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In paper /l/ the noncovariant classical n.nd quantum 

theories of the relativistic string in a constant homor;cneous 

electromagnetic field were constructed. The main di:fffoulty 

encountered there was the proof of the relativistic 

invariance of obtained solutions in the quantum case, 

The usual method used in noncovariant quantization of 

the free string and based on the check of the Poincare 

algebra is inapplicable to electromagnetic field because -it is 

unable to construct the conserved operators of thi Lorent7. 

rotations. Therefore an attempt to consider this problcr.1 

in the covariant formalism is natural. 

The action of the strinr, in the electromar,netic field 

Fr.,(.)') has the form 

T.t I., 1/J.. I • 

S= Jdr~d6 [-r[ c;Jf- ;/;?] -ixrx .. F,,v(X) 1 
-r, 0 

where 1 -is the absolute value of charge$ at the ends of the 
(,-2 •. string and T is a constant with dimension 

The variation of action (1) results in the equations of 

motion 

and in the boundary conditions 
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In addition the functions Xrc.6;t.) as in the free 

string case must obey the subsidiary conditions 

• I ;I, 
(x-=x)=O. (4) 

The solution to 

terms of Fourier series 

Eq.s. (2) and (J) can be expressed in 

. . 11,ti,,,, ) - nr,,." 
~ •- l _,_--,;VJ•r -1 . . Lyw·'!) 

Xrl6,r)=1if?..:,n[cl,78 ~ (!-J)rlt+JJgpelnpe J+ (5) 

fl,#0 

i. ·' 0 1. I) f ..B t 
+-(f-J Jn xf T tr 91: - Jrr trl6-r)) 

where 

J. --1F. ,t . rv -r rv ) d.,_np = J..., n}', -f' = 0, i,2,3 , ~,,,., == 1,dv110 • 

This solution describes the motion of the relati-vistic 

.string in such fields that · 

detllO-J}vR =de-t.ll(UJ)pvll= 1 +~)~H1-E1"J-(f);Ei[/4'o. 
Specifically, the expansion (5) is not suitable when {j):LE~:i 
and H =-0 ( see paper /l/ ) • 

-1 
The expressions of the inverse· matrices ' ( i -f ) and 

L -1 
( i - J ) in Eq. (5) are not required 

belov1 •. Hevertheless,we note that these matrices were 

obtained in paper 12/. 

'l'he substitution of the expansion (5) into (4), gives 
+00 

L11,=ilcln-mcl.,m=01 rt,=0,111, ... 1 (6) 
m=--

where 

4 

! ' D L ,. 
d.J7 =r1r(f.-J Yf ry > -11,"' L,,, . 

Thus the sub:iidiary condilioris (4) in ter□ s of n:irm:iJ. moder; 
,~' dv11, have the same form as in the free string oo.s,, · ··1 

The canonical momentum of the strinr, fif = d:f,/Jxf 
according to Eq. (4) is 

1=r(x_r+f_rvxv). (7) 

Inserting (5) into (7) we get 

. nJi_ 
--- -tc,,0 -c.]; L 

-~(6,r)= -V~[f/?,_u. +f}f d.,nf e co5( f6). (8) 

'fhe canonical □oraentum of the string as a whole 1s 
t 
( - i n, = ,t1,6.l!J(6;r)= ,[jf U+.fJfdv°.f=(l-J }Jf}. 

It was shown it1 paper /l/ , that ll_r is conserved i::' 

Fyv = canst. Therefore defininc the rest mass of the strln~ 

with ny wll obt~n 
I. t . 

·M 1=-ll=- ?u-Jt~vB. C
9

) 

· The matrix: polynomial [Ci-f"/~v=O-~f1+J''J_;w 
can be reduced to the squared polynomial Vlith respect to the 

tensor of the electromacnetic field .fpv • For this J:lUrpo~e 

we have to take into account that fyv obeys its 

characteristic equation ( the Hamilton-Cayley theorem / 4/ ). 

This equation has the form 151 
4 I ,.. A + ,A -I:, =O., 

where 
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1 .t 

L =±tKfiK=-i-(f) F.,cfiK."' ~}(Ht__E
1)' 

I.a,)" -- J, I:_=rt (EH]. 

Consequently, 
J4-.1if:J.1.=0 

and Eq. (9) reads 

1 i 1 P. 
f'1 :-PCi .. h)+(1+[1)~(f ~V-V. 

l10V1 we use the subsidiary condition (6) for 11.,. =0 

. . . 1. . ♦-

f} ctJ_pvR = P + f$' J-:1-rndvm 
rn-to 

Finally the squared mass of the string is 

fl. .171:+ce 

M1
=(i-+ Ii-I.t)P + p,(J.+ L)l,dt~mdvm. 

m=-­
mt-o 

(10) 

(11) 

It i~interesting to observe in this equation the transition 

to the 0ree string case. After that the invariants 11 
and I,. in Eq. (11) are equated to· zero it is necessary 

to use again the condition (lo) which for .ftv =0 has the form 

1. ♦- . . 

p =-rjf' 1-f-mdvm . 
m10 

Only now Eq. (11) reduces to the usual expression for the 

squared mass of the free string 

6 

,t~ i I 
r' \, 
i,i'.I 
r ,, 

I 

I 
.( 

11{ 

I• 

1: 

.. - I tf:rsld--mclm. 
m=-~ 
m•a 

(11) 

Let us go to the construction of the Hamiltonian 

formalism. The Lagrangian of the string in electromai;netic 

field (1} is singular. So there are constraints between 

canonical variables >yiC6,t) and .Jft (6,t) 

-1_ ' i IJ. 
~i=(f J!f-.fyvxv)+x_,~o, 

;.Q -i f I I 0 
J,i"'(f -!f-.JJvXv)><;= • 

The Hamiltonian constructed in accordance 11ith the 

usual rules vanishes identically 

1l=ix-£.==o. 
For the constrained systems the Hamiltonian formalism 

and the transition to the quantum theory were developed by 

Dirac 161 • The constraints (12) are primary ~onstraints 

according .to Dirac. Their Poisson bracket vanishes v,eakly 
4 

so these are first class constraints. 'i'here are no other 

constraints following from the Lagrangian (1). As the 

Hamiltonian we have to take the linear combination of 

constraints (12) 
t 

H .. f SJ6[ !tC6,r)'!iC6,t)+ /~(6,t)~(d})J 
0 ) 

(12) 

where ~t and J,_ are arbitrary functions. This freedom 

can be used so that the equations of motion would be the most 

simple. As in the free string case we put·' .ft=l, /1,=:0 

7 



I 
It. 
I; 

rs~ [ -L J I :t.,11 H~l J6 (y .Jl_f- pvXv)+;<.J . 
0 . 

'i'he Hanil ton varistional principle 
'tt 

bs=sSJr d6(Jix-'Jt)~o 
!1 0 

results in the equations of motion 

x1 = a1l/o1j , 
- c)('J1l), 
J!f=a6 ~f:f 

and i,1 lhe bou;idary conditions. 

~-=O 'iJJ ) 
6= D t . 

) . 

Equation.(14) establishes the connection between 

canonical momenta .J!J,, ancl co-ordinates >:J 

><1=(~J!f-~vXv. 
Inserting (1J) into (15) we get 

;=r~-(J/6-fJ&vxv)J~. 
Fror.1 Eqs. (17), (18) it follows that 

&-XJ=O. 
The boundary conditions (16) with (17) take the form 

x, +.fph Xt, =O I 6=0 f,, .I • 

8 

(lJ) 

(14) 

(15) 

(lG) 

(17) 

(18) 

So the equations of motion and the boundary conditions in the 

Haniltonian forraalism are the same as those in the Lacrall[;ian 

method. _:onsequentl;r, we can use as the solutions for J;fU,1.) 
and J!f(l,;r:) the expansions (5) and (-8), respectively. 

Substitution of Eqs. (5) and (8) lnto (13) r;i·,es 

j( .r I. +00 

f-f= 4 Lo=7: t Ldv-md.-m (19) 
m=-.,.,. 

Using the expansions (5), (8) ,we see that constrc1.:l11ts 

(12) reduce to Eq. (6) for the normal modes r/,.,~ • 

In quantum theory we postulate the following commutation 

relations 

[~,n )cln]=-m am•11,o J ·m+o} n10, [Yyi) P., 1 = i ~I/. 

The commutators between~, Pv and d,y are supposed 

to equal zero. These requirements are equivalent to the . 
following cor.nnutators 

( Xy(6;t))fv(t,t)]=L6fv g(6-6'):, 

[ ~ (&,t)J Xv((t)J" [ JJi<P;r) )tv(6,'t)] ~ 0. 

(20) 

As in the fre_~ string case the quantum ~xpressions for 

Ln. have to be taken in the normal product forr.1 
. . - . . 

! ..... . 
Ln. = I l :cln-mdvm, - bn.,o~(-0)) 

Ill=·-
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;-1here d.,(O) is the con:itant which appears via transition to the 

no:t:'!:nl pT·oduct in 

obviously into .Sqs. 

Lo • This· constant r.mst be introduced · 

(11) anc (19) for Mi. and H also. 

'the Heisenberg equations fo1· operators dv,,,, have 

the fo:rn; 

d . [ H } n!r dTJ.,11(1:)= L 
1
dvn(t) = -l 7:0.,n('t). 

' '71§". 
- L 7:1:' 

'L'herc,ore cln(r)=cln(o)8 • 

~'hu:i, the c-':pansions (5) and (8) are valid also in the 

quantU11 case. 

In quantum theory the subsidiary conditions (12) or (6) 

have to be irJposed onto the state vectors 

( Ln..: bno~(o)1\"V) ==O. n ~o. 
J J 

(21) 

'rhesc cont1i tion:, have the same form as in the free string 

case /J/ 

How the problem is reduced to the proof of the 

absence of the negative norm states if ~q. (21) is satisfied, 

that is, the "no-ghost n: theorem must be prov.ea~. 

The proof of this theorem for the free strinc 121cannot be 

applied in the case under consideration, as the 

formula (11) for the squared mass of the string in electro-

. ' magnetic field and that for the free string (11) are essen-

tially different; also the expansions (5), (8) of the 

canonical variables ~(6,'t) and J{f C6,i) . differ 

these cases. It may be supposed that for the "no-ghost" 

10 

in 

theorem proof the operators analogous to the D~F-operators 

for t:ie free strini:; /J, 7/ vrill be useful. 

The authors have a pleasure to thank ::::J.I.Blokhintscv 

and :1.1,.Chernikov for interest :Ln the worl,;: and stir.mlatine 

d;l.scussions. 

References: 

l. B.Ll.Barbashov, A.L.Koshkarov, V.V.Nesterenko. Preprint 

JI!ffi, E2-9975, Dubna, 1976. 

2. 11.,\..Chernikov. Preprint Jnm, P2-9714 ( in Russian) Dubna, 

1976. 

J. c.Rebbi. Physics Reports, 12C, N.l (1974). 

s.Mandelstam. P}lysics Reports, lJC, 259 (1974). 

J .Sohe:rk. Rev. of Mod. Phys., 47, N.1, 12J (1975). 

v.P.Shelest~ G.M.Z;l.noviev, V.A.Miransk1. lfodels of• 

Strong Interacting Particles. (in Russian) v. 2, Atomizdat, l,i., 
1976. 

4. F.l'.Gantma.cher. The Uat:i:-ice& Theory, "Nauka", M., 1967. 

5. L.D.:J:,a,ndatr, E.1;.-Lifsh:Ltz. Field Theory, 4th edition, 

11Nau.ka", I.I., 1962. 

6. l'.A.LI.Dir~c.Lectures on Quantum Mechanics, Belfer Graduate 

School of Science, Yeshiva University, U.Y.; 1964. 

L.D.Faddeev. Theoretical ·am Mathematical Physics 

( in Russian), v.1, J (1969). 

A.J.Hrulson, T.Regge, C.Teitelboim. Constrained 

Hamiltonian Systems. Princeton Preprint, 1975. 

7. E. Del Gidioe, P.Di Vecchia, S.Fubini. Ann.of Phys. 

(N.Y.), 70, J78 (1972). 

!'.Goddard, A.J.Hanson, G.Ponzano. Huol. Phys., B89, 76 (1975). 

Received by Publishing Department 
on October 5,1976 

11 


