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The Zero-Mass Goldstone Particles in the Models 

[(¢\t>) 212 and[(¢x¢) 2] 3 with Degenerated Vacuum 

The models [(¢'¢) 212 and [(¢'¢) 2 13 with the degenerated 
vacuum are considered. Under the assumptions that: 

i) the functional of vacuum (4), (5) and excited 
state functional (9) are invariant under the gauge 
transformation, and 

ii) the eqs. (10) for the determination of the 
excited state functional (9) have nontrivial solutions 
with bounded coefficient functions, 
we prove that the functional (9) defines the particle 
with zero rest mass. So, a new proof is given of the 
Goldstone theorem for the models considered. 
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l. INTRODUCTION 

The models in the title are manifestly 
relativistic covariant and possess conti­
nuous gauge symmetry. The ground state in 
these models is infinitely degenerated (see 
eq. (7)) in some region of the parameter 
M2 , M2<M6.The ground states (7) with m;f 0 
are not gauge invariant. 

So, according to the Goldstone theorem/1~ 
the models considered contain zero-mass 
particles, Goldstone bosons. 

In this work we give a new proof of this 
result proceeding directly from the analysis 
of the Schrodinger eq. solutions. 

1.1. We use the method of linked cluster 
expansions. The possibility of applying this 
method to the analysis of the Schrodinger 
eq. solutions in quantum field theory was 
pointed out by Coester and Haag1 31.Later on we 
developed this method in detail /2,4,8,9/. 

1.2. The article is organized as follows. 
In Sect. l we list the necessary formulae of 
the work lzl, where there is studied the 
model [(¢ x¢ ) 2) 2. 

The very important suggestions about the 
gauge transformation properties of the 
ground and excited state functionals are 
given in Sect. 2. 
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In Sect. 3 we study the odd in rjJ
2 

,eq. (3), 
one-particle state, eq. (9), in the model 
[(¢\'>) 

2
] 2• It is shown that, if the system (10) 

has a nontrivial solutions, the functional 
(9) describes the zero mass particle, Gold­
stone boson. 

The papers / 6 , 7/ contain the statement that 
there are no Goldstone bosons in two space­
time dimensions. 

In order to avoid this subjection, in 
Sect. 4 we transform the consideration of 
Sect. 3 to the case of three-dimensional 
space-time, where Goldstone bosons are not 
forbidden. 

1.3. The models under consideration are 
defined by the Hamiltonian 

2 
1 0 2 2 

H =-I dk[- + (k +M )¢ (k)¢ (-k)] + 
2 o¢P<k>o¢P(-k> P P (l) 

+ gf dk 1dk2 dk 
3
dk

4
¢ P(k 

1
> ¢ P <k2 )¢ a(k 

3
) ¢a (k 

4 
)o <k

1
+k2 + k

3 
+k 

4
> 

and by the Schrodinger equation 

<H-E)fl =0. ( 2) 

Here 0 is the functional describing some 
physical state; E, the energy of this state. 

1.4. Let us produce the transformation 
of the variables /2/ 

¢ 
1

<k> = f-3o<k> + tfJ 1 <k>, 

¢ 2 (k) = tjJ 2 (k) . 

After this transformation the Hamiltonian 
(l) will contain only even degrees of r/1

2
, 

4 

( 3) 

so 
n(J 

that one can search for the ground state 
in the form 

fl
0
(¢) = exp[-K(cp)], cp(k) =[¢

1
(k) + i¢

2 
(k)]j\/2, (4) 

2K=fdk dk o(k +k )[C (k ,k )r/J (k )r/J (k ) + 
l 2 l 2 20 l 2 l I I 2 

+ C 0 2 (k I 'k 2 )r/J 2 (k l) rjJ 2 (k 2 ) ] + 

+fdk dk
2

dk o<k +k +k lc <k ,k ,k >r/1 <k >r/1 <k >r/1 <k >+ 
I 3 l 2 3 30 l 2 3 l l I 2 J 1 

+CI?(kl ;k2,k3)r/JI(kl)r/12(k2)r/J2(k3)] + 

( 5 ) 
+ ... 

Substitution of (4), (5) into (2) gives 
the system of equations 

2 2 2 
C (k,-k)=k +8gf-3 + fds[GC (s,-s,k,-k)+C (k,-k;s,-s)-

2'0 40 22 

- ~-C30 <s ,- s, 0) - -
1-c 

12
<0 ;s,- s )] , 

2{1 '2/3 
( 6) 

2 2 
C <k,-k) =k +fds[C (s,~s;k,-k)+ 6C (s-s,k,-k) -

02 2 2 04 ' 

3 1 
- --C 30<s,-s,0)- -C 12 <0;s,-s)], 

2{3 2{3 

C ao<k l'k2' k3)[C20(k 1'-k l)+Czo<k2,-k2hC20(k3,-k 3)) =8g/3 + 

+ fds[10C 50<k 1,k 2 ,k 3 ,s,-s)+ C 32 <krk 2 ,k 
3
;s,-,s>), 
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C <k ~k ,k HC (k ,-k >+ C
02

<k ,-k )+C {k ,-k )]=8g.8+ 
12 l 2 3 20 1 l 2 2 02 3 3 

+ f ds{3C 32<k l' s,-s ;k 2,k 3>+0C
14

<k
1

; s, -s, k
2

, k
3
)], 

for the determination of th€ coefficient 
functions C nm 

1.5. Apart from the functional(~). (5) 
to the lowest eigenvalue of the Hamiltonian 
(l} there belong all the functionals/2

/ 

n m (¢) = e imfJ n 0 (¢). m = 0, ±1' ±2, .•. 

e = arctg(¢ 2<0>/¢ I(O)] = arctg¢ (0). 

1.6. One has to search for the excited 
state functionals in the form 

Dmp(¢) = Up(¢)DJ¢), 

( 7 ) 

( 8 ) 

where p 
(7); and 
and if; 2 
degrees 

is the momentum; n~the functional 
up ,the expansion in powers of t/Jl 
which contains only odd or only even 
of tjJ 2 ,e.g.~ 

p u <¢) ., r t/J <p> + 
p2 0 I 2 

+ fl p (k ; k )tjJ (k ) !/; (k ) dk dk 0 (k + k - p ) + 
II 1 2 l I 2 2 l 2 l 2 

+f(r:I<ki,k2;k3>t/JI<~>t/JI{kz>t/J2<k3> + 

6 

+ rP<k ,k ,k >t/J <k >t/J <k >t/J <k >]dk dk dk o<k +k +k -r>+ 03 l 2 3 2 l 2 2 2 3 l 2 3 l 2 3 

+ .•• • ( 9 ) 

Substituting (8), (9) into (2 ) , (1) gives 
the equations 

[C (p,-p -J\(p)]I~P=fds[rP<s,-s;p)+3I'P(s,-s,p)), 
0 2 0 I 2I 03 

[Co2<p2,-p2>+C2o<P I,-p I)-J\(p)]['l~(pi;p i+ 

+ 
2~ 1 c12<p I; P 2 , -p>I'o"1 =f ds 131 ~~ <s,- s ,p 1;p 2 431 't

1
<r 1;s,-s,p2>J, 

[C2o(pl,-pl H-C 2 Cp2,-p2H-C (p3,-p )- J\(p)] I P (p ,p ;p ) + 
0 02 . 3 21 I 2 3 

2·1 c t >I' r 3·1c, < >r,r< > + -2- 2tP l'p2 ;p 3,-p 0 I+ -2- 30 p l'p2 ,-p 1-p '2 11 p1 cp2;p1 + 

+~! IC fp ·p -p -p H'P(p ·p +P >+ 
2 2 I 2 I' .1' I .1 II 2' I 3 

+ cl2<pz;p3,-Pz-P3H'J~<prpz+P3>l = 

= fdsl6J'P(p ,p ,s,-s;p )+3J'P(p ,p ;s,-s,p )l, 
4 I I 2 3 23 I 2 3 

(1 0) 

which determine functions 1·nm and eigenvalue 
J\(p);/\(p)in (10) is the excitation energy, i.e., 
the energy of the state (8) minus the energy 
of the ground state (4). 

1.7. There exist the excited states of 
three types: 

1) the one-particle excited states, 2) the 
bound states and 3) the states of scattering. 
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While the coefficient functions of states 
of types 1) and 2) are continuous and 
bounded, the coefficient functions of 
states of type 3) are singular ones. 

The one-particle excited states differ 
from the bound states because for the former 
states in the limit p~~ there disappear all 
the coefficient functions rnm• except for rol 
(odd in ~ 2 one-particle state) or r 10 (even 
in ~2 one-particle state). 

Perturbation theory for ~4~ shows the 
odd in ~ 2 functional ~P 2 with continuous and 
bounded coefficient functions to describe 
the particle with zero or vanishing in the 
limit ~4 00 mass. 

1.8. We shall denote this functional 
and its coefficient functions by U (¢) and 
f . p2 

nm· 

2. CONJECTURES ABOUT THE TRANSFORMATIONAL 
PROPERTIES OF THE EIGENFUNCTIONALS UNDER 
GAUGE TRANSFORMATION 

In this section we shall study the trans­
formational properties of the functionals 
(5) and (9) under gauge transformation 

¢ (k) 4 ¢ (k) e ia . ( 11) 

We state that there hold the formulae (for 
any real constant a ) 

K(¢e ia) = K(¢), (12) 

U ,(¢eia )= U ?(¢), p -1 0, 
p.. P-

(13) 

- ia - -
Uo2(¢ e ) = a[o 1{:3 ° (0) + Uo2(¢) • (14) 

8 

' l 

' J 

2.1. For small values of a transformation 
(11) in variables ~ is 

~ 1 (k) ~I/J 1 (k) -a~ 2(k) + ... 
(15) 

J.j; (k) ~ 1/J (k) + a[~o(k) + ~ (k)] + ... . 
2 2 l 

Substituting (5) and (15) into (12) gives 
infinite number of the relations between 
functions cnm: 

·C (0,0)=0, 
02 (16) 

c 
20

<k ,-k)- C 0 jk ,-k) = ~C 1 1k ;-k, 0>, 

Analogously, substituting (9) and (15) into 
(13) gives infinite~number of the relations 
between functions rnm (p-f, 0): 

r ;l t ~i\P1 (p; o) = o , 

1 -P I : p -P 
- 2ri1 <k 1 ;k 2>- 2 I 1l<k2;k 1>+3~r o3<k 1 ,k2, o > = o, ( 17 ) 

_!_fP(k ;k )+}_f'P(k ;k )+~~p(k ,k ;0)=0, 
2 11 1 2 2 ll 2 l 21 1 2 

2.2. The physical meaning of formulae 
( 12 ) , ( 13 ) i s quit e c 1 ear : vacuum ( 4 ) has 
no charge, vacuum (7) has charge m, the excited 
state U (¢)!1m(¢),p-f,U has the same charge as the 

p • " correspondlng vacuum um. 

2.3. We do not know how to prove formulae 
(16) and (17). Suppose, however, the value 
~ 2 to be large. Then it is possible, neglec­

ting integrals' to determine c20' c 02' c 30' 

C ... from eqs. ( 6) : 
12 
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c 2(')(k,-k)·= v'k 2 + 8g{3 2 + ••• 

C0 jk,-k>=lkl+ ... , 

C
12

<k ;-k, m = Bgf11<v' k 
2 

+ 8g{1
2 

+ lkl) + 

These functions satisfy relations (16). One 
can "check" relations (17) analogously. 

2. 4. Finally, formula (14) lS a conse­
quence of formulae (13), (15) with account 
of the coefficient functions r continuity. nm _ 

Formula (14) implies the functional U02(¢) 

to be not singlevalued one. Therefore the 
state 

-
0 mo(¢) '' U02(¢Wm(¢) (18) 

is to be excluded from the set of the eigen­
states of the Hamiltonian: particularly it 
must not be taken into account at the summa­
tion over intermediate states. 

3. THE ZERO MASS PARTICLE IN THE f(¢x¢) 212 
MODEL 

We shall prove here that the odd in t/; 2 
one-particle state in this model, if it exists 
(it is defined by the functional up2(¢)) des­
cribes the particle of zero mass, so that 

-
A (p) ~ 0 as p~ 0. (19) 

For the proof let us tend P to zero ln 
the first equation of system (10). Taking 
into account the first relation of system 

10 

l 
! 

(16) and second and third relations of 
system (17), we shall reduce the first 
equation of (10) as p~O to the follnwing 
nne: 

A<p>rJ1 ~o, p~o. (20) 

System (10) defines the functions fum up 
to a common multiplier, and f 0°1

#0. There­
fore (20) implies {19). 

3.1. Thus our model contains the state 
of massless particle. Hence it follows, 
that it has neither even in t/; 

2 
one-par­

ticle state nor bound states (they are 
unstable decaying into massless particles). 
So, all the states in our model, except 
for the one of zero mass particle, are the 
states of massless particle scattering. 
Let Up2(¢;p bP2,P j be the functional, cor-
responding to the scattering of zero mass 
particles with momenta p 1 , P 2 ~ P:;p P 1+P2 +P 3 == P, 
P1fO, p:fO, p 3=/0. This functional satisfies 
similarly to (13), (14), the relation 

UP 2(¢ eia; P rP 2 p3)== {3a ~01° (p)+ Up f¢ ;pl'p2,p 3). (l3b) 

Substitute U 1c? ;pl'p 2'Pt for U 2(¢) 
• • p • p 

conslderatlon, whlch has resulted 
ln the 
in (19), 

(20). Then the relation 

A (p) rOPl ~ 0 as p .... 0 

is valid as before, but (20a) does not 
imply the limit 

A (p) ~ 0 as p .... 0 

(20a) 

(l9a) 

11 



b ,_, t t he l i m i t 

:· f' --> 0 
0] 

EO that 

~o 0 . o: = 

as p .... 0 ( 21 ) 

(2la) 

Ttc difference between the behaviour of f8 1 
rrr' ''6 1 as p->0 has a simple physical in­
lGifYetation. Namely, provided that 

l ~ ]= 0 
il·c functional U0 i¢) would be single-valued 
ere and would define physically meaningless 
ELEte of zero mass particle with zero mo­
~E~tuffi. On the contrary, provided that 

rolf' 0, 
tl1e functional lJ02<¢;pl,p2,p3), P:rtP2+P3= 0, 
would be non-single-valued one and would 
Cescribe no physical state; this is impos­
roible. if p 1f' 0, p 2/= 0, p 3-/0,for the functio-
ne. l U 0 2( ¢ ; p 1, p 2, p :J) even at p 

1 
+ p 

2 
+ p 

3 
= 0 

describes the state of three massless par­
ticle scattering. 

4. THE ZERO MASS PARTICLE IN THE 
MODEL [(¢X¢) 2] ~ 

The papers /fi/ and/7 / contain statement that 
there are no Goldstone bosons in two-dimen­
sional space-time. So the consideration of 
Sect. 3 seems to be useless. Here we, ho­
wever, extend this consideration to the 
three-dimensional space-time, where there 
is no objection of 16 •71. 

4.1. In this case one has to add C 101/1 1 <0) 
to the right-hand side of formula (5) (com­
pare 191); one has also to substitute 

12 

1 
f3 c 0 2 <0, 0) = 2 c 1 0 (16a) 

for the first connection of (16), and 

[Co2<p ,-p) -A(p)Jfll+ c lofft<O;p)/2 

- p -p 
( 22) 

= J ds [ 1 2l s , -s ; p) + 3 r 0 3(s , - s ' p ) 

for the first equation of the system (10). 
Then the integral in the right-hand side 
of e q. ( 2 2 ) vanishes as p __. 0 for the same 
reason as in Sect. 3. Formula (16a) and the 
first of eqs. (17) imply 

C02(p,-p>r 61+ clil~(O;p)/2 __. 0 P _, 0 (23) 

Thus we again get the limit (19): the model 
contains zero mass particle. 
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