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C. INTRODUCTICN

This paper deals with some investigations of the structure of
linear functionals on algebras of unbounded operators on Hilbert
gpace. Bspecially, there are regarded some relationships between
normelity of functionals and its continuity with respect to sosze to-
pologies on such algebras.

These topologies will be defined in section 2, and they are ge-
neralizations of the well-known ultrastrong and ultraweak topologies
on algebras of bounded operators. ‘

In section 3 we will describe results which are quite analogous
to the bounded case. For example, the classof ultrastrongly conti-
nuous functionals coincides with thaet of ultraweakly continucus
functionals, a positive functional is normal if and only if it is
ultrastrongly continuocus. A result about dual pairs is also genera-
lized to the unbounded case.

1. PRELIMINARIES

In this section we collect some definitions and notations used
in the sequel, Details can be found for example in /3=5/ . Let ®
be a separable Hilbert space with the scalar product ( , ) and the
norm W-H. If ¥e ¥  is a dense linear menifold, by AT (T )
we denote the get of all linear operators 4 with AD <0 , T <
e B(a%), A*D < B, With the involution A — &' = A"\¥ and
the usual operations L' (D) becomes a » -mlgebra, a4 % -subalge-
bra A = A (D) of 2Y(T) containing the identity I will be
called Cp* -algebra. An Op™ -algebra A (IJ) induces a topology ta
on B given by the seminorms ¥ -+ WAPW for any A e A (J),



Denote t g4+.4, by t,. An Op™ -algebra A () is said to be closed
(gelfadjoint, resp,)} if
=N (B = N Da*) |, resp. )

Ae R Aeh
By 5y(R} we denote the set

3,(A) ={Te & (D): AT, AT* nuclesr for all A& (D))
We will write 5,(B ) instead of 3,02 (d)). A functionsl f on
A () is sa8id to be normel if it has the representation

f(A) = Tr AT with some Te 51(}& ).
In S](A—) we introduce the topology T, (A) given by the seminorms

T — WATl, for any A € R(D)

where Il i, 1s the usual trace-noraz in the space of nuclear operators.

Now there arise the problem to define topologies on Op* -alge-
bras. There are many possibilities to introduce topologies, and it
seems that the question whether or not a topology is a good one, in
the case of non-normable mlgebras (of unbounded operators) much more
depends on the problem which we will investigate then in the case
of normed algebras. For details the reader is refered to the pa-
pers kR

In the next section we give the definitions of the ultrastrong
end ultrawesk topclogies which were not regarded up to now.

2. DEFINITICN OF THE TOPOLOGIES

To meke the formulation of the results more comprehenaive we
start with the following definition,
Lefinition 1

Let B (D) be an Op* -algebra, We introduce the following sets
of {countable) sequences:

lz(lli\) { 9 v: el , lelf;\|2'<°°3
1%t ) = [ {9): g0 B, T UuAqN <= for all 4 € A (5}

4

Let us mention that these sets are linear spaces and cap be equipped
with a natural 1o;ally convex topology. We do not use the atructure
of these spaces in what follows; some information about spaces of
this type can be found in /6/.



Definitien 2
On an Cp* ~slgebra Fr (X)) we define
i} the ultragtrong topoloegy T,, given by the seminorams

B lAlgy, = ( Thawt® )2 ror any (g)e1?(ty)

ii) the ultrawesk topology T, £iven by the seminoras

2
4 —* \\A\\W_\ vy SVE O LA )\ for any ( 9:) e 12(“\\)
C ﬂf;) & l (t‘A
iii) the proper ultrewesk topology ¥, &iven by the seminorms

A —> “A“Lf;:,wn = 120 e, a )\ for any (9, ( "n)el {ta )

Remarks

i) Tn the case of bounded oper.tors the ultraweak and the proper
ultraweak topolpgy coincide, and if 8 = we cbtain the
usual topologies .

ii) Obviously the following relstion Thiw = Tuw A Tos holds.

The set of seminorms for T,ils directed.

iii) There could be noted wmany propertles of these topologies as
for example the continuity or discontinuity of the operations
in & (D}, We do not need these for the following censidera-
tions and therefore this will be done elsewhere.

3. THE JTRUZTURS Ok CONTINUQUS FUNCTIGNALS ON OP™ -ALGEBRAS

This section contains the main results on the connection bet-
ween continuity of linear functionals with respect to one of the
topologies described above and their simole structure, To see the
slmost complete anology to the bounded case, we Tepeat the results
valid there in = very comprehensive fora ( for the exact foraula-
tion the reader can consult 2 or ..

Let B('HR ) be the algebra of all bounded operators on 'R ,
Sy i) the set of all nuclear operators with the trace-norm., Then

1) ..;1(\\\\) = B’
11) f normal on ® (W) iaplies f ultraweakly continuous.



iti) £ ultrastrongly continuous on HB{R) implies
£(a) = T ( yo,ave)  with (o), () e1(uu).
iv) f positive and ultrastrongly continuous on LR (W) lmplies the

noraality of f.
v) (3, B(®)) is a dusl pair and the topology G (BB (R),3,)

is the ultraweak topology on B ().
Now we go on to the unbounded case and start with 2 technical lemnma.

Lenma 1

Let ¥ (I} be the set of all finite dimensional operators of
LB ). Then
i) F (D) is dense in 2% (P ) with respect to T, and conse-
quently with respect to T,. and ). , teo.
ii) F (I) is 7, (A)-dense in 5, (H).

Proof:

i) Let Ae £Y( %) be an arbitrary operator and W a %, ~neigh-
bourhood of A:

={De XMW NABH L, = ZaD gl <€)

Tt must be shown that there is an F ¢ ¥ (D) with Fe WL .
Because Z BA @ W <> there is a natural n such that

ZI\A?

o . Let Pn be the projecticn on the finite di-
mensional space spanned by (Aeg,, oo 5 &9, ) &nd put F=P A,

Then Wl 4 - Fu . Z W(T-P A @M = 7 W(I-PJa g u* £
irw :
£2 W Agow " < & ., 'I‘herefore Tew .
1N

ii) can be proved by using the facts that the finite dimensional
operators are W \|,-dense in the set of nuclear operators and
that the system of seminorms defining the topology TR
ig directed.

Q.E.D.



Propositior 1

The dual space 31(‘3).’.1“1 " of 31(‘5 JCr.l is algebralcally
isomorphic to the set X (T(t.), & ) of all continuous linear
operators from o (t+) to ® equipped with the usual porm - U .

Proof:

First, resark that, of course, L' (¥) & L(Tit), &,
The isomorphism will be established by mapping

SUTITYI 3 £ e A€ R(D(L),R ) with £(T) = Tr AT.
1) 2P, R )< 3,(3}:143* :
IfRe & (D(t,),8® ) then R < Hagl for all ¢e3

and conseguently for a1l T&3,(X) HRT #U 5 WATy i which says
RT nuclear. From the min-max-principle it is easily to see that
AT, = WATH, which implies the continuity of the functional

£(T) = Tr RT on 31(3)E‘c,l .
ii) S‘(I))Etil'c L), RI:

Let fe S‘(B)ETJ* , lees,

VE(T)| £ WATU, for some 4 € £(I) (1)
For the operator ( ¢ , . It s P, teD |

If((g,,,.)~1')\‘=uA(j>,.)~i,n1 £ Gyl NAawh y Le€a,
£y, s J¥) is a W it ~cont inuous linear functional on I for

each fixed el . Therefore f( (¢, . )% ) =1{(y,X )} for
some X € 3 . Putting Ry = X we get
f((j’,.)"k)=(y,RY}=TrR(50,.)'\r (2)
or by linearity
£(F) = Tr RF for sll Fe ¥ (D).
(1) ang (2) give ({9 ,By )}t = kel Ay which says
WRNy W % WAvH for all 4 « &  and therefore R belongs to
& (B(t,), R ). Using the facts that F(J) T, ~dense in
S,(D e, ( Lemna 1,ii) and T —= Tr RT  t,~-continucus

(cf.i} )}, we can conclude that



£{T} = Tr RT for all Te 31(3 Ve
L E.D.
¥e mention that there are generalizations of this result to the
case 31(}! YLt &)1 in a simple manner. Hotice, that for T = &
clearly £ (B(t.),%®) = B (%} and one obtains the result for

the bounded case mentioned sbove.

Proposition 2
Any normal functional f on a selfadjoint Op* -algebra R (¥

is ), -continucus and therefore T,,~ andt,. -continuous,too.

Procf:
Let T = UITV be the polar decomposition of Tesl(ﬁ-). Reopark
that from the selfadjointness of & (D) it follows that T\ =

= (102 also ¢ 5, (AP 1T\ g =t 90 then

VEGANY = | Tr ATL =4 2 Cpo,aldTiop) | =1 (2] 7y, ,A(t‘;u $.)) =
WAWG g With W= 8790, =t U .

Using that for any De A (D) the operstors 8'BIT | and U B*BUIT)
are naclear cones one easily deduces that () and ( §:) both be-
long to 12(1‘.‘“ }. This completes the proof.
Q.E.D.
Remark:
" Froa the proof above the following result follows:
: Let f be & normal funetional on a selfadjoint

Op®-algebra R (T), £(a) = Tr AT, T = UIT)

the polar decomposition. Then both, BIT| %

and BiT1" U are Hilbert-3chmidt-operators

for all Be A(D).

Our next result gives the generalization of the third fact valid

in algebras of bounded operaters, The proof is, with the neceasa-

ry medifications the same as in /2/.



Propesition 3

Let f be & v, -continaous linear functional en A (L),
Then, £ has the form

£A) = T Cyiyhve)  with Cp)ed(un), (w)el®(t g ),

i.e., the set of T.s - continucus functionsls coincides with the
set of T, -continuous functionals on RA(YW).

Froof;
f w,,-contimicus means

- z (1/2
ey T ( Z RA~NUWS )

P1E£(AYL £ MAN for all A e A(H) (3}

~ -~
Let ® = 2 e, , =R for all i. In R 1let

Do={® = (yi): 9 =4+ foramate A(D)]

»

Be is a (not necessary dense} linear menifold in ¥ and

ll@l\lz Zt\;{;l\L = ZHA'\"«.- wtoo= 1\All:“.' . The functiomal f

induces a lineer functional £, on N, by
£ $ )= £ ((A%:)) := £(A). From (3} it can be seen that the

value fo( $ ) does not depend on the representatiom of & ,i.e.,
fo is correctly defined. Moreover:

VE(F Y =it & Zhawen® =UR WY this means
[¢]

that fo con be extended to a coptinuous linear functiomal on D.
{ closure in ' ) which will be denoted also by f,. Therefore
there is = % ¢ D, such that fo{ ) ={({3%,%) for allEe B,

Especially for P e I, , & =(avy)
£A) = £ (%) = (% ,%) = L (g,aw)

The properties of ( 4;},( *:) mentioned in the Proposition are
clear,

QB D.
/8/

Our next result makes use of s result of Uhlwmann which we

state here in an appropriste fora.



Proposition
Let f be a positive functional on Y (P )., Then
f(¥) = Tr FT for all # «FT(DH) with an operator
Tel (), T2o,

The essential point is the use of positivity to show Te 81(25}. We
uge this idea to prove the fellowing result.

Proposition 4

Let £*(D) be selfsdjoint. Then all positive <%, -continucus
linear functionals on &£* (¥) are normal,i.e.,
- £{A) = Tr AT with T =T%2 0, Te 5,(5),

Proof:

The fact that £(F) = Tr FT for all F e F(X) with T = T* 2 ¢
can be established similarly to Propositleon 1.or according to the
Proposition above, By standard considerations /57 the gelfadjoint-
ness of LT (D) gives T¢ L (V) and AT (and consequently Ta) boun-
ded for all 4e £ (¥), We prove Te 31(‘5) which is also the proof
of the second part of the Propesition of Uhlmann,

Tecause [ 1s nositive, for any finite dimensional projection P &
¢F(n): £0aPa”) £ £(AA7) and Tr T(4PAT) = Tr T(AP)(aP)* =

= Tr(AR) T(AP). Let {%c) be an orthonormal basis of R contained
in ¥ and P the projsction on the space span;lfd by (4, see 5, ¥nl.

Then: £(4PA") = Tr T(APAY) = Tr (AP)"T(AP) = Z. (AP v ,TAP w:) =

L3 iwma
= 2 (A ,Thvo) £ £(aa"),

4,
That means 24T A ~+: 4" converges end therefore T1/2A is & Hilbert-

Gehmidt operator for all A € £Y({ D). Especially, T"* is a Hilbert-
Gehmidt operator,i.e., TA is nuclear for all A« £'{ B ). Decause
LY (D) is selfadjeint, this mesns Te 5,(B). This gives together
with Lemna 1 and Proposition 2 the desired result f£{iA) = Tr AT.

Y.ELD,
Clearly, Proposition 4 is a consequence of the Proposition of Uhl-
mann and our foregoing results. We have repeated the proof only
because of the interesting part Te S](b' ). A more general result
can be formulated as follows:

10



Propogition 4'

Let L¥ (B) be selfadjoint and ¥ = topology on £¥ () with
i) F (L) is v -dense in LX)
ii) any normal (positive) funmctionel en £7(B) is T -continuous.
Then any Tt -continuous positive functionsl on £7(T) is normal,

Propesition 5
Let L% (X ) be selfadjoint. 1’."(15},31(35)) is a dual pair
with respect to the bilinear fora (A,T} — Tr AT. The weak tope-

logy o&{ L% (ﬁ_),:‘;](ﬁ)) i3 the proper ultraweak topology T'iw
on X*{D).

Proof:

The first part is a simple conseguence of the fact that F (D)e
< &£7(D), ¥{B)<3,(D). The weak topology & ls given by the

fanily of seminorus

A — \Tr aT |\ for all Té‘31(ﬁ).

Hence Proposition 2 gives 6= t'.,. Let W \\\(g_) e be a seminora
defining the topology %., . Lf we can find an operator 'TeJl(ﬁ )
with | Tr AT\ % “All'w., vy For all i € £ I), then t' o <&

and the proof is completed. We show that T = Z. (., . )~
is such an operator.
AT = Z { poy » YA and AT® = Z- (4, » JA4g: are bounded

operators because (. ),{ v )e 12(t+). Let (x%.:) be an arbitrary
orthonormal basis of # , then

TrAT=ﬁtZ(f;,xi}(7»‘;,Am) =202 Cpoa k0K A ) =
4 . i i
'—'Z_(QL.A"PC)-

The last series is absolutly convergent,i,e.,, AT is a nuclear ope-

(4

rator for all Ae £Y(H ). Analogously one sees that AT™ is a nuclear
operator, hence Tesl(h). woreover {4} means that |Tr ATi= uAu‘t‘,\_‘m
To complete the proof let us remark that the interchanging of

the sums in (4) is justified because both series'are absclutly con-
vergent for fixed second index. '

2.E.D.

13



4. CONCLUDING REMARKS

To investigate relationships between continuity and normality
of pogitive linear functionals, one must seak in some sense "opti-
wal" topologies, Proposition 4' says us how to understand "optimal®.
On the one hand, the topology must not be too strong otherwise

F(I) fails to be dense in L*(I). On the other hand, the topo-
logy must be strong enough to guarantee the continuity of the nor-
mal functionals. Propositicn 4 and Proposition 2 say that the ul-
trastron; topology is such a good one.

Another topology on Op'-algebras is the 80 called unifora to-
pology T, 3,4 . In it was pointed out that this topelogy under
some restrictions on the domain ¥ is also such en "optimal” topo-
logy. We conclude this gsection with the following remark. Instead
of 17(tg ) we could use also ll(t# ) or general lp(ta_), p*1 and
then investigate the same questions. Note that there are results
also along this line.
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