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Spin, Torsion and the Singularity Theorems of
General Relativity

It is argued that the spin angular momentum tensor
should be totally antisymmetric. As a consequence the
spin-spin contact interaction of the torsion-modified

version of general relativity cannot prevent the forma-

tion of singularities.

The investigation has been performed at the
Laboratory of Theoretical Physiecs, JINR.
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A number of authors/” have considered
the possibility that the modification to
general relativity which admits torsion as
well as curvature to the space-time manifold
may so change the Hawking- Penrose’%/ singu-
larity theorems as to be able to prevent
the occurrence of singularities. We wish
to bring arguments against this hypothesis
and in support of theiconclusion reached
by. Kerlick /3/

The ECSK/% field equations for this

/
theory are, in the notation of Hehl et al. ”
r _ 1 LS / k
Gij Rij 5 9 Rk = k-” . (1)
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where Rj; Rk, is the Ricci tensor con-
structed from the non-symmetric connection
I‘Hj ., and Sj;j =lkbﬂ is the torsion tensor.
The tensors E and 7, are respectively
the canonlcal energy momentum and spin
angular-momentum tensor for matter, and k
is the usual gravitational constant,
k=87G/ct . Still following Hehl et al.,

it is possible to obtain the equation
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for the Einstein tensor G constructed from
the Christoffel connection. The tensor g4 U
is not the metric energy-momentum tensor o ij
of the Einstein-Hilbert theory. Rather we
have after the use of (2),

: (L)
ik 0 ikl _j
I L VI
ki 1 _ij k mf mke
+7 rk@ +2 g (41'm [0 r Kt -~ )1

The modification introduced by admitting tor-

sion is thus seen to be, in effect, to have

generated a spin-spin contact interaction(s).
The Hawking-Penrose theorems are con-

cerned with the focusing of geodesics, which

being metrically defined are related to

the Christoffel part of the connection, not

to the torsion. The energy condition for

the theorem arises from the requirement

that for all time-like vectors fi the quan- .

tity ij

R (1 ”fifj
should be non-negative. From Eq. (3) this
means
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Hehl et al./U,who give this inequality,
make the important point that if it is vio-
lated for some time-like vector ¢'a singu-
larity may be prevented. They also show
how just such a violation may arise in cer-
tain models, all of which are based on
a semi-classical spin fluid for which
ro ks u with the spin density s ..

1) i i
transverge, S §j ul=0. They warn that the
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identification of 7.° so defined with the
canonical spin angular momentum tensor may
be at fault. This is the point to which we
wish to direct attention, as did Kerlick/3/
If at the microscopic level we admit
that matter should be represented by local
fields, it seems reasonable to restrict
attention to fields of spin zero, gauge
fields of spin one, and Dirac fields of
spin one-half. In the first two cases the
canonical spin angular-momentum tensor va-
nishes. This is not unexpected for spin
zero, but it is also true for a gauge-field
description of spin one. The reason is that
the derivatives of the potentials A® only
enter through the covariant curl, and if the
potentials are correctly treated as I -forms
A' A" dx* rather than as vectors, the
fields GZV are the components of a 2-form
obtained by taking the exteridr derivative
of A? , thus

:

G®=Lg? dfAde?-
A (6)
a 1 a b c
-dA® — Lt AN
This means that the covariant curl is inde-
pendent of the connection, even in the pre-
sence of torsion.
In the case of the Dirac field (3), we

have
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where up is the axial vector current

density.

It should be noted that the tensor 7y
defined by Eq. (T7) is totally antisymmetric.
We would suggest that this is a very desi-
rable feature for at least two reasons.
First, it means that the spin angular-mo-
mentum tensor is irreducible, and can be
given as in Eq. (7) in terms of an axial
vector. Second, it means that the torsion
likewisé is totally antisymmetric, and as
a consequence the antiparallels :

1

X 4l‘ﬂijik=0, (8)

coincide with the geodesics
i

+‘jk fxixk -0 : (9)

i
It seems to us a credible assumption to
impose in general. And it excludes the spin-
fluid model discussed by Hehl et al.f”.

If we admit Eq. (7), the tensor A' de-
fined by Eq. (4) is simply given by

AY :Il;—(2uiuj +gij akuk )
so that _
i ok
(A% - L g¥ AR =-§-[(f.’a)"’ - £d%, (10)

from which it follows that the expression

in (10) is positive-definite for time-like
fk- Thus the effect of the spin-spin con-
tact interaction can only enhance, not pre-
vent the formation of the singularity. The
same result has also been obtained by direct
consideration of the Raichaudhuri equation
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under the same hypothesis of totally anti-
symmetric torsion (6).
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