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The Zero-Mass Goldstone Particles in the Models
U¢X¢)ﬁ2 andK¢§b)a3 with Degenerated Vacuum

The models Nﬁ%)ﬁz and H¢%)213 with the degenerated
vacuum are considered. Under the assumptions that:

i) the functional of vacuum (4), (5) and excited
state functional (9) are invariant under the gauge
transformation, and

ii) the egs. (10) for the determination of the
excited state functional (9) have nontrivial solutions
with ©bounded coefficient functions,
we prove that the functioral (9) defines the particle
with zero rest mass. So, a new proof is given of the
Goldstone theorem for the models considered.
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1. INTRODUCTION

The models 'in the title are manifestly
relativistic covariant and possess conti-
nuous gauge symmetry. The ground state in
these models is infinitely degenerated (see
eq. (7)) in some region of the parameter
M2 , M2<M2.The ground states (7T) with m#£0
are not gauge invariant.

So, according to the Goldstone theorem/lé
the models considered contain zero-mass
particles, Goldstone bosons.

In this work we give a new proof of this
result proceeding directly from the analysis
of the Schrddinger eqg. solutions.

1.1. We use the methcd of linked cluster
expansions. The possibility of applying this
method to the analysis of the Schrddinger
eq. solutions in quantum field theory was
pointed out by Coester and Haag/wﬂLater on we
developed this method in detail /2,4.8,9/

1.2. The article is organized as follows.
In Sect. 1 we list the necessary formulae of
the work /%, where there is studied the
model [(¢% )2 ,.

The very important suggestions about the
gauge transformation properties of the
ground and excited state functionals are
given in Sect. 2.



In Sect. 3 we study the odd in Y, eq. (3),

one- partlcle state, eq. (9), in the model

[(¢ "3) 2 o+ It is shown that, if the system (10)
has a nontrivial solutions, the functional
(9) describes the zero mass particle, Gold-
stone boson.

The papers’“ﬂ/ contain the statement that
there are no Goldstone bosons in two space-
time dimensions.

In order to avoid this subjection, in
Sect. 4 we transform the consideration of
Sect. 3 to the case of three-dimensional
space-time, where Goldstone bosons are not
forbidden.

1.3. The models under consideration are
defined by the Hamiltonian

2
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+ gfdkldk2dk3dk4¢’}kI)¢p(k2)¢oﬁk3)¢aﬂk4)8(k1+k2+k3+kg
and by the Schrddinger equation
(H-E)XQ =0. (2)

Here @ is the functional describing some
physical state; E, the energy of this state.

1.4, Let us produce the transformation
of the variables /2/

]

¢l<k)‘ Ba + ¢ (k)

(3)
b,k = (K.

After this transformation the'Hamilﬁonian
(1) will contain only even degrees of ¢y
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so that one can search for the ground state
Q¢ in the form

Qo(¢) = expl-x ()], ¢ & =l () +ig, *1/v2, (L)

- , [ W (kW (k)
2= fak dk Btk +k IIC, (k kg G (k) s

/ .
-+C02(k1,k2)y2(kl)¢2(k2)] +
+ fdk didk Gk +k,+k XC, Gk ko k 0w g (K )+
1Ok ik k)i Gk (kg gy (k )1
(5)

.

Substitution of (4), (5) into (2) gives
the system of equations

2 2 2
k)= ] 3 _ _ . kg, —g)—
Czo(k, k)=k +8gB8 + [ds[6C 40(S’ s, k, k)+622(k, k:s,—s

3¢ (s,-50 - J e f0:s,-s), (6)
2p 30 Bn !

2 2 o ek - _ _
C02(k,—k)=l< +fds[C22(s, s;k, k)+76C04(s, s, k,-k)

- 30 ms, 0 - €y (05s,-8)T,

2B 2B

C aglk ko, kM C ook =k )+ Coalky,~k )+ C ok, —k ) =8g8 +

-+fds[HXBSékl,kz,ka,s,—s)+—Cazﬂ(sz,kays,—s)],



C 12(k 1;kz,k3)[C zo(k 1,-—k 1)+ C Oz(kz,—k2)+002(k3,—k 3)]=8gB+

+ fds{3C32(k ? s,—s;k2,k3)+6014(k1;s,—'s.k2,k3)] ,

for the determination of the coefficient

functions ‘Cﬂm.

1.5. Apart from the functional (4), (5)
to the lowest eigenvalue of the Hamiltonian
(1) there belong all the functionals 2

2 (@-e™a (¢, m=0, 11, *2,..
(7)
8 = arctgle o(0/¢ (O] = arctge (0.
1.6. One has to search for the excited
state functionals in the form
Q@ = U (D0 (4), (8)

where p is the momentum; () ,the functional
(7): and U, ,the expansion in powers of ¢,

and 4, which contains only odd or only even
degrees of yg,e.8.,

P
Up2 () =F° 1l,llz(p) +

p
. S _
+|[”&szwlmﬁ¢2&2hmﬁm2(kﬁk2 p) +

p .
+ﬂF25kPkaQ¢ﬁh)¢”k£¢ﬂkQ +

P
+ r03(k1’ k o k 3)!/1 2(k 1) lﬁz (k 2)![12 k 3)] dkldk 2dk 33 (k 1+ k2+k 3—p)+
e (9)

Substituting (8), (9) into (2 ), (1) gives
the equations

P P P
[Coz(p,—p AL =[dsIl) (s, s;p)+30 1 (s,-s,p)l,

<P i
[C02(p 2,—p2)+ C20(p 1P 1)—/\(p)][ ) 1(pl,p 2)+

2-1

) P VP ) P
+ 5 Cip 0y P =fds 131 (s=s.p ip H31' 1D is,-s,p ),

;P .
[Cyypymp 1C 24P P Coyp i = A Ly P ppyip )+

-1 ~p 3.1 P
+ —2—C2§p PPy I T(‘so(p PP =PI (B =pyip )+

2-11

. P
L2111 o .
5 2| CLgPpyp o U D o ap )t

< o oon P _
+ (,]2([)2,p3, P, p3)l 11(pl,p2+ pg)]
- I - a1 P ce _g ,
fdslé6 41(p1,p2,s, s,p3)+‘3123(p fDQ,s, S,P:}ﬂ
........... . (10)

which determine functions [, and eigenvalue
A();A(p)in (10) is the excitation energy, i.e.,
the energy of the state (8) minus the energy
of the ground state (L).

1.7. There exist the excited states of
three types:

1) the one-particle excited states, 2) the
bound states and 3) the states of scattering.
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While the coefficient functions of states
of types 1) and 2) are continuous and
bounded, the coefficient functions of
states of type 3) are singular ones.

The one-particle excited states differ
from the bound states because for the former
states in the limit fH->> there disappear all
the coefficient functions I ,,, except for [y,
(0odd in ¢, one-particle state) or I';, (even
in ¢3 one-particle state).

Perturbation theory for B-« shows the
odd in ¢ functional U p2 with continuous and
bounded coefficient functlons to describe
the particle with zero or vanishing in the
limit B-»e~ mass.,.

1.8. We shall denote this functional

and its coefficient functions by U (¢) and
r .-

2. CONJECTURES ABOUT THE TRANSFORMATIONAL
PROPERTIES OF THE EIGENFUNCTIONALS UNDER
GAUGE TRANSFORMATION

In this section we shall study the trans-
formational properties of the functionals
(5) and (9) under gauge transformation

¢ (k) » pkel?. . (11)

We state that there hold the formulae (for
any real constant a)

k(ge ') = xlg), (12)
Uplée™)=U 4, p#40, (13)
Tpplde'™) = aly 880 + Uyl ). (1%)

2.1. For small values of a transformation
(11) in variables ¢ 1is

(k) - ¢ (k) - k) + ...
¥, ¥ ay, (15)

¢:Jk) - ¢2(k)-+a[B8(k)+-¢l(kH + ees

Substituting (5) and (15) into (12) gives
infinite number of the relations between
functions C,

€,40,0-0,
C ok, —k) — C o fk,—k) = BC gk; =k, 0),

(16)

Analogously, substituting (9) and (15) into
(13) gives infinite number of the relations
between functions I (p# O):

P TPy o

U+ 8L (p:0) =0,

-_r Gk ik ) - —1‘1"1<k2,k D+3BT ok Ky, 01=0, (17
15p, . 1 7p . P .0)=0
STk )+ T Tk sk p+ BT ks

2.2. The physical meaning of formulae
(12), (13) is quite clear: vacuum (4) has

no charge, vacuum (7) has charge m, the excited

state U(¢Kl(@ p#0 has the same charge as the
correspondlng vacuum

2.3. We do not know how to prove formulae
(16) and (17). Suppose, however, the value
B2to be large. Then it is possible, neglec-
ting integrals, to determine C,,, C oo Cqoo

Cwn. from eqs. (6):



Colki=k) = Vk2+ 8gB2 + ...,

Cyfki=k) = [k| +.m.

C k 3-k, 0 = 828/ (V' k 2,882+ [K|) + ...

These functions satisfy relations (16). One
can "check" relations (17) analogously.

2.4. Finally, formula (14) is a conse-
quence of formulae (13), (15) with account
of the coefficient functions f}m continuity.

Formula (1L4) implies the functional Uyy(¢)

to be not singlevalued one. Therefore the
state
Qmouﬁ:;uoé¢)9"§¢) (18)

is to be excluded from the set of the eigen-
states of the Hamiltonian: particularly it
must not be taken into account at the summa-
tion over intermediate states.

3. THE ZERO MASS PARTICLE IN THE [(¢*¢)°],
MODEL

We shall prove here that the odd in ¢,
one-particle state in this model, if it exists
(it is defined by the functional U,(¢) des-
cribes the particle of zero mass, so that

K(p)—»O as p- 0. (19)
For the proof let us tend p to zero in

the first equation of system (10). Taking
into account the first relation of system
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(16) and second and third relations of
system (17), we shall reduce the first
equation of (10) as p-0 to the following
one:

APITF -0, p-0. (20)

System (10) defines the functions [,, wup
to a common multiplier, and f€1¥0. There-
fore (20) implies (19).

3.1. Thus our model contains the state
of massless particle. Hence it follows,
that it has neither even in ¢, one-par-
ticle state nor bound states {they are
unstable decaying into massless particles).
So, all the states in our model, except
for the one of zero mass particle, are the
states of massless particle scattering.
Let Upj¢;pbp%p§ be the functional, cor-
responding to the scattering of zero mass
particles with momentap,, Pgs Py, P;+Py+P3=P
P1#0, ps#f 0, py#0. This functional satisfies
similarly to (13), (1%), the relation

U, {de'p p 2p3)=Ba[6°18(p)+Up2(¢ s N JO N (13b)
Substitute Up4¢;ppp2p§for Up§¢) in the
consideration, which has resulted in (19),
(20). Then the relation

AT -0 as p-0 (20a)
is valid as before, but (20a) does not
imply the limit

Alp) - 0 as p-0 (19a)

1"



brt the limit

Igia 0 as p~0 (21)
soc that
ﬂ&::ﬂ (2la)
difference between the behaviour of fgl
]

Tre
.

~
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i

;ﬁ] as  p-0 has a simple physical in-
rpretation. Namely, provided that

e

tre functlonal UQ{@ would be single-valued
cre and would define physically meaningless
ciete of zero mass particle with zero mo-
mrentum. On the contrary, provided that

HESE VN :
the functional Uye(dh:ippa,p3), pppot+tpa= 0,
wcoculd be non-single-valued one and would
ccribe no physical state; this 1s impos-
le, if p#0, p,#0 , py#0,for the functio-
Ugoldip1,Popy) even at p]+p2+p3=:0
scribes the state of three massless par-

-

ie scattering.
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L, THE ZERO MASS PARTICLE IN THE

MODEL [(¢ *¢) 21,

The papers m/and/7/contain statement that
there are no Goldstone bosons in two-dimen-
sional space-time. So the consideration of
Sect. 3 seems to be useless. Here we, ho-
wever, extend this consideration to the
three-dimensional space-time, where there
is no objection of 6,7/,

L.1. In this case one has to add C (0
to the right-hand side of formula {(5) (com-
pare/g/); one has also to substitute

12

1
BCOJQ®==§J%0 (16a)

for the first connection of (16), and

[Cyolp o =p) ~AIT Pt C ol F(0sp)/2 =
- ~ (22)
= [ds(T)(s,~s5p) + 3T s ,~s,p)

for the first equation of the system (10).

Then the integral in the right-hand side

of eq. (22) vanishes as p-0 for the same

reason as in Sect. 3. Formula (16a ) and the
first of egs. (17) imply

P~ 1 P
Coﬁp;p)roﬁclJHﬁOJn/zao p-0 (23)

Thus we again get the 1limit (19): the model
contains zero mass particle.
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