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I. Neutrino mixing and neutrino oscilla­
tions are widely discussed in the physical 
literature /I- 6/. One possible way / 4 , 6 / to 
introduce the neutrino mixing in the theory 
of weak interaction of the four observed 
leptons is to construct the weak leptonic 
charged current in full analogy wlth_the 
weak charged current of the four quarks of 
the GIM model/ 7 / : 

where 
0 

11/l = -vsin0 + v'cos0, 

0 v = v cos 0 + v 'sin 0, 
e 

( 1) 

( 2) 

v and v' are massive neutrino fields (with 
masses m and m', respectively) and 0 is a pa­
rameter analogous to the Cabibbo angle. 

The Lagrangian. of the. modified Weinberg­
Salam model/a/ with the charged leptpnic 
current of the form (1) does not contain .. 
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nonsymmetric neutral currents. The latter 
appear effectively in the higher orders ad­
mitting the processes 

µ ➔ e+y, ( 3) 

µ ➔ e+e+e, ( 4) 
v' ➔ V + y 

J1. + P ➔ e + ... ( 5 ) 

Note that the decays (3)-(5) are analogous 
to the hadronic t.S f. 0, t.Q=O decays in the 
GIM model ( for example, K ➔ 11vv). 

A theory with the charged leptonic cur­
rent (1) predicts also the existence of 
neutrino oscillations. The latter were con­
sidered in detail in ref ./4/. 

In this note we shall evaluate the decay 
rates of the processes (3)-(5) in the modi­
fied according to (1) and (2) Weinberg-Salam 
model. In the following calculations we shall 

m 2 2 
neglect terms smaller than (4") (f = µ, e, v,11', M w 

MW 

4 

is the mass of the charged vector boson of 
the Weinberg-Salam model, M w ~ 37, 3 GeV, 
Mw >>me). The decays µ ➔ e+y and v'➔ 11+y were 
also considered in ref ./6/but the correspon­
ding amplitudes used to calculate the decay 
rates of these processes are not gauge inva­
riant since some of the diagrams contribu­
ting to these amplitudes are not accounted. 
For example, in the case of µ ➔ e+y decay the 
authors of ref./6/considered the contribution 
only of six diagrams instead of the sixteen 
needed (in the 't Hooft-Feynman gauge). Our 
calculations lead to gauge invariant a~pli­
tudes and our results considerably differ 
from the results obtained in ref./6/ 

\ 
I 
I 
I 

II. The masses of the two neutrinos v' and 
v must be introduced in the Weinberg-Salam 
model without destroying its renormalizabi­
lity by means of the mechanism of spontane­
ous symmetry breaking h/(the Higgs mechanism). 
This can be achieved by adding to the initial 
Weinberg~Salam Lagrangian with zero mass 
fields the gauge invariant terms: 

0 ill 1(- C - C • 
t.J.._ = - -g L ¢ cosO - Lµ ¢ smO)vR + h.c. l 

Mw e ( 6) 

- ~gl(L ¢csin0 + Lµ¢ccosO)vR + h.c.l. 
M e 

Here 

vR = 

g2 

8M2 
w 

w 

; ::y5)v, vB(}-0)- r_5)v', 

L e( )= e(.µ) v 2 µ e(µ) 

¢c = ir 2 ¢*, •¢ j.s the scalar doublet of the 
Weinberg-Salam model. The terms (6) generate 
the mass terms of the fields v and v' via 
spontaneous symmetry breaking. 

Let us consider now the decays (3)-(5). 
All the necessary calculations will be done 
in the 't Hooft-Feynman gauge. The evaluati­
on of the amplitudes of the decays µ ➔ e + y 

and µ ➔ e+e+e is given in the Appendix. The 
relevant part of the interaction Lagrangian 
has the following form in the 't Hoeft-Feyn­
man gauge: 

0 • g (U: - • •'-- = 1-- n J + 
2y2 a a 

2 2. ½ 
(g +g':-, z 

h.c. ) + i --~-- Z j + 
4 

a a 
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em - . + 
+ ieAa j a + i<eA {3+ gcos0 wZf3) {\\ a<aa \\ fr 

+ + - - - + 
- a f../.w > + Vv <af3" - a "f3 > + a <w w f3-t-' a a a a a a 

- + 1 2 2 1/2 - + 
-Vv,~W >l+(eA --

2
(g+g') cos20 Z ){M (W s + t-'a a wa wa 

- + , -+ m -
+ h.c.)+ i<s a s -a s s )1-{-~g(L ¢eR + 

a a M e 
w 

+ h.c. >+ (e ➔ 1dl + /\f. 

Here Za and Mz are the field and mass of 
the neutral vector boson, 0w is the Wein­
berg angle, s± and f are the G.2_ldstone 
bosons,x is the Higgs scalar, y'2(g 2+g' 2)=8M~GF 

gtgOw=g', eR= ~<l-y5)e, µR= ~<l-y5)/L 

<p = 

.z 
J 

a 

( 

s+ 

)2 x+ ·~) em -
, j = µy 11 + ey e, 

a a a 

(vy <1+}'.)v+(v ➔ v'))-(ey (l+y -4sin 2O )e+(e➔µ)). 
a 5 a 5 

The diagrams contributing to the process 
µ ➔ e+y are shown in Fig.l. The evaluation of 
these diagrams leads to the gauge-invariant 
amplitude (see the Appendix): 

6 

G~ 
MI= 8112y2 

m'2-m2 

M2 
w 

sin0cos0 ~ u(p') (1-y5) X 

x m µ a paqa u (p) c; p (q) , 

-- ( 7) 

\ 
\ 

I 

where p' and p are the electron and muon mo­
menta, q=p-p' and c;p(q) is the photon polari­
zation vector. Notice that there is a deep 
mutual compensation of the contributions of 
diagrams which differ only by the virtual 
neutrino. This compensation mechanism is 
analogous to the GIM mechanism of compensa­
tion of the diagrams of the hadronic weak 
I\S I, 0 , /\Q = 0 processes/Io/. 

For the µ ➔ e+y decay rate we have: 

. 1 G 2m 5 a m, 2 2 2 ?~ 2 
r(µ ➔ e+ y) = - F µ - ( - m ) sin -u cos O • ( 8 ) 

1G 128113 17 M2 
w 

s J ~,s s J~, ~ 
/ ' I ' 

• I .... \ . I . \ - . ' . 
JJ y' 'I .e ,JJ y'y e , , 

~ J~ s ,, \ 
I \ 

_, ., I• 

p. y'y e , 

a 8 C 

~L /:','(':S w.y-,, Jr .. .. ' .. • 

it 
W/' ',w 

• I - \ .. 
)l 'I' V , e µ )''y , e }l (Y e 

d e J 

Fig. 1. Third order diagrams for µ ➔ e + y • 
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Our expression for r (µ➔ e+y) differs from 
that obtained in ref./6/ by the multiplicati­
ve factor of 5-10-4 (mµ/Mw> 4 • 

Let us compare the expression (8) for the 
r(µ ➔ e+y) with the existing experimental da-
ta. The value of r(µ ➔ e+y) depends on three 
parameters m',m and 0 • If the angle 0 is re­
garded as a free parameter and if m'»m then 
the existing data lead to the restriction/61: 

sin 2 0 ~ 10-2 

m' < 0.9 MeV 

m < 35 eV 

(A) 

In ref./4/it was suggested that 0= ~ (maximal 
mixing) and the analysis of the experimental 
data in this case leads to 

Im' -ml :S 10-
1 

eV 

m', m < 35 eV 
(B) 

All subsequent numerical estimates will 
be derived in these two extreme cases. 

So, for the ratio of the µ ➔ e+y decay 
rate to the µ ➔ e+v +v decay rate we have: 

µ, e 

6,2•1 □-~ case (A) 
r'(µ ➔ d+ y)/r

11 
< 

2,4•1 □-45 case (B), 

which is at least by seventeen orders smal­
ler than the experimental upper bound: 

(r(µ ➔ e + y) / r ) . ~ 
fl exp 

2,2·1 □ -8 /11/ 

III. We turn now to the process µ ➔ e+e+ e. 
The diagrams of Fig.l with virtual photon 
converting into e+e-- pair and the diag­
rams of Fig.2 contribute to this decay. 
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Obviously, the relevant amplitude must be 
antisymmetrized with respect to the states 
of the two electrons. The calculations give 
the following expression for the amplitude 
of the µ ➔ e+e+e process (see the Appendix): 

2 
. GFa m'2-m2 Mw . 

M2 = 1---== --- ln--sm0cos0 x 
21r\/2 M; m'2 (9) 

- - 2 
x u <k1)y /1+ y5)u(p)u (k2)yp O-<l+y5)/(8sin 0J)u(-k3)-(k 1<-->k2). 

It is easy now to evaluate the µ➔ e+e+e decay 
rate: ,2 s 2 

- GFmµ a2 m'2-m2 Mw 2 . 2 2 
r(µ ➔ e+ e+ e >= --- -- ( ----ln--2) srn 0 cos 0 x 

l281r 3 4 TT 
2 M 2 m ' w 

X (~ + (1 - 1/(4 sin 20 )) 2 ) • 

So , wit h sin 2 0 w 
r·~1 ➔ e + e + e)/rµ : 

=0,3 we get for the ratio 

['(µ ➔ e+ e + e)/rµ < 
8 -10-25 case (A) 

I 
10-44 case ( B) • 

The best experimental upper bound for the 
µ ➔ e+e+e decay rate was obtained in ref./12/: 

. -9 ( r (µ ➔ e + e + e ) / r·,,) < 1 • 9 • 1 0 
r exp 

Thus we see that the model considered 
predicts essentially smaller upper bounds 
for the µ ➔ e+ y and µ ➔ e+e+e- decay rates than 
the existing experimental ones. 

IV. The masses of the two neutrinos of 
the ·model are not equal. Suppose that m'>m. 
Then the neutrino v' will decay into the 
neutrino v with emission of a photon. The 
diagrams for this process are shown in Fig.3. 
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Fig. 3. Diagrams contributing to the 
v' ➔ v+ y decay amplitude. 

The leading contribution to the v' ➔ v + y am­
plitude comes from the gauge invariant part 
of the diagrams of fig.3b with the virtual 
W-boson: 

GFe m! M ! _ 
M3 = ---_-- ln--sin0cos0u(p')(m+m') x 

2, 2 2 81r-y2 Mw mµ 

xopa.qa<f-ys m:- m )u(p)e-p(q). (10) 
m + m 

The v' ➔ v + y decay rate is of the form: 

a;m' 5 2 2 m2 3 
r(v'➔ v+ y) =----asin 0cos 0 0- --) (1+ 

l281r 3 m' 2 

m 2 M2 2 
x ( -11- ln _..!!,_) 

M2 m2 
w µ 

2 

~Jx 
m 

and its value in both cases (A) and (B) is 
too small to affect the Solar neutrino oscil­
lations predicted by the model. 
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V. Let us summarize briefly the main re­
sults of the present note. We have evaluated 
the µ ➔ e+y, µ ➔ e+e+e and v'➔ v+y decay rates 
in the modified Weinberg-Salam model with 
neutrino mixing. For the values of the para­
meters of the theory (rn~rn and 0) allowed by 
the experimental data the µ ➔ e+y and µ ➔ e+e+e 
decay rates are essentially smaller than the 
corresponding experimental upper bounds. 
Thus we come to the conclusion that our re­
sults indicate the actuality of the Solar 
neutrino oscillation experiments proposed 
by B.Pontecorvo/Ll/. They measure amplitudes 
instead of amplitudes squared in such expe­
riments. So, these experiments are highly 
sensitive for verifying the considered sche­
me of neutrino mixing. The calculations 
performed show that the instability of the 
heavier neutrino does not affect the neut­
rino oscillations. 

The author expresses his deep gratitude 
to Dr. S.M.Bilenky for suggesting the prob­
lem and his regular interest in the course 
of the work. The author is also grateful to 
Dr. A.A.Slavnov for usefull discussions on 
renormalization of the gauge theories. 
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APPENDIX 

The~~ µ ➔ e+e+e and v'➔ v+y am:elitudes 

We shall treat the divergent diagrams by 
means of the dimensional regularization /I4/ 

procedure which preserves gauge invariance. 
Formally, the dimensional regularization 
implies generalization of the dimension of 
the momentum space from 4 to n , where n 
is, in general, a complex parameter. The re­
gularization is switched off by the limiting 
procedure n ➔ 4 after the momentum integra­
tion is performed. In the theory of the di­
mensional regulari~ation the divergent in­
tegrals lead to terms which have poles at 
n = 4. 

Let us consider now the effective (µey) 
vertex rp (q) ( q is the momentum of the pho-
ton) which in the lowest order is generated 
by the diagrams shown in Fig.l. When evalua­
ting the µ ➔ e+e+e amplitude we· shall need the 
form of the ve~tex for q 2 IO so we shall as­
sume that the photdh is not on the mass 
shell. The diagrams of Fig. la-c and Fig. lf 
have both gauge invariant and gauge noninva­
riant parts while the diagrams of Fig. ld-c 
have no gauge invari~nt parts. Let us write 
down the contribution of the gauge noninva­
riant part of each diagram of Fig. 1 up to 

,2 2 
the terms of order eg2 rn -rn as coefficients 

M2 
w multiplying the factor . ' 

GF . rn'2 2· -m 
e--- sinO cos0 ---- y (1 + yJ, 
~ 1611 2 p 
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r'(la) =-<_!_ + --2 -+C>, r'(lb+ le) =-4, 
2 4 -n 

;>- 1 2 r <ld) = 2 < 1 + -- + C) + (- + -- + C) - 2, 
4-n 2 4-n 

F'(le) = -2<1 + -~- + C), 1 (If) = G, 
4-n 

where C is a constant. The sum of these terms 
is equal to zero. Let us note that the can­
cellation of the gauge noninvariant contribu­
tions to I'P (q) does not depend on the appro­
ximation used to derive them. The evaluation 
of the gauge invariant contributions of the 
diagrams of Fig. 1 leads to the following 
expression for the l'P (q) 

G F ' 2- 2 1 5 5 r (q) = e ---- sinO cosO m m . I (- - - + -) x 
P 8rr2V2- M ~ 4 12 12 

m,1-me 1 4 1 
x<m,l+mc)apaqa(l-y5m +m )+(z+g+ 18) x (A.l) 

µ C 

x (y q 2 - y q q · )( 1 + Y. ) I, 
p a a p 5 

where the sum of the term with factor¼ and 
that with factor 1is due to the contribu­
tion of F~. la, the sum of the terf with 
fa c t or ( - 12 ) and that with fa c tor 1B i s due 
to the contribution of Fig. lb and Fig. le, 
and th: sum of the term with_factor f

2 
a~d 

that with factor -}, respectively, to Fig.lf. 
Knowing that for the on-shell photon q 2 = 0, 
qpgp(q.) = 0 ( g P ( q ) is the photon polariza­
tion vector) it is easy to find now the 
µ ➔ e+y amplitude: 
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r, 2 2 - 1 ) 
--Ye m' -m sin0cos0u(p')-;r<1-y5 mµ x M =--== 2 1 

8rr2\/2 M w 

(A. 2) 
xapaqau(p)tp(q), 

where p and p' are the momenta of the muon 
and the electron, respectively. 

In the one-loop approximation we work the 
µ ➔ e+e+e amplitude may be expressed as a sum 
of three terms 

M
2 

= M(y) +M(wl+M(zl, (A. 3) 

where the M(y) term corresponds to the cont­
ribution of the diagrams shown in Fig. 1 
with virtual photon converting into e+e-
pair, M(w) - to the contribution of the 
diagrams of Fig. 2e, and M(z) - to the con-
tribution of diagrams of Fig. 2 with virtual 
Z -b~~on. The evaluated µey vertex determi­
nes MY : ,, 

(y) - 1 -
M = ieu(k 1>r' p (p-k1 )u(p)---2u(k 2)y pu(-k3)- (k 1 --➔ k 2>, 

(p-kl) (A.4.) 

where k
1 

, .k 2 and k3. are the momenta of the 
two electrons and the positron, respective­
ly. 

The terms proportional to the masses and 
momenta of the real particles may be neglec­
ted in the approximation we use when evalua­
ting the M(w) and M (z) which considerably 
simplyfies the calculations. The resulting 
expression /or M(w) is: 

2 
(w) G F 2 2 Mw 

M = i--sin0cos0 (m' - m Hn-- x 
16rr 2 m' 2 
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x u(k
1 

)yp <l+ y5 ) u (p >ii (k 2) Yp <l+ Js )u (-k3)-(k1 ..... k2).( A. 5 ) 

The leading contribution to the M(z) 

term comes from Fig. 2d with the virtual 
M2 

\\'-boson: it contains the factor ln'.:"rn:
2

:::20 (re-

member that Mw > 40 GeV, m' < 1 MeV) while 
the contributions of the rest of the diag­
rams do not contain it. Taking into account 
only the leading contribution we have: 

2 2 
( G M 

M z) . F . O , 2 2 w - ) = -1--- sm cos0(m -m )ln--u(k )y <1+~ u(p)x 
16rr2 m'2 1 p 5 

x 'ii(k
2
)y/2 (1 + y

5
) -8sin20 w) u(-k

3
)-(k 

1 
.... k/ A' 6 ) 

It is easy to obtain the sum: 
2 G a ,2 2 M 

(w) (z) . F m -m w . 
M + M = 1-------ln-- sm0cos0 x 

2rry2 M;_, m'
2 

1 +y5 
xu(k

1
)y <l+y5)u(p)u(k 2>r. <1- . 

2 
)u(-k3)-(k1 <->k2_>-

p P 8sm0w (A.7J 

The comparison of the right-hand sides 
of (A.4) and (A.7) shows that the sum 
( M(w) + M(z) ) is at least by an order greater 
than the M(y) term, so 

M 2 "' M ( w) + M ( z) (A. 8) 

~G 

~ I;' 

In conclusion we want to note that the 
evaluation of the v'➔ v +y amplitude M3 is 
analogous to the evaluation of the µ ➔ e + y 
·amplitude. The leading contribution to the 
M3 amplitude comes from the diagrams shown 
in Fig. 3b with the virtual W-boson. 
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