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1., Introduction

It is now a well-=known fact that the asymptotic bechaviour
of the deep inelastic scattering is connccted with the light
cone singularitles of the current products, At Tirst such
a connectlon has been established between the lcading 1i;ht
cone singularities and the leading terms ol the structurc

/1y2/

functions
In connection with asymptotical frce field theories 79/
and conformal imvariant theorles operator product expansions,

valid near the light cone, have been postulated 73/ « I'or scalar

currents 4o it looks like
P Ma
[1(»,1(0)3 & Z Cnexy x)'."' x)‘- 0 s (1.1)

where the operators QM /w are characterized by spin m

and scale dimension 4, . The generalized Tunctlsns C, carry
light cone singularities in decreasing order. For one narticle
matrix elemecnts occurring in the description of deep inelastic

scattering (1.1) takes the form

1.2
e Tam, 4wty = 2 Ghom Ry (%o, X*) (.2)
zo
Here P.,L are polynonials in x, of order m , p= (1.8,

For the leading terms a connection to the noments /h
1 .
Maw (g = de”z--x V(i.ﬁ‘) (1.3) W  structure I‘unctlons’
4 /57

has been establishe

(L.4)

R TR e v a
My = @7 (55) C , Q=g =



A
It should be kent in mind, however, that up to now a light 2. Integral representations Lor gzn D and Mm@y

cone cxpansion (LCE) (1.1) has not yect been proved from general following from the DJL represcntation

principles of quantum field theory. It 1s also unclear in

which mathematical scense the serles represents the operator In the following W(q‘p) denotes an invarliant structure

product ( ce.g.,asymptotical series or series for generalilse function connected by Fourier transform to the imnvariants Cexp)

functions), Each point of view bears its own difficulties. of the one-particle matrix elements of the currcnt commutator.
Leaving aside the problem of LCE for operator products itselrfl For technical reasons it is more convenient to deal with the

we introduce or’ the basis of a Dyson-Jost-Lehmann (DJL) symmetrized commutator C(®,x* defined by

(F(?Ji"u‘)"‘f(;,"?‘ﬂ‘) (2.1)
T e :

representation the pglobally valld expansion for the matrix

/6/ !

(Cix, Poo) = (Cenm,

clemients of currents

(R -
<CPID4m,4mllp> = = (9§, o0y (1.5)
In spite of some similarities with eq. (1.2) the differcnce is

The DJL representation of C reads

-

S © Sd:.' Lux 3y } (2.2)
= 4. 2. g e e (RN

that there is no apriorl reason for an ordering of the light C—L?,%‘) = Yt Ot 19“‘) éd)‘ 3'“‘ x‘)\\-;ul g

cone singularlities of the generalized functions gln (x%) It is essential to remark, that the functional ( C¢R,x%, YY)

because cqe (1.5) is primarily a Taylor expansion with respect %ﬂeg* is an entire function of the variable 4 « To show

i
ko (30, devertheless,it turns out that this expansion has this onc has to take into account that
o undique asymptoltic conncction with the slightly modilfied 2 (2.37)
— \3
morent s (PB(*L) = (q,‘xle“)lv(%m)}; ?tx"))
a 2/
a n-d L (1.6) belongs to S4 (R,) too /? s S0 that
St = S35 Wiy (e KDY T 0 X s
° @ & c Y Sd“ e (Y@, Yeany) (2e4)
(T2, o) = drma D :

Trey
Therefore 1t is Justified that the exponential in (242) can

ore difficult is the investigation of the one-to-one corres—
poadence betucen the leading light cone singularities of f,“
be expanded as follows

.‘R* @ = \n PN
Smt 1“(“ x) 2_" L Sd.h, (“) w(a’)l) ] (2'))

(! Ints

and the asymptotic behaviour of the moments /32“ « It turns
out that such a relation can he established if further

conditions on the spectral functions are imposed, -
This leads to the expansion of C

-— )lh L
T2 = th,. .o,

‘1\1!

vhere




L
-
fonom = 320 (B0 §8 2 (amey hanow) 2.7)
and

{h‘ Oy = 2 " &du (M) q‘"( u, 3 (2.8)

A few comments concerning expansion (2,6). It is valid iu the
usual scnse after integration with a test function Poey € S,
and anpears aJs a global cxpansion not restricted to the

neighbourhood of the light cone  X* =0, It is simply the
Trylor cipansion of an entire function and for this reason
therec 1s primarily no ordering of the strength of the light
conc sinpularitics in cq. (2.6). It turns out that the
coclficilents ez\ by integral transforms are connected to
appropriately defined moments of the structure funetion \A./(qlp)‘
Wle delfine such monents for space-likc momenta q’"u-a‘co
by

P (@) = Sd‘l o Weat,m)
° (2.9)

with the new scaling variable |

- & 48ty
"1 “;‘-": i("*’-—d‘_)l

As usual g = Q‘/z" o The intepration runs over all positive "

(2.10)

where \I\I#o.
An integral representation for ;\l‘ can be obtaincd Ly
inserting the DJL represcntation
- 2.11
W(q‘P) = E(qu)&mgdkl S(q:—(q-u)l'-’}) %(d;kl) ( )

into cgqe (2.9). From an investigation of the intepgral

x L v e g2 x
de‘\J(Q""P¢(") ) Z“Q Sdgg Sdl d)‘ _EQ-—L;_!—;T_— ¢( g‘-i: +»

we learn that this cxpression is well defined for convergent N

integrations only. By the evaluation of the moments, however,

2
according to eqe. (2.9) '\q“ 1

function Cb(vn and pglves comvergent A integrals for

plays the role of the test

sufficlently hirh n . Ve get

(2.,12)
A LY 9\1.(,\1-)
M (QY = (Q) Sd (Q L)ln-tl
with
A A . o (2.13)
ng“(p) = wer %d\;\q\“) YR, v-w)

Another possible derivatlon of these relations starts from
the DJL representation of the T-produot, uses dispersion

2
relations at fixed values of & and expresses the moments

as sultable derivatives of the amplitude T

no_ W nin A™ (2.14)
Mo () 2 (@) A‘\ T \Q‘uu‘ q=0

From this approach 1t 1s clear that the above-mentioned

difficulty is connected with the problem of subtractions. In

the following i1t 1s always assumed that unsubtracted represen—

tations arc valid, omitting thc lowest moments 1f necessary.

3, Conncetlon between lipght cone sinpgularities and the

asymptotic bLehaviour of the moments

The problem 1s now to prove a unique connection between the
asymptotic behaviour of gy for &€»®  and the light cone
behaviour of 2(x‘) for x*=° which would glve a generallva-
tion of the well known results /1527 concerning the leadlng

terms in the Bjorken region and the light cone, respectivelye.



A peneralized function ¥(x) has the q-limit of order k ¥
for x»e if

(" Lew)™ (fun, Poo) 2. ($a (05 Y00)
where L)

(3.1

is a sultable chosen wealkly rising function vith
the property Liat) /Lu) 21  for t-»® , Definition (3,1)
characterizes in a general way asymptotic power behaviour
nodificd by weakly rising functions ( cegs,logarithms). A
corresponding Tefinition will be used to describe the behaviour

of peneralivzed functions as x-se |

In our case the asymptotic connection of the four func{:ions
~

A
gz\(*‘)» 9\1“»,, 2\2‘0}) and M (Y has to be dinvestigated, fThe
starting point are the relatlons (2.7), (2.8), (2.12), (2.13).

oo
‘?z.‘(x‘) = ':%;a. (60a) Ed"t]ouﬂﬁ@) v\-z.()s‘)) ,

(3.2a)

oy =2, Va& ™ e, | (3.21)

i on s A AR@ @, ey, (3.20)
A

Ja gy = (@7 SaR Haow (3.2a)

CREY e

e study the chaln of connections in cach direction separately,

3el. symptotic behaviour of '?1'\0"‘) near the light come
implies the large Q" behaviour of /:Ma‘)

Suppose .ez_ o0 to have a q -limit or order =-(%.-2)
or
. 1-Mw | =3
Ve L7 L (00 o) = (82, 0, P0) (343)
then
Lo £ L@ (huaitn, o) = (Rliowsbon) | (54

>0

which neans that &1,(,&) has the q =linit of order ¥a as
N e , As it has been shown 72/ tne B-transformation (L43)
maps the test functlon space Sy onto Sy which leads to a
corresponding mapplng of the dual spaces (1m0, Po) = (haati, Paiuy),
vron this it follows that the existence of the linmit in oas
space implies the sarie in the transformed space.

The next task is to show the existence ol the q —Lllmit
ol 3\1_0.“) kuoving the q—limit of ’l,,‘ () . For this rcason

we consider the difference of two functionals

e 2
t Llaw ( R = han iy, $om)

H

T W w S dwt g“\"" Yk, o) (Pon - Pors %1)) Ha
TS (3.5)

- 1 ! o

“Kw -1 A 1% - u)i"' L L L u

-4 w1 due S‘h AICRIOR SC 2 -0
\EL

-

w

PRV S !
— -1 \_: @ N PSS Poy) .
o=

sufficicnt for the vanishing of this functional and thereby
for the existence of the q =limit of 3\1‘ is the assumptlon
that the differences of the q ~limit orders of successive
coefficlients ¥h is smaller than one., This 1is in accordance
with experimental indicatlons and theoretical models 7529/ N
In the course of the proof in the opposite directlion the
same colnclusions could be done invoking positivity of W  and
consequently ordering /.ct,__,,_(qs) $;Az., (a‘).“/

As last step it remains to derive the a.symptoj:\ic
behaviour of ;A“ (ay knowing the 9 -limit of thanm(ay.



Keeping in mind that a generalized function is the N —order

derivative of a continuous function we perform generalilzed

x w-1 ey
partial intcgrations in eq. (3.2d),using 8(*-\37=341L’?’0 (@ -y
Pewy Pew
we obtaln
A (-W)
;,L oy = (—\)"(Q‘)L‘ .P_"‘_ﬂ! &dh" (Y (3.6)
W (RYH (mae) (G"ﬁ )})"\*Nii
’ 3\“’) i b:
where h, is given by
(3.7

P RS L
. ]
L 30 S

How let us show that N can be chosen sufficlently large so
2w
that % has a classical asymptotic behaviour related to
~"
the order of the 9 -limit of & , For this alm we consider

tx ~

® -w L A wt A
- Che-y) a1 Yo L@ g,
g"(tx) = % d‘z Tewn "‘(“0) } Ton ?) ‘ (3.8 )

"-
For N larpge enough the function (x-® * 1s sufficiently
smooth so that it plays the role of a test function. Using
the definition of the q -~limit (3.1) we get

A
-N) " vy (3.9 )
LT = : ({u‘)’(:-_!_), ) — Coo
LM Ly Tl T town
or
8 Nan
g‘((.:,; —s X Loo for x 2= | (3.10)

It is now easy to evaluateée the expression (3.6) for large Qz'

by inserting the asymptotic form (3.10)

x 2 WV N A
< (0.‘)“ -0 Fnaws) a A\ L

Iy
&l =
/A‘z‘\( ) i) H (Qg’ )‘!.)hqlﬂ't

10

r ) i ’S"'N
A - [ TN . (_”\ (naigW a (3.11)
/A.l‘(al) = C Q L\(Q) r‘('v\-M) \. \ (4"!)'\#"11

Therefore supposing for 2,“ wy the q—limit (3.3) on the
light cone the asymptotic behaviour of the corresponding moment

A 1“
Moy ~ & T Ly (3.12)

13 derived,

3.2, Asymptotic behaviour for large Q° of the moments
determines the light cone behaviour

Looking at the relations (3,2) and taking into account
the foregolng considerations it 18 obvious that the existence of
A
a q -~limit for &h implies the exlstence of a corresponding

2 G « The main problem is to draw conclu-

q -limit for §
A

sions for % from the known asymptotic behaviour of ;“z. .

L3

Let us write representation (3,2d4) in the form

oo
Feww lax 2@ 3.13
Nl § T o ( a)
K’ ‘c-v)

WM N ydo fem 3,13b
“n 0 (x+ t)wl * ( )

Appropriate partlal integrations have been performed sc that

-N)
(5( 15 a oontinuous function, As starting paint we know

the behaviour of Fexy for x—o> o



. 3.14
Q}/M ._.E(L_. = C w <o ( )

xDee XLy 4

The line of reasonlng goes as followse In order to deal with

Lhe | ~limit of Yy VO consider the scquence ol functions
e tv Faen
Fe o =Sd‘ RN y Tt w7, s “’q‘t—t*—t) . (3.1%)
° FYR t Ly t Ly

the renresentation guaranties that Ft(t) is a sequence of
Sunctions holombrphic in the complex 2 ~plane vith a cut
along the real negative acls. Because of (3.14) the limit on

the positive real axis cxists

- 3.,16)
Rown F{_(’O = cx™ = Fco(#) R ?vf x>0 | (
t> 0

For the investigation of the q ~limit of ¢ the functional
( 300 ) Py ) has to be considered taking into account

the known properties of Foo o For this purposc the comple:x

inversion formula /11/ is applied
1 o o . (3.17)
(Geon, Yoo) = 3q, Uve (Fe txnig = Fetoiy, Yoo)
and afterwards the 1limit t-> e perforned
Lvn = 3 R B ((Fyaing- Py exeim,
A ("un,?(x)) M e 4o ( Ay T e (=x-1y) (’0)
(3.18)

= X Qe bm (Fﬂ-n'\\g)'Ft(-*-'“a),‘hx))

Ixi ya0 o™

= -4— ‘QAJN\ (FM(-*i.\‘ﬂ— col-!-.\\a),‘P(y)) R
W0

12

In order to obtain an expression for 24:: ( Ao, Poo)
containing the asymptotic behaviour of Fow only, it 1is
essential to interchange the limiting procedures in cq. (3.18),
A sufficient condition allowlng this interchange is the
existence of the single limits

frn Fy(py = Fmgay= 2" valid w the ok plame (3.19)
e

o (Fy (x 2ivg), Yim) =(Ft(*t'\°31‘fm) valid Jor st t (3.20)
Yo
where additionally one limit, say the limit %-o s must be
uniform with respect to t . Therefore at first one has to
show that the sequence of analytic functions Fy (,
converges to the analytic function F.“;,=-CEK_

For this reason we list the known properties of Fcp

implied by the representation (3.13):

1, Fy is analytic in the cut plane
24 Fwy fulfills the estimate /13/
n (3.21)
\F(hl ¢ C A7 R Comym Umahely,
y™

3, If 9 vpossess a 9 -limit, i.e.,f‘L—‘(t)(%ut),T’m\‘)c.
then by repeating the same reasoning which led to (3.12)

one obtains

Fay ~ 2Ly | 112 | avg2 g9 (3.22)

consequently.

. 3.19
&Mm Ftﬂ) = c2” . ( )
1t e

13



Here we have assumed that the generalized constant L(w
occuring 1n the definition of the q ~linit can be chosen
analytic in the cut plane with Li2)1/i, »4 for t-e .

It is important to note that the cxilstence of a q ~limit
Tor 9(x) ocorresponds to the dircction independence of the
asymptotic bchaviour of the function Fea.

0f course a general function F(g, given by eq. (3.13)
must hot nccesﬁérily have the property that the asymptotic
behaviour given on the positive real axls extends to all
directlons. To lsolate functions having this property we
restrict the class of allowed generalilzed functions
by the additional conditlon:

Ir

o«
% 4 Sd‘ o
20 tily | (4o

then there exists an integer N, , 5o that

x -Ne) (3.23)
Ly (r4v)

In the appendix 1t will be shown that this condition implies
eqe (3.19). On the other hand this conditlon 1s automatically
fulfilled 1f the q -limit of the generalized function 9 vy
exists,

Let us now turn to the limit (3,14). The cruclal point
in the proof of the uniformity of this 1limit is the exlstence
of a t independent estimate (3.21),

From the representation (3.13) follows directly ‘F(n|~\ufn

near the cut., This result together with eq. (3.23) allows one to

refine the gencral estimate (3.21) as

Y
[ Bl 2 a Y | Lewd
(»l £ oM (C21)
so that

]
b At n\u

l Ft(l)\ £ ‘%\"

(3.25)

is indcpendent of the parameter ¥ . This finishes the proor
that under condition (3.23) the pgeneralized function has

a q ~1imit. This means the observed asymptotic behaviour

of the moments implies the exlstence of the g=limits fop

the spectral functions %1“1 kq_ and finally for the lirht
cone cxpansion coefficients {1\ if the space of allwmred
spectral functions is suitable restricted.

Similar problems arise for the two polnt function

oo
O ('wm)
gy = | der T 3226

6(‘]) o b e gt (3.26)
and the vacuum polarization ( the latter written in once
subtracted form)

L)
A Meeqy = - = S dwt SLmh 4 (3.27)
ql 1‘ “: ™t M;_‘_q].

if the connection between asymptotic behaviour at space~like
momenta and thelr imagimry partsis studiled /84107 .

Both formulas are transformations of type (3.13) with positive
spectral functions, Obviously condition (3.é3) 15 fulfilled so
that a one-to-one connectlon between the asymnptotic behaviour

for qkaw and the | -limilt of the spectral functlon cxists.
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&, Conclusions Appendix

3 - or -y LR = o] W TR PR PR
Yrom general principles of QFT the existencc of a globally Here we chow that condition (3.23) implies the limit (2.00).

Let us start with ( simply deinoting Ne by N )
oo [$4 4! <0 (&%)
Fp= (e Y (4 _((t LR
° (Ten¥y ° (TeunMh Taxaiy ,

valid Taylor expansion follows for the symmetrized comnutator

which bears 2 great resemblance in structure to a light cone w30

cxpanslon, Furthcermore appropriate moments of the structure

* -1 Nt
- S0 ~-V-1 . N4 LTIEL S
Tunctions can be, defined which are connected with the coeffi- = \d"- (trw) -t A A,
sl . (§9) & LS 1
-y

clents of the Taylor expansion by integral transforms. Assuming. where

the q =limit on thec 1light conc the asymptotic behaviour of the
A= (T4w) (T4X) A = (T+w %

monents can be evaluated. The proof in the opposite direction W”“‘" y ’ T U*"“*\z‘

is more complicated. In gencral no conclusion can be drawn.

If however, the space of generalized functions is suitable ‘Then the estimate

-]
restricted the exlstence of the =limit for the light cone N4t - N 4 N#-x
9 \F(t)\ ¢ = ( v.) \ Sd“{, % (t+w) A‘ A;
cxpainsion coeflicicnts can be proven. In the case of positive « ¢

speetral functions ( Lehmann representation and vacuum pola- is valid. In the followinz a typilcal term of th: sum will be

rization) this conditilon is fulfilled automatically, dlscusseds, With the notatlon

M Q(‘-m LA
\‘\Cg'w) - gd“.‘ __.(.ﬂ_;'—;t ) V(-\:,w) = A"A;
We would like to thank V.A.latveev, A.N.Tavkhelidze, v (T4w)
A.Uhluiann and BeI.Zavialov Tor discussions. Especially we are we get
0
indebted to Gerd Lassner for fruitful remarks. < A \dt cé(-w) h*w)uu A‘:- Am
Ny w ($3) 3
wliw ¢
o0 o
- dv
= A \1(1;'\.,) Vu:,w)\ VoL \ de Wi w) .d'-;,
w® Lw) 0 (w) o
We apply
\ A \L(t,w)‘ M Y w> W, ¥Vt (3.23)
WH L (w)
. o wad
zuw Ve, wd = ‘ t
4 N, =0
TH© 1
so that

16 7




hod «
4 4
Tand v, ool e Comfanlly

The 1ot integral can be evaluated taking into account the

LCros < il ‘_‘\.Y
ro T; © o

dv _ _vl o4 2lvl 4
Sdt dv ~ T=e 1=1,

There cxist ot lcast three zeros T; o+ In all cases Vet

1s bounded for all LAY so that
1 1S
—_— FARNNY V' or W=131 |
W L(w) l = \ *

AppPlying nov | Lewy/ L czyl < tomnt
we finnlly pet
\' D F(l)] <o
2L
low we are able to prove the convergence of Ft(b o At first

we shov thot Ft(b 15 uniformly bounded for gzevy and all t.

E = |3* Lkar )1 _4 E, «
1w | Lu,)H Tita (o* (tt)‘ {2 - londt .

U} 1s o compact reglon of the g planc containing a part
of the posltive real atls but no points from the negative
arlse Conscquently, Qe = Fogy~-Ca®  rfulrills

| Q! <« o
for all ®ev) and all t ., DBecause of Q{/_:—; (;tu_)=0
valid for the submanifold of the positive real axis, a well

lnown thcoren /12/ on analytlc functions tells us that

&;vv\. G*(!) =0 Tor all 2 Q\’) .
> -
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