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1. Recent experiments (see, e.g., ref./”) indicate
a possible power dependence of the hadron high-energy
scattering amplitude. To interpret this behaviour, com-
posite models of elementary particles have been pro-
posed (see, e.g., ref./2/ ). It seems also that it is reaso-
nable to apply a potential approach for studying that
problem. Within the relativistic theory it is just the
quasipotential approach /3 in papers /47 power auto-
model asymptotics have been found for the large-angle
high-energy particle scattering on smooth potentials.

However, quasipotentials of the Yukawa type are of
a special interest. These arise even in the lowest per-
turbation expansion order. Indeed, applying the well-
known so-called “bracket” operation /3’ “to the graph

we obta_in' for the quasipotential in the momentum space

-0r
1 5 and in the coordinate space -~ -,
r

~—

& oo
The fixed-angle scattering on Yukawa potentials
within the nonrelativistic theory is considered in many
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papers. Among the first papers in this trend are’5/,
in which three first Born terms have been calculated
for the scattering amplitude on potential e~ °F /¢r. A fur-
ther study of this problem,, was based, as a rule, on the
eikonal representation (ER) of the amplitude. The ER
and several first nondivergent eikonal corrections have
been derived from the Born series for large momenta
of the incident particle p and tixed transfer momenta
X716/ The validity of ER in the limit A | » = requires
some justification. . B S

In paper “'7/ it has been shown that the results of
ER for the amplitude on.the Yukawa potential do not
contradict the results of paper /3, . - S

An applicability of ER for large transfer momenta
was justified on the basis of humerical comparison with
the Born terms (see, e.g., ref./8/). - :

The most consistent and rigorous approachisadi- -
rect calculation of the Born amplitudes in one or another
asymptotical limit with a subsequent summation of all
Born terms. Note also that for the intermediate-coup-
ling constant the Born series is well defined. .

To o_btain the asymptotics of Born amplitudes. for -
scattering on Yukawa-type poteatials in the limit 1p o oo
{5{/[5{ - fixed within the Lippmann-Schwinger and
Logunov-Tavkhelidze equations, we propose here a method
analogous to the one used .for finding the asymptotics
of Feynman diagrams.

The main asymptotic terms of an arbitrary Born
amplitude are calculated. The procedure is easily exten-
ded to calculate the lowest asymptotic terms (the so-
called lowest logarithms) that is exemplified with the
second Born term. ‘ o

2. An (n+1}th Born term of the scattering amplitude
obtained from the Lippmann-Schwinger equation with the
potential
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To the amplitude T, it is convenient to make
correspond the graph analogous to the Feynman diagram
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Fig. 1
where
P, = (058)
p. =(0;-p)
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and wave lines are the propagators with ‘mass o, and
internal: stralght lines are the propagators with M2 p2 =

= (ip, )2, k ='1,..4. Using the Feynman identity k=
. N .
1 N 3(.3 a. —1)
—~—=(N=-D! [ ..[ 1 da, =1 .
N 0 =1 N N
1 A (3 a A ]
i=] i=1 1 1

for T,;,,l the repre'sentation similar; to' the¢- ‘Chisholm
representation ‘%’ for Feynman diagrams (see Fig. 1)
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can be obtained, where
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and D, on the basis of the relation
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where 2z is the cosine of the scattering angle, may be
written in the form

D -F -AZ +h_—ic
n n hi 4

The functions F, and h_ can be calculated with the
help of rules formulated for the Feynman diagrams
in paper’/!% if the Mandelstam variables are taken as

follows

- . 2
-~ 2 2
t =(pl—p2) == A

— 2 2
u =(p1—p4) =—=2p (L+z).

Then we have

n+l 1
F =1I-y, - . f
o=l 2(—2z) "
n ‘ 2
f «-C 3 9 _c R
| : B, +Byr, 371 ot Bavyv, 5 % C o+t
: 3
i + Bnyl Yn +Bn yn+l —)f Cn +
‘ n+l
}‘ 32 _
* Bt Va7 Jy . ay_cn et By Y
n+
2 n+l
hn= o Cll E:l ‘yi (2.2)



3. The main contribution to integral (2.1) in the limit
A% e » 2 -fixed, comes from the ranges of integration
over {8,v}, where E ~0 and those regions are es-
sential where the variables forming the so-called p ~-paths
and t -subgraphs are in the vicinity of zero (see, e.g.,
refs./1%11/ ) "1t is clear that for the diagram in Fig. 1
the t¢-paths are the sets of variables 181 By b
1=1,2, ..,n+1 and t -subgraphs are the setsof variables
Wi Vie BBl Bip B iy Bui=L2, n. Now let us
make several changes of variables. We shall perform
the successive non-barycentric scaling of t -subgraphs
from right to left of the following form

yi "'”\1 }/i s i==2,3,...,n +1
6i_”\1]8i s i=92,3,,..,n

(3.1)
B, *\/TI-B]A
with the subsidiary condition
n+l 2
5 BB =1
and then
¥ oA, Yy s 1=3,.,n0+1
B,.oAB. 5 1=3,..,n 3.1)

Bj»\/f\‘zﬁi; j=1,2

with the subsidiary condition

n+l n 2 2
3 . =1 and so on.
e MY



And the last change of variables is the scalmg
of ¢ -path {8,.8,...8 ¥

yn 4)"11 yn
- . (3.2)
Bi a\/f\n -Bi | =1,...,n .

with the subsidiary condition

In this case the contribution to the main asymptotic
term comes from A; around zero. Note that another,
alternative, order of the change of variables is possible.
For instance, in (3.2) instead of y -A y one can
make the change y,; »A_ -y, and the scaling in
t — subgraphs from left to right, etc. It can be easily
verified that the whole number of suchalternative pos-
sibilities of the change variables equals 2" and all these
should be considered. Due to the fact that wvariables
Ay are small we may retain in C, , F,, h, only terms

of the lowest order in A, . Then (see Appendix A)
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After the change (3.1-2) the leading asymptotic term of
the amplitude in the limit A®-»»~ takes the form
3
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It is not hard to see that the function F, vanishes

only on the so-called ”regular manifold” 1%/ Therefore
expression (3.3) can be represented in the form

_g n n —31'._ n
5(2?) 2 -172.-F(-2—+1)><
by

1 n -~ . n
d¢ . fdy «[..{ T dB -8(£~F ). 1 sg%23
><Lf & Of v fizl B, +8(£-F) S(yn+2(1_z)i=lﬁi )x

n n/2
xf..c.f—ﬁ_h'gdl\i' A
0 [ﬁ)‘if A o V2!
i=1

where the contbur L has the form

o 4
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It is easy to see (Appendix B) that

n n/2
€ 0da, -,
fouf —L "1 T _ _

0 [ﬁl)\i & A2+02—ie]'2l'!‘+l
2
Inn-AT 9
Ll oA
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And finally, we are left to calculate the integral

d¢ (. rdy T 4B, .5 L5 g2
LI§%+1 [ Ya i1 18 (&- F)S(ynJrz_(-l_:-). lﬁ - 1).

As can be shown, it equals

in. n/2(1__z) I
F(—— + 1)

As a result, the leading asymptotic term of (n+1)
Born amplitude takes the form

—A_f . "I']— [ *—g‘-— L (3.4)

The sum of the main asymptotic terms results in the
expression

ni]_
ad

g ig
— .expl =
A? P

It is interesting that this expression coincides with the
one obtained from the eikonal in the limit A>>o.
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In the limit 0~ 0 for the cross section we arrive
at the Rutherford formula for scattering on the Coulomb
potential,

4. By the method employed in the paper also the
asymptotic terms can be obtained for the lower-order
Born amplitudes. In this case the values of *; should
be taken into account not only around zero. Thus, to
calculate the next to the leading asymptotic term in am-
plitude (2.1) it is necessary to consider also the integ-
ration region

under the previous assumption that all other parameters
{f\i j, i#£ 1, are small.

For iliustration, in Appendix C some details are
given of calculation of the second Born amplitude T,,
. 2

1
which equals 8 -%[lné-po(l)] that coincides with the result
o

A2
of paper 75/,

5. Analogously the scattering of the relativistic
particle is investigated in the quasipotential approach/3/.
For the potential

the main asymptotic term of the (n+1) Born amplitude
has the form

. AY 1 dig(s) AP
U(S,A)r—l-!-[-——;——*—'ll];]- (5.1)
Details of the calculation are given in Appendix D.

It is interesting to compare (5.1) with (3.4). These
expressions differ from each other by the change g +2g/ys"
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Note than (5.1) can be derived from the eikonal repre-
sentation for the Yukawa scattering amplitude with the
eikonal phase which differs from that for the amplitude
of the nonrelat1v1stlc particle with the same potential
by the factor 2/V¥ .

The sum of terms (5.1) can be written in the form

. 1 ‘
Uls:Aye ek PTR | G¢-2)

For the smooth potentials in (5.2) one may put’
X eik (P~ -13- )~ = X eik (0) that results in the expression found
m/4-/

We wish to express our gratitude to A.N.Tavkhelidze,
V.A Matveev, A.N. Slssaklan M.A.Smondyrev for useful
discussions.

Appendix A

Here we obtain F, from representations (3.1) and
(3.2).

Evidently, all terms in (2.2) linear in {3; cancel.
Indeed,

() n+1 ntl 1
Cl‘l =Cn({Bl! :0)21][}/.1 21 'y_'
]

Terms in f, linear in 8, have the form

W__ 3 5 @ n
fn = EB +Bly1 ETC”‘ +-.-+BHIII }’i +
1
3 (0 n+l
+Bn Y4l '-é_y__cn +"'+3lg ¥ (A.1)
n+l e - .



and due to the clear equalities

0) 6) n+l
] ( C”?I

" 3y, C, = R

2 0) _(0) m+l
vy _..ui_.___cn =C - my (Ll
lzayl 9%, iy, oy,

expression (A.1) vaniches. The part of f, quadraticin
B, has the form

(z) =n n 3 (0) g & J (0)
f =-3 2 R -E._C — 228 Z_C ..
n I'Bi ) B] 6}9] n +B]ylayl 2’81 8)/1 n +
-1 n+}
J 5 3 (0 .
a3 PGy Ca b BBy Ly
n 1

After the changes (3.1) and (3.2) for A i ~Othe main contri-
bution to f(2) comes only from terms diagonal in B; 13,--
n ‘

Appendix B

Now let us obtain the main asymptotic term of the
integral (see also ref.”!%4: \

b,
foof L i “n/2+1 for r >> 1. ] (B.1)

[Iilz\i-r +1]

The integral (B.1) is reduced by an [-2“-] -tuple
differentiation to the following form ‘ :

n m
1 o da, AL
Inzf"'f nl )
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where [;—] is an integer part of the number g— and

m= —2:-—- 2. with the change ¢ =A 7
n—1 m
1 T m 1 0 odr Ay
J r)=n—Jds-¢ [of L
L m+1l 5 0 n _
r Lo A Yarsh
RUITANE TR NGO IR

through the direct calculation we obtain

5 (0= s (B.3)

Then from (B 2) and (B 3} it follows that

J () - [—1“:!’ « o(ln")L

m+ 1

Appendix C

" Let us demonstrate now some detaxls of calculatmn
of the second Born term of the amplitude by the method
indicated above ‘

S(yl Yy +3 ~1)
[F, A2 +hl——ie]3/2

g2 !
T, = £ 511 dy,dy 35

F. - SR S
1 V] Yo 2(1__3)

a2 : : .

| h _ﬁcr '(yl +y2)(yl +7, +8)
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It is convenient to make the following change of variables

YAy,

2
- I-—!\ = .
V, > {1-4) Yy Y Yy vB =1

B - 2 V'A (1—/\)_3

Then T, takes the form

2 2 :
Ty = g [y, dydB 80y, 5y« 62 -1)

lé A= - [ ya=x)
x [dA =
O IAA-MF, A R i

& [Ayl +(1-1) Yy *

2 VAA=2) R=1]

h, - 0'2{)\-)/1 +1=2)yy Ay, +(1_,\)y2+2\/,¥(1-;\)3,1_1.

The integral over A is rather easily calculated

by dividing the integration region into three parts [0, ]
le,1-¢] and [1-¢1].In each region the integralover A is
calculated asymptotically with any accuracy.

b

Appendix D

To obtain an « -parameter representation of the
quasipotential amplitude we apply the relation

(= )

NiZx,) 1 N ~1 8(E a-1

N 1 - N 1 1 . f--- f H dai aixl . N 7 al )
mA' Hre) o ! PR &
: (D.1)
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The representatioh for the (h+l) th Born ‘a'.m'pli;tude is

B N —,- - l ln 1 n o n+l
T (p’;p)r_g I’H'l.n' -ﬂ‘.f---f 11 dadﬁ Hd}/ X
n+l . . 0 1 . 1 1 l . 1 N e
. 1 i
S n—1/2
n n . N o+l . Cn : .
xé(% a, 1_%.3-1 +.21:' Vi'l) 2 A2 h - n+l:
N A { P8 - +h . —\le):
- (D.2)

where all-k values of the parémeters a, , By ,vi are
shown in Fig. 2. - ' '

, , . Qp . ' - a] )

~
~
[
~
—

*2.

Pg weg

Fig. 2

With the helpofthe notations introduced one can obtain
Cc . f h (cf. with the case of the Lippmann-

n’? n’gn’ o’

Schwinger equation).
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