amplitude T(p.K) given by quantum field theo-
ry.

To maintain the locality of the quasipotential in the
Lobachevsky momentum space, we change the procedure
of cinstructing the quasipotential V(p k:E q) To this
end we utilize the fact of a nonuniqueness of the exten-
sion off the energy shell.

Next, consider egs. “(20), (21) to be the basic ones and
the quasmotentlal V (p ;E 40 on the energy shell to be
connected with V(p,k:E ) (1 e., the set of Feynman mat-
rix elements) through the relat;on

- 0'10'5' -+ > 010 > >
Vool GRE) v (k(-)p,p; E)/4ME

,Qur method of the extension of the quasipotential
Vip,IGE 4 Off the energy shell consists in its definition
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off the energy shell by formula (19) instead of (23).
It is clear that all the relations (17), (18), (4), (22)
are then fulfilled. Equations (20) and (21) with the

quasipotentials \7;1322 (E(—)S,p‘,Eq) (M, (12) local
in the Lobachevsky space compose the formalism which
looks like the direct geometrical generalization of the
corresponding integral equations in the nonrelativistic
quantum mechanics.

Next we shall pass to a configurational representa-
tion adeugate to the above 'presented formalism in the
momentuin space.

III. The Quasipotential Equation in the Relativistic
Coordinate Space

The relativistic configurational representation (RCR)
has been proposed in/5/. The difference of the RCR from
the nonrelativistic configurational representation
introduced through the Fourier transformation consists
in the following: The Fourier transformation has the
group-theoretical meaning of an expansion over the
unitary irreducible representations (UIR) of the Euclidean
group, i.e., over the functions exp(iqr), while the RCR is
introduced with the help of expansions over UIR of the
Lorentlz group. It is quite natural to use such an expan-
sion as the Lorentz group is the group of motion of the
Lobachevsky space realized on the upper sheet of the
hyperboloid (3). Therefore if we want to obtain the local
expressions in a coordinate space starting from the local
in the Lobachevsky space quasipotentials (7), (12), then
we should make a transition to it by using expansions on
the group of motion of the Lobachevsly space.

- In the quasipotential equation (2) the transition to the
configurational representation can be achieved through
the use of two different complete sets of functions on
hyperboloid (3). One of them is

13
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Epin,r) = QA . (24)
M
Transformations with (24) for the wave function of a
spinless particle

Yo - fa &(p, Ny (p) (25)
1 o0, (217)3 019,

from the group-theoretical point of wiev is the expansmn
over the principle series of UIR of the Lorentz gor }) /,
The second complete set has been obtained in and
contains spin-dependence (see also 716,17/ ) The diffe-
rence between these two sets is due to different transfor-
mation laws for spin and spinless wave functions.

However, for the quasipotential equation in form
(15,21) it suffices to use the expansion over ”plane
waves” (24). Indeed, the Green function (E-E - ie)™)
written in the c¢c.m.s. of egs. (15), and (2{) like in the
covariant formulation of the same egs.’”’

s (Vs —vs W (p) -
Y p A P AY q g P

_ 4 v 2 N 9- ) k
I, fdgkvg Y (k(")p,p,}iq)‘l‘q(k)a,a, (26)

(477)301,‘7;3 12 12

is scalar in the spin space, and all the spin dependence
‘contains in a quasipotential *. Consequently after a
“removal” in (26), of all spin indices onto one and the
same momentum p, like in (15), they begin to transform
" under the small group of one and the same vector p
(i.e., they undergo the same Wigner rotation) under the

*Such a formalism is close to the nonrelativistic one
(the Pauli equations) where only the interaction terms
depend on spm
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Lorentz transformation. Due to the unitariry of the
matrix DY V-1(A,,B] this Wigner rotation is facto-
rized in the left- and right-hand sides of eqs. (15), (16)
without changing the form of eqs. and potentials. Thus,
for our aim it is sufficient to have a complete and
orthogonal system of functions in the Lobachevsky space
without account of spin dependence. We shall emphasize

that spin indices T like ¢ takenumerical values +j/2 .

We shall work with the wave function equation in the
fixed reference frame - c¢.m.s. After transformation (25)
for (21) we have ‘

[

(2E - 2H ¥ (D)
q 0 9 0,04
193

g > = -
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a
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Cur purpose is to transform the containing theinteraction
r.h.s. of eq. (27) to the local form in a relativistic coor-
dinate space.

To this end we pass, under the integral (27), to the
wave function in the r-space

-> —)*—) - =
Voo :fdrlf(k;nl,rl)ll’q(r )

1 9 9% 1o,9,
and apply the equality
é“(k;n,'r)=r§‘“(k(—)p;nA ) pin, 1)
P
where the unit vector
n, =[Mn—-p(l—p-n/(po+M)}]/_{p0—-p-h). (28)

P

Using the invariance of the volume element dQ

in (27) we pass to the potential in the RCR K=

k
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By means of (29) in /% the transform of the potential
(7) has been found is the relativistic analog of tensor
forces and has the form )

Vir)= \/'S(r)(al -c'r2)+ VT(r)'S g
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't 87 o
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Analogously, the spin-orbital interaction term from (12)

4 (g‘EQXA] - - -
5 4Pg pxdl 3= 43,072 (34)
VM #2_*_4‘{2 :

AL =ni
VSL(‘ p)=-ig

after transformation (29) in the RCR takes the form

2
L BV 0 1 1
VSL (r,p)=~ ' - x
(217)3 M r+iv/M 2i/M

i 4 a7
_ _9 - Y . 35
x [1 — exp( 2M ar)](S L)V YUKS” (35)

where the orbital momentum operator L is expressed

through the momentum operator P :—i% td (see / 2/)
by formula

> > A i J
L —[[XP] e;{p(-——M— —gr—-).

On substituting (29) into (27) the r.h.s. takes the form

> | g Y 0102’
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It is clear from the precedmg Sectlon that the depen-

dence of the potential V(r), iy ;03E on the unit
vector nu\ is concenirated only in the spin structu-
res S(r](12 . As a result, the potential can be

o, 7

172
represented as follows

Il'

GG’
vnf (rnA,DF)—V(rpE)SGG(pnA) (37)
12 12

The function \/(r;?);‘Eq ) dependent on the coordinate
modulus only can be taken out of the integral over mo-
mentum provided the vector T), is replaced by the ope-

rator > (see Appendix A to/2/ ). As a result, (36)
takes the form

A

Jdv Vs PEY S 272 G ¢, L, (38)
. Ué Ty | oy,

where the function Zir.r;) is defined by the spin struc-
tures of the potential )

ool 5 . - olo - = e
712 v, =/d0 Q:(p;l?.r)S Z(p,n, )t‘:*‘(p;r;> R
a. o i p 7. A 171

172 172 p (39)

It is clear from (39) that for the part of the potential

independent of spin variables,i.e., 8”772 57 1572 the

Ny oy o,
interaction is described in the local way
GE -2l W (D = v é(r PSEDY t ., .,
0 8 9% ole; A% 1 9%

(40)

since the function Z(f,r;) turns into the S-function.
Next we shall show that for other forms of interaction
an analogous localization can be achieved too. Thus, for
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the spin-orbital interaction the Z-function appears to
be proportional to the & -function, and for the tensor
forces the part of the function Z(,r;) proportional to
the & -function can be separated. The remaining integral
term 1is a higher-order relativistic correction to the
obtained tensor potential.

IV. Equations for Spin-Ovrbital and Tensot Forces

In accordance with (12) and (34) for the spin-orbital
interaction the structure of the potential is

S(p,n

Y=(S-In, xpl) =(S-lixph—

A
p p po_ﬁ'n

Then, by definition (39)

Z(;,; )= exp (- -

P! - 3 -3 - 5o
. —IM_ a—r) fde(S . [nxp}):_f(p;n,r)f*(p;nl,rl)=

_;

t"'¢

S-LI5G -1 ). (41)

1

1
r

Therefore the integral in (38) is omitted and the equation
reads

(ZEq -—ZHO)‘Pq {r) = VSL{r)‘Pq(r),

where
- gy i/M 1
VSL(I?)_*—* - 3 rrt - X
(27) r - i/M ¥
1 i 9 i 9 Ho >
% ——— f[exp{—— ~—~=} ~ expl- — — )]V (S-L)
21/ M P M dr P M ar YUK.

The angular dependence of the tensor 1nteract10n is’
contained in the operator
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- o > =

(GlnA )(UZHA-)’ (42)
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where the unig _yector nA is given by (28). For (42)
the function Z(,)is splittell into two parts

"’"’_-__i_-a_)_)"’"’ —»_—9 ~ 3 43
Z(r,r])—exp( 2M 5;)(0111)(02 n)s(r rl)+ Z(r,rl). (43)
The first term obviously gives the local relativistic
tensor potential, the second term as compared with the
first one is a relativistic correction of the order 1/M

—~

1 i 9 ‘ —+.—>
Z(r,r])=ﬁexp(-—2-h-4 g;)fdﬂpf(p,n,r)x

R S Y 3 a3 = 5-!—;
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1 B'T’ L +
&k .
+-M-(a]p)(ozp)(1 - p0+mM} £ (p,n],rl). (44)

Hence, the r.h.s. of the quasipotential equation takes
the form ‘

B 2 > ‘—_b - o -
g,.][\/’s(r).(o*1 g) + Vil 21/M)81’2]‘l’q(r) -

2 -> % ~— =y = -)
gVJ’dr1 VT(rl)Z(r,rl)‘l’q(rl). (45)

Thus we see that the first term in the r.h.s. of (45)
is the local relativistic tensor interaction. Its diffe-
rence from the nonrelativistic interaction is contained
in new expressions for radial functions (31) and (32).

Note, that if one desired, in the relativistic integral
term (45) the integral in any order of p/M can be taken.
To this end, using (30) and performing standard alge-
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braic transformations in the function Z(,r) 1) one can
easily obtain terms proportional to the & -function up
to the third order in p/M. This procedure may be extend-
ed further to any order in p/M provided the remaining
integrand in (14) is expanded .in power series of p/M  and
the orthogonality condition of ”plane waves” is used.
However, at a phenomenological description one may not
consider the correction terms to the loecal part of the
tensor interaction as it itself is completely relativistic.
In this case the equation with the relativistic tensor poten-
tial is written in complete analogy with the Schrodinger
equation :

(2E - 2H W (1) -
q 0 g

0'10'2 (46)

2 0‘1’0‘% >
=—gv0:5:";’ [VS (r)(a:l 02)+V"T“(r—2l/M)Sl,2]o " ¥, (1-)0,0,
o, "% 1%2

Conclusion

Thus, we have constructed the three-dimensional for-
malism for description of the interaction of two relati-
vistic spin particles in the coordinate space. The tran-
sition to the relativistic coordinate space has allowed us
to obtain from the local in the Lobachevsky space quasi-
potential the local potentials in the relativistic coordinate
space.

Note here that while the transformation from the
four-dimensional form of the Feynmam matrix elements
to the three-dimensional representation in the Loba-
chavsky space (see (7) and (12)) plays the same role as
passing to the Foldy-Wouthuysen representation, the new
relativistic generalization of the relative coordinate
proposed in ref. /5/ is the most convenient tool for
formulating the theory in the coordinate space.
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Further our aim will be to apply the developed here
formalism to the relativistic description to composite
particles. In a sunsequent paper we shall introduce a
system of partial equations, for the system of two particles
with spins 1/2.

The authors are grateful to V.G.Kadyshevsky for
fruitful discussions, and to V.A.Matveev, V.A.Meshche-
ryakov, A.F.Pashkov, V.N.Starikov, 1.S.Shapiro for in-
terest in the work.
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