ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫX
 ИССАЕАОВАНИЙ

AYEHA

$$
\begin{aligned}
& k-74 \\
& 5175 / 2-76
\end{aligned}
$$

B.Z.Kopeliovich, L.I.Lapidus, A.B.Zamolodchikov

INCLUSIVE REACTIONS
WITH A POLARIZED TARGET IN THE BEAM FRAGMENTATION REGION

B.Z.Kopeliovich, L.l.Lapidus, A.B.Zamolodehikov

INCLUSIVE REACTIONS
WITH A POLARIZED TARGET IN THE BEAM FRAGMENTATION REGION

Submitted to $Я \Phi$

O6zこ』ине: LECH: EWEMMCTEHA

I. Introduction

Only few studies have been made on polarization effects in inclusive processes at high energies. At the same time it is well known that such effects in elastic scattering $\mathrm{in}^{\prime \prime}$ other binary reactions are very sensitive to their mechanism.

In the present paper reactions with a polarized target are considered in the beam fragmentation region. of course, the results obtained are applicable to reactions with a polarized beam in the target fragmentation region as well.

Polarization phenomena in inclusive processes with a polarized target in the region of its fragmentation do not provide entirely new information except that of binary reactions and we shall not touch upon them. For some polarization effects in this region, see, 0.g., ref. ${ }^{1 /}$.

Abarbanel and Gross $/ 2 /$ have noted that the asymmetry in the reactions

$$
\begin{equation*}
a+b(f) \rightarrow c+x \tag{1}
\end{equation*}
$$

with the polarized target b in the beam fragmentation region vanishes if one restricts oneself by pole approximation in the Mueller-Kanchely diagram (Fig.l)

Fig. 1

Fig. 2

This is due to the factorization property of the reggeon amplitude, which admits the particle b polarization to be correlated with the vector $[\vec{k}, \vec{k}]$ only, where \vec{k} and \vec{k}^{\prime} are the initial and final momenta of the particle b. However, $\overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{k}}$ and the spin dependence of the process (1) cross section vanishes.

It should be emphasized that this result is not general and takes place in pole approximation only. Contrary to the binary process the particle b can flip its helicity in the forward
scatterins $a b \bar{c} \rightarrow a b \bar{c}$, even if a and c are spinless due to the change of the a \bar{c} particle system helicity. So, the nature of the cross section asymmatry in the refion of the beam fragmentation is quite similar to the spin-spin correlation in the binary forward scattering amplitule. Tin both cases, there is no effect in the pole a!oroximation but it emerges when the Regge cuts are taken into arcount (Fis. ?).

The content of the paper is arranged as follows: Section Il ronsiders the trisle kecre rerion of reaction (l). The graphs makine the main contribution to the inclusive cross section and its asymetry aredtentified. Some of the triple-Regge vertices are known from the analysis of the inclusive reactions with unpolarized mrticles $/ 3 /$, those of them which cannot be extracterl from the available data are estimater in the one-pion exchange model (ope). Sn, the contribution of the diagram in Fig. 3a can be calculated. Formulas for the eeneral diafram contribution to the scattering. acymmetry of this type are obtained in Section TI.

Fig. 3
The charge exchange reaction

$$
\pi^{ \pm} p \rightarrow \pi^{0} \mathrm{X}
$$

is consideref in Section IIT. The numerical estimation of the asymmetry is performed.

In Section IV the reaction

$$
\begin{equation*}
\pi^{ \pm} p \rightarrow \pi^{ \pm} x \tag{3}
\end{equation*}
$$

is analysed. The asymmetry in this reaction turns out to be very small.

In Section IV it is shown that the large asymmetry (about $10{ }^{\prime}$) for small M^{2} measured in the experiment at $8 \mathrm{GeV} / \mathrm{c}$ may be explained
by the direct interaction of the incident pion with the rolarized proton quark.

The fraphs shown in Figs. 3b and 3 c do not contribute to spinspin correlations in the reactions $p \boldsymbol{p} \rightarrow \mathrm{pX}, \mathrm{p} \boldsymbol{p} \rightarrow$ (x, etc. The numerical estimation of such correlations for the reaction $p p \rightarrow p X$ is given in Section V. The $C_{m m}$ component of the correlation tensor turns to be of the order of 1.0^{-3}.

TJ. Scattering Asymmetry in the Triple Regge Region

Consider the triple-Regge region of reaction (1):
$S \geqslant M^{2} \geqslant S_{o}$, where S is c.m. total eneray squarel, M is the X system effective mass, S_{o} is a scale factor, for which we adopt the value $S_{o}=2 \mathrm{~m}_{\mathrm{N}}{ }^{2}$ in accordance with ref. $/ 5 /$. The craph in Fig.l can be redrawn in the form of an ordinary uriple Refre araph. Its contribution to the cross section is dominant. The gra, $\begin{gathered}\text { ghe } \\ \text { in }\end{gathered}$

In accordance with the Kanchely $/ 6$ Lmueller $^{\prime} / 7$ eeneralized optical theorem the reaction (1) cross section is determined by the M^{2} discontinuity of the forward scattering ampliture ahr \longrightarrow ab \bar{c} denoted by $F_{\lambda} \lambda^{\prime}\left(s, q^{2}, M^{2}\right), \lambda, \lambda^{\prime}$ are the particie b initial and final helicities, \vec{q} is the transversal momentum transferred. The inclusive cross section is equal to
> $\frac{1}{16 \pi^{2} S} \frac{1}{2 i} \operatorname{Disc}_{\mu^{2}} F_{++}\left(s, q^{2}, \mu^{2}\right)$

and is given by the well-known expression:

$$
\begin{aligned}
& s \frac{d^{2} \sigma}{d t d H^{2}}=\sum_{i j k} \frac{1}{16 \pi^{2} s_{0}} N^{(i)}\left(q^{2}\right) N^{(j)}\left(q^{2}\right) N^{(k)}(0) g_{i j k}(q, q, 0) \times \\
& \eta_{i}\left(q^{2}\right) \eta_{j}^{*}\left(q^{2}\right)(1-x)^{\alpha_{k}(0)-\alpha_{i}\left(q^{2}\right)-\alpha_{j}\left(q^{2}\right)}\left(\frac{s}{s_{0}}\right)^{\alpha_{k}(0)-1}
\end{aligned}
$$

Here $N^{(i)}\left(q^{2}\right)$ are the Regge-particie interaction vertices;
$F_{i, j k}\left(k_{i}, k_{j}, k_{k}\right)$ is the triple Regfe vertex depenting on the Reqgeon momenta; $\quad \eta_{i}\left(q^{2}\right)=-\frac{1+6 \text { exp }\left[-i \pi \alpha\left(q^{2}\right)\right]}{\sin \pi q_{i}\left(q^{2}\right)}$ Reageon momenta; $\quad \eta_{j}\left(q^{2}\right)=-\frac{1+6 \exp [-i \pi \alpha}{\sin \pi \alpha_{i}\left(q^{2}\right)}$
is the signature factor; $\quad \alpha\left(q^{2}\right)=\alpha(0)-\alpha^{\prime} q^{2} \quad$ is the
Regge trajectory; $\quad x=2 P_{c} / \sqrt{S} \approx 1-M^{2} / S$ is the Feynman invariant.

The asymmetry parameter \mathcal{E} is defined as

$$
\begin{equation*}
\varepsilon\left(s, q^{2}, m^{2}\right)=\frac{\sigma_{i n v}^{(+)}-\sigma_{i n v}^{(-)}}{\sigma_{i n v}^{(+)}+\sigma_{i n v}^{(-1}} \tag{5}
\end{equation*}
$$

where $\quad \sigma_{\text {inv }}^{(\pm)}=s \frac{d^{2} \sigma}{d q^{2} d M^{2}}-\cdots \quad$ is the reaction (1)
invariant cross section with the target b loog polarized "up" or "down" relative to the vector normal to the scattering plane. One can rewrite (5) using $F \lambda \lambda^{\prime}$ in the following form $/ 1 /$,

$$
\begin{equation*}
E\left(s, q^{2}, M^{2}\right)=i \frac{\operatorname{Disc}_{M^{2}} F_{+-}\left(s, q^{2}, M^{2}\right)}{\operatorname{Disc}_{M^{2}} F_{++}\left(s, q^{2}, M^{2}\right)} \tag{6}
\end{equation*}
$$

The contribution to the numerator of this expression arising from the graph in Fig. 3a and the graph symmetrical to it relative to the Reggeon r_{k} can be found by using the Gribov calculus rules ${ }^{/ 3 /}$

$$
\begin{align*}
& \operatorname{nisc}_{M^{2}} F_{+-}\left(s, q_{i}^{2} M^{2}\right)=-\frac{q \sigma_{k}}{4 \pi m S_{0}}\left(\frac{5}{s_{0}}\right)^{\alpha_{l}(0)+\alpha_{k}(0)-i} \\
& \quad \times(1-x)^{\alpha_{k}(0)-\alpha_{i}(0)-\alpha_{j}(0)} N^{(j)} N^{(i, l)} N_{+-}^{(1, k)} g_{i j k x} \\
& \quad \times \operatorname{Re}\left\{\eta_{i}(0) \eta_{e}(0) \eta_{j}^{*}(0) \frac{\Lambda_{i}}{\Lambda^{2}} \exp \left[-q^{2}\left(\Lambda_{j}^{*}+\frac{\Lambda_{i}\left(\Lambda_{k}+\Lambda_{l}\right)}{1}\right]\right\} .\right. \tag{7}
\end{align*}
$$

The following notations are used here :

$$
\begin{aligned}
& \Lambda_{i}=R_{i(a) 2}^{(a)^{2}}+r_{i}^{2}-\alpha_{i}^{\prime}\left[\ln (1-x)+\frac{i r}{2}\right] \\
& \Lambda_{j}=R_{i(\alpha))^{2}}^{(0))^{2}}+r_{j}^{2}-\alpha_{j}^{\prime}\left[\ln (1-x)+\frac{i r}{2}\right] \\
& \Lambda_{k}=R_{k}^{(s))^{2}}+\tau_{k}^{2}+\alpha_{k}^{\prime}\left[\ln (1-x)-\ln s / s_{0}\right] \\
& \Lambda_{l}=R_{l}^{\left((a)^{2}\right.}+R_{l}^{(\alpha) 2}+\alpha_{l}^{\prime}\left[\ln / s_{0}-\frac{i \pi}{2}\right] \\
& \Lambda=\Lambda_{i}+\Lambda_{k}+\Lambda_{e}
\end{aligned}
$$

The calculation of the graphs $3 b$ and $3 c$ is more complicated and we shall return to them below.

III. Reaction $\pi \pm p \rightarrow \pi^{0} \mathrm{X}$ with Polarized Protons

The contributions of the \mathbb{P} and Reggeons with $\quad \alpha(0) \approx 1 / 2$
will be taken into account.
Then the diagram of Fig. 3b does not contribute to the asymmetry of reaction (2) because of the identity of ρ^{-}Reggeons. The graph in Fig. 3c in the j representation contains the pole
and the cut contributions in the r_{i} channel. The pole contribution vanishes because of the identity of Reggeons and the contribution of the cut has been already taken into account by diagram 3b. For the estimation of the latter the eikonal approximation was used. The small spin-flip part of the pp \mathbb{P} and ppf vertices was adopted to be absent. As a result the diagram in Fig. 3a reduces to the number of graphs in Fig. 4.

a)

b)

c)
d)

Fig. 4.
The graphs in a) and b) lead to the asymmetry decreasing as $5^{-1 / 2}$; the contribution of the graphs in Fig. c), d) behave as s^{-1} when s rises.

Note that the asymmetry parameters for the inclusive reactions of π^{+}and π^{-}charge exchange are connected by the "mirror symmetry" equation:

$$
\begin{equation*}
\varepsilon\left(\pi^{+} p \rightarrow \pi^{0} x\right)=-\varepsilon\left(\pi^{-} p \rightarrow \pi^{0} x\right) . \tag{8}
\end{equation*}
$$

The asymmetry parameter ε corresponding to the graphs in Fig. 4 was calculated, using expression (12), the parameters being taken from ref. $/ 3 /$.

Triple Regge couplings with zero momenta transferred were calculated in the framework of the one-pion exchange model $/ 8,9 /$. Their momenta dependence was parametrized as in ref. $3 /$, the corresponding radii were adopted to be equal to those of the two-pion Reggeon verticies.

The numerical results at $S=80 \mathrm{GeV}^{2}$ are shown in Figs. 5 and 6.
Note, that the use of the quasi-eikonal model requires this value of E to be multiplied by the shower strengthening factor (which takes into account the graph in Fig. 3c contribution as well) about 1.5 .

r.v. Asymmetry Parameter in the Reaction $\pi \pm \rho \rightarrow \pi \pm x$

The calculation of the contribution mate by the diaframs of the type shown in fig. 3a is quite similar to that for the reaction $\boldsymbol{\pi} \underset{\sim}{ \pm} \rightarrow \boldsymbol{\pi}^{\circ} \boldsymbol{X}$ which has been consiclererl in the previous section. This contribution to the asymmetry parameter of the reactions $\boldsymbol{\pi}^{ \pm} \mathrm{p} \rightarrow \boldsymbol{\pi}^{+} \mathrm{x}$ is shown in Fig. 7,8 . Note that in this case the parameter \mathcal{E} has the opposite sign and is by an order of magnitude smaller comoarerl to the elastic asymmetry. This shapression is tue to the excessive factor $\sigma_{\text {tot }}^{\pi N} / 16 \pi \Lambda$ entering into the expression for inclusive asymmetry as compare? to the expression for the elastic asymmetry. It is clear that this expression takes alare for the diagram in Fif. $3 b$ as well which we have failed to estimate correctly because of the presence of the unknown four-Remeon coupling. This graph has been considered in detail in ref. $/ 10 /$. Then we expect the contribution of the fraphs of this type t_{0} he of the same orrier as that of the diagrams shown in Fig. 3a. So, the statement about the smallness of the asymmetry of this orocess seems to be true though the contribution of graph 3 b is unknown.

v. The Quark Morlel

The measurements at $3 \mathrm{GeV} / \mathrm{c}^{/ 4 /}$ have shown that the asymnietry parameter $\varepsilon\left(, s, q^{2}, M^{2}\right)$ in reaction (3) is relatively larce in the small M^{2} refion (see Fif. 9). But it has been founcl in the previous section that \boldsymbol{E} should be suppressed ($\leq 1 \%$). Strictiy speaking there is no contradiction here, because the triple Regge region, where all the calculations have been performet, emerges in inclusive reactions at few tens GeV only. Nevertheless, such dramatic distinction between theory and experiment is surprising. because the duality allows one to use approximately high energy calculations in the low energy region. Formula (4), for instance, reproduces on average the inclusive cross section hehaviour at small M^{2} values. Nevertheless, such extrapolation is not permissible in the case of the asymmetry parameter. Indeed, let us consider the diagram in Fig. 10, where the incident pion is scattered elastically on one of the proton quarks. If quarks after interaction combine the proton, then the elastic event takes place. The

Fig. 9.

Fig. 11 .

Fig. 10.

Fig. 12.
inclusive process occurs when the quarks build few hadrons in the final state. Since quarks are polarized, the inclusive scattering asymmetry should be equal to the elastic one and not depend on the final interactions:

$$
\begin{equation*}
\varepsilon_{\text {incl. }}^{\text {quark }}\left(s, t, M^{2}\right)=\varepsilon_{\mathrm{el}}(\mathrm{~s}, \mathrm{t}) \tag{9}
\end{equation*}
$$

As M^{2} increases the Fig. 10 oraph contribution to the inclusive cross section is decreased as compared to the multiperipheral (MP) type processes, where particles are emitted in succession, as is shown in Fig. 1l. Such processes give a very small contribution to the scattering asymmetry as has been shown in the previous section. So, one can write down the following relation:

$$
\begin{align*}
& \varepsilon_{\text {incl. }}\left(s, t, M^{2}\right)=\sigma_{i n v}^{q u a r k} / \sigma_{i n v} \varepsilon_{e l}(s, t)+\sigma_{i n v}^{M P} / \sigma_{i n v} \times \\
& \quad \times \varepsilon_{(M P)}\left(s, t, M^{2}\right) \tag{10}\\
& \text { If } M^{2} \sim s_{0}, \text { then the first term dominates and } \varepsilon_{i n c l} \approx \varepsilon_{e l}
\end{align*}
$$ in accordance with the experimental data. $\mathcal{E}_{\text {incl. }}$ is decreased with increasing M^{2} and at $M^{2} \gg s_{0}$ the second term in (10) dominates, i.e., the previous section results are valid. Experimental data in Fig. 9 do not contradict the zero value of \mathcal{E}

VI. Polarization Correlations

There are polarization phenomena where the diagram in Fig. 3b does not contribute to the effect. It is interesting to study them. Tho charge exchange reaction which was considered above is the first example. Here we consider the second one. If a and b in (1) are particles of spin $1 / 2(p p \rightarrow \rho X, \rho p \rightarrow \Lambda x$, etc.) there is a concept of the polarization correlation tensor $C_{i k}$ and a tensor of polarization transferrence $K_{i k}$ (the definition is analogous to the usual one for the binary reactions/ll/). In the first case the polarized beam and the polarized target are necessary. In the second case, it is convenient to study the reaction $p p(\uparrow) \rightarrow \Lambda x$, where the polarization of Λ may be determined by the atudy of the Λ decay distribution. The factorization of Regge residues requires the diagram in Fig. 3 b to contribute
to the tensor components $C_{n n}$ and $K_{n n}$ only. Other nonvanishing components ${ }^{\prime}{ }_{m m}, r_{m]}\left(K_{m m}, K_{m l}\right)$ contain the contribution of the fraphs of the tyje shown in Fir. 3a. These components were computclan' are equal to

$$
\begin{aligned}
& C_{m m}=K_{m m}=\frac{\gamma j \cdot \frac{0}{\operatorname{ON}} \Delta}{\sigma_{i n v}} \\
& C_{m l}=K_{m l}=\frac{\gamma_{j, 1}^{\pi N} \Delta}{\sigma_{i m v}} \frac{q}{2 m N}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\gamma_{i 0}^{\pi N} \frac{\gamma_{l A}^{N N}}{\gamma_{e_{0}^{N N}}^{N N}}-\gamma_{i 1}^{\pi N}\right)\left(\frac{s}{s_{0}}\right)^{\alpha_{p+1} \alpha_{k-1}}(1-x)^{\alpha_{i}-\alpha_{i}-\alpha_{j}} \\
& \operatorname{Re}\left\{\left(i \sigma_{k} \eta_{i} \eta_{\rho} \eta_{j}^{*}\right) \Lambda^{-2} \exp \left[-q^{2}\left(\Lambda_{i}+\Lambda_{j}^{*}-\Lambda_{i}^{2} / \Lambda\right)\right]\right\} ; \\
& 8 \pi \gamma_{j o(1)}^{N N} S_{0}^{N} g_{j}^{\pi} g_{j o(1)}^{N} ; 8 \pi \gamma_{j o(1)}^{N} S_{0}^{N}=g_{j 0}^{N} g_{j O(1)}^{N} \text {, }
\end{aligned}
$$

where $\quad G_{j} 0,1$ are the non-flip and s,in-rlip two-nucleon nerreon couplines.

The numerical values of these components turn to be very small. The X and t dependence of $C_{m m}=K_{m m}$ at $p=40 \mathrm{GeV} / \mathrm{c}$ is shown in Fig. 12. The value of $K_{m]}=C_{m l}$ is still two orders of magnitule smaller.

VII. Conclusions

So far we have searched for the effects to which graph 3b foes not contribute. On the other hand, it is of interest to study the phenomena where the rontribution of this eraph is anyhow outlinel. Consiler the correlation of the asymmetry in process (1) an' the multiolicity of particles prollured in this reaction.

When the number of the x-system particles is larger than the mean X-multiplicity, the contributions of the triple Regge praph in Fig. 2 and the graph in Fif. 3a, c decreases. At the same time, the discontinuity throum both the Regpeons K and ℓ which correspond to the simultanenus production of two multiperipheral ladders, the mean multi ${ }_{i}$ licity in each ladrler is about $\langle n\rangle$.

Then, if $n\rangle\langle n\rangle$, the comparative contribution of the diagram in Fir. 3 to the numerator and denominator of expression (6) increases. So, in the multiplicity refion $n \simeq 2\langle n\rangle$ the
weight of the contribution of the grapl in Fig. 3h. in both F and F_{++}in expression (6) increases, the asymmetry rises due to the decrease of the denominator in (6).

The results of this work prove the interest in on' im,ortan... of the theoretical and experimental study of polarization ,henomena in inclusive reactions.

References

1. R.J.Fiell. Proc. Summer Studies on Hich Encrry ilysics vill Polarized Beams. ANL/IIEP 75-02, 1075
2. Il. D. Abarbanel, D.J.Gross. Phys. Rev.lett., 26, (1971) 732.
3. Yu.M.Kazarinov, B. Koseliovich, I.J.Lroi.hus, l.K. Dotushomikova JETP 70 (1976) 1152
4. L. Dick et al. Phys.Lett., 57B (1975) 03
5. K.G.Boreskov, A.M.Lapidus, S.T.Sukhorukov, K. Ter-Mrrtiroisyan Jad. Fiz., 14 (1971) S14.
6. O.V.Kanchely. JETP Lett. , 11 (.1970) 397
7. A.H.Mueller. Phys.Rev., $\mathrm{D2}$ (1970) 2963
8. V.N.Gribov. JETP,53 (1967) (54
9. K.G.Boreskov, A.B.Kaidalov, I.A.lonomarev. Ireprint ITEP-4? Moscow, USSR
10. F.E.Paige, T.L.Trueman. Phys.Rev., 012 (1975) 2422
11. S.M.Bilenky, L.I.Lapidus, R.M.Ryndin. Usp.Fiz.Nauk, $\operatorname{lif}^{4}(1064) 24$?

Heceived by Publishing Department on October 19, 1976.

