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S u m m a r y 
The relativistic n-particle dyiamics is 

studied as a problem with constraints of the 
type 

(20 ; S)m?-р? + Ф; =0, i = l,...,n, (C) 
where Ф. are Poincare invariant functions 
of the particles' coordinates, momenta and 
spin components; Ф; is assumed to vanish 
asymptotically when the i-th particle 
coordinates tend to infinity. In the two 
particle case we assume in addition . that 
the Poisson bracket [ф1,ф2\ vanishes on the 
surface (C). That allows us to give a for­
mulation of the theory, invariant with 
respect to the choice of the time-parameter 
on each trajectory. The quantization of the 
relative two-particle motion is also dis­
cussed. It is pointed out that the stationa­
ry Schrodinger equation obtained in this 
manner is a local quasipotential equation. 

(D1976 Объединенный институт ядерных исследований Дубна 



Introduction 

It is often argued that there could be no consistent 
theory of relativlstio interacting particles without the 
presence of a field which mediates the interaction. Although 
the field mediation is indeed physically more realistic^ the 
direct interaction between particles is also logically 
possible ( see, e.g.,/ 8' 7' 2 6' 1 8/ the last reference also 
contains an extensive bibliography). However, there seejus 
to be no generally accepted dynamical framework to dual with 
such a problem. Moreover, too straightforward attempts to 
generalise the non-relatlvistlc canonical formalism to tho 
relatlvistio case have led to embarrassing no-interaction 
theorems С see the review ' ' where earlier papers of 
Currie, Jurdan and Sudarshan are also cited). The non-liani} Ionian 
approach of ref» ( started in earlier work of Van Dar<i and 
Wiener cited therelis clearly self-consistent, but nevertheless, 
does not seem to stir much enthusiasm among students of the field, 
presumably,because of Its eoraewhat unconventional appearance.On 
the other hand, the quantum mechanical (say, off energy shell) 
dynamics of n relativlstlo particles has been treated wit*-
some success, e.g., in refc. ' ' £>*=••>/ t rp n e ] _ ^ e a n a a even 
come to mind ' ' ' to derive the correct formulation of the 
classical relatlvistio two-body problem as a limit ( for 3t -*• 0) 
of some relativistic quasipotential equation in the quantum 
framework ( see, e.g., ' 1 5 > 1 6 > 2 0 ' ; the last reference also 
contains a bibliography up to 1974) ) . No unanimity on the 
right choice of the theory has been achieved in that approach 
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cither. The off-energy shell formulation ( of the type used, 
say, in ' J » - ' ' ) lacks manifest covariance; the treat­
ment in rux. ' ' is not symmetric with respect to the two 
particles ( see, in particular, Sees.VI and 7T.II of that 
re.ne pence). 

In the present paper wo propose a manifestly covn.riant 
formulation ox classical relativistie mechanics of point 
particles, troated as a dynamical theory with non—holonomic 
constraints *•* • The constraints are defined as generalisations 
of the mass-shell conditions. С The strict mass-shell relation 
p*— yn*- for a given particle is only recovered asymptotically, 
when its distance to all other particles tends to infinity.) 
I.i the special case of the two-body problem we deal with 
two constraints ^£sOs^z v ' n i o n a r e assumed to have weakly 
vanishing Poisson brackets ( i.e., {%^x\s0 for ^f = 0 s ^ z ) . 
An invariant characteristic of the particles' motion is 

x^ The idea of formulating the entire classical mechanics as 
ч theory with constraints ( excluding the anthropomorphic 
notion of force) is a rather old one. It has reached a high 
point in the posthumous book of Hera ' ' . The most 
fundamental difference is that in the 19th century physicists 
tried to ло further and "explain" the constraints ( by inventing 
ingeneous mechanisms with hidden masses,etc.). The modern 
mind is satisfied to find that the equations reflect the under­
lying symmetry of the problem. 
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; riven by their s-yice-time t r i juctor:.es. The arbltr?..rinjr.:: of 
the choice of the (tim©)-prir?jnater on each trajectory ,,;.ve:i 
r i se to a "gauge" freedom. Л gauge Invariant formulation 
of the two-body problem is given, employing the toohnicr, or 
ref. ' " ' . Ihe quantisation of the two-, a r t i c l e re la t ive 
motion leads to a ( local) qua: i.potential bchrb'din^er ciuat Ian 
of the type applied recently to the boujid state p.obleu 
in quantum electrodynamics ( see ' ' " ' ' ' ' ' *" ' ) . 

In Sec.l vfe present a Lorentz and gauge invariant 
description, of free r e l a t i v i s t i c classical par t ic les with 
arb i t rary spin. Section 2.A contains a general discussion of 
r e l a t i v i s t i c n—particle dynamics at; a problem with an 
n constraints . The two—particle case i s treated in r.mje 
de ta i l under some additional assumptions in Sees. ?B an:l SC. 
A brief disoussion of the quantization of re la t ive ( two-particle) 
motion i s given in Sec,3. 

1, Covariant description of r e l a t i v i s t i c 1-particle phase .праое. 
A. Positive enerfy orbits of the Polncare' /jroup 

According to the general group theoretical approach 
of Kir i l lov ' ' the phase space of a (free) r e l a t i v i s t i c 
point par t ic le can be identified with an orbit in the 
co--adJolnt representation of the (proper) Polncare' group 
We shall present here ( for the reader 's convenience) Herman's 
description ' ' of the positive energy orbits ( see also' ™ ' ) 
in a manifestly covariant form. 
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There are two types of positive msfi orbits: 

no.'jt orbit::, are O-dimensional and have the topological 

structure оГ tiic direct product R X S ( R being the 

6-dii:i<.'nbional real Euclidean space and J standing for the 

P-dimensional прлеге in R ) : if the radius f of the 

is л его ,then v/e have a 6—dimensional orbit 

corresponding to the phase space of a spinless particle. The 

coadjoint action of the Poincare transformation a = (а . ,Л) 

nn tiic generators "P and МмцСг""̂ Чч*/ o i " tbe Lie algebra 

of e/ is i^tven by 

( it follows L:iat * P ^ = / \ ^ P ^ > e t c ^ ' T h o Casinir 

invariant я о.ге 

W= i РЧХ"~ ?^X,r (=«T). ci.») 
In order to ^ive я covariant description of the relat ivlst ic 

phase space ft X 5 , i t is convenient to imbed i t 

in a wider space. To this end, wc introduce alon^ with the 

4-momentum f also the 4-vector X of the particle 

space—time position and a complex Lorentz 3 vector t-

which is translation invariant and transforms likeJ. £.t-Mfc*~*Mef 

under homogeneous Lorents transformations. ( I t is however not 
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covariant under space reflections)» We consider the r.r.t n п 

inf in i te ly differentiablc functionr, of x and p v.-liicii are 
polynomials in z and introduce a Poir.r.on bracket, 
satisfying the usual conditions С г>е&$ е « £ ч ) лпС such 
that the only nontrivlal brackets of the basic cooi\*.i:iat3n arc 

( £• - i s the 3-dimensionalj to ta l ly aiitinyrcinntrio «:iit 
tensor) . The generators of the Poincare Lie algebra can o* 
expressed in terms of these coordinates as follows: 

ci.*) 

( l . S ) 

where 

\-Г» =*гЬ- *» 'r - s « = *;« a / , 4 * •'г,- -
The Polsson brackets anon^ the generators P and M^,»; 
reproduce the known commutation relations in the Lie Tljobra of 
the Poincare' group. The symplectic structure, defined by 
those brackets 11. r.on-de£enerate on the manifold 

(The 2-dlmensional complex sphere J> (£y is regarded here аз 
an analytic manifold.) The Poisson brackets are however 
degenerate on the raass shell 
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*?-F-Q ( 1. 7 ) 

( if for uo other reason because the manifold 

Meffr.rt€**» s« JtOi W - K - O ] (i.o) 

i s odd dimensional)* 
For p satisfying (1*7) vre introduce the Paull-Lubanski— 

-Dar/^nami vector 
W^ ~L £*>?/" - ь / , i e , i ,

= 0 (1,9a) 

with components 

(P , > 0 , t ? A f ) ' = £ . V * Z < r ) . We notice that the 
4-^ector character of p and "Uf agrees with the 3-dinensional 
(complex) trannforiiiation la'., for J* . For example, for a 
Lorentii boost alon^ the third axis we have 

1 •* •»• (l.iOb) 

which imply ZcT = M£eX«<- "^ J^-^ t etc. 
We .ihall assume that the 4-vector fc>" is real ( it is 

sufficient to assurae this property in some special frame since 
'uf is transforming under a real representation of the 
LorentK riroup). 
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Then for a positive mass particle ( *»• > 0 ) the spin 

Ci.ii) 

is also real. It Is ear.ily chocked that -^ m *^ a = i*- **" (=?*)• 

Under the above assumption о =0 in equivalent to г =0-

B« "Gauj^e^invariance with,-respect to the chn.-.cc o-Г ̂ ho tine 

parameter 

According to the general prescription of Faddeev ' 1 < э/ 
С .see, in particular, the Appendix to that reference) the 
physical l-'partinle phase space J ^ is obtained fi-3.:i U 
by factoring out the trajectories o£ the constraint (1.7)» 
In other words, we consider for a moment the function 

<?= X ^ - p * - ) (1.12) 

as a Haciiltonian ( //>». i s teried " r e l a t i v i s t i c Har,:iltoniann 

in ref. ' ' or a "Lagrangian" in ref. ' ') . Then we can 
regard the variable 

T = ^ X P Ci.u) 

as a conjugate ("proper") time ( since { T , ^ = l ) and 
write for any (generalized) coordinate a (x p- j) 

the equation of motion 
(1.14 ) 

&={\>*У 
( T is actually the proper time divided oy the r«st mass; 
Lt has a non-ze 
In particular, 
it has a non-zero limit for yn, —» 0-cf. ' ' ) . We h*ve, 
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Given a point > ( M E<1. (1.14) defines a unique 
trc.jectory through it. The phase space /""* is obtained 
from M by identifying all points on such a trajectory. We 
i.otJce that the free particle world line (jt^— t h t +"x«'^ P ;**) 
is thus identified with a point of I . Clearly, thd 
special normalization of the function (f ( i.e., the factor 
1/? in (1.12) ) and the corresponding choice (1.13) of the 
time parameter are not important for this construction: for 
another choice we would have obtained a different parametriza-
tion of the sane trajectory ( and hence of the same factor 
space I ) . 

An alternative way to look at the above construction is 
to consider Dq. (1.13) as a subsidiary condition, v/hich fixes 
the "cauge" - in our case, the arbitrary parameter on the 
particle world line ( cf. ' "' ) . Such a choice amounts to 
picking up a representative point in each equivalence class 
of f • The constraint (1.13) defines the proper time 
v/hioh has ( by definition) zero Poisson bracket with any 
physical quantity. ( Mote that the alternative non—covariant 
gauge X"W t leads to the Hewton-Wigner coordinates, 
see ' 1 7 ' 1 2 / ) . 

Writing (1.13) in the form 

In» 
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we obtain pair of second class constraints x ~ О — % 

( in the terminology of Dirac ' ' ) , since the Pciason 
bracket of *€ and X is not С a weak) ::ero: 

This allows one to define a modified (Dirac) bracVrt {, } 

on Г wbioh. rcspect.i the constraints 

{*,&*&$+{W*tf-V>*№>fl. С Ы 6 ) 

С \7e have [f,4).~ 0-={f,Zlm for any function /• n;j Г .') 
The modified bracket for the canonical conrdi'iate:; л:к1 

momenta are 
lb?*l„-0, {*л.Ч=^./.^-^^-^ г) Ci.i7.-0 

( Th'i brac-kets cf the spin variables remain unchanged). 
la order to rederive the cquatio.'is of notion (1.14') 

in the *• - bracket formalism, we have to take into account 
»mt Sq. (1.13') £ives an explicit T - dependence to % 

which cancels the implicit f - dependence Generated by the 
Frisson bracket of % with the "HaniltonJan " (̂  

/r iv l*' J *•> • 0 . 1 8 ) 
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Hence, for an arbitrary •f — +(x*?'t'4) , the /f -derivative 
i s given by t i e (unmodified) Ро1ззоп bracket: 

For m>0, f;>0 ( positive mass and spin) the s t ab i l i ty 
group of n point in I i s Я-dimensinnal abelian: i t 
consists of t ranslat ions T along f> and rotat ions in the 
?-plaiiu orthogonal to b and W . For 0 =0 ( *i > Q ) 
tho s t ab i l i t y group of a point on the orbit i s 4-dimensional: 
II i s T в 50C3)p , v/йеге S0(3) p i s the (Wigner / 2 7 / ) 
" l i t t l e group" of *• . Tor zero-mass par t ic les the spin 
4-vector V- i s proportional to the momentum 

(1-го) 

( Я*=у г , Д need not be posit ive) / I s the 
6-dlmensionnl space of points ( x , b) satisfying (1 .7) , (1.13) 
( the "proper time" Т and the hel ioi ty A 
being held fixed). The s t ab i l i t y group of a point on I 
i s in thin case T ® £(2) ( E(2). being the 2-dimensional 
Kuclicep..i subgroup of the (proper) Lorenta group S0*(3,l)> 
which leaves the vector p invar ian t ) . 
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2. A fully oovarlant formulation of the t-olatlvlstic _?-Ъойу 
problem 

A. Relat lvlct lo n-part icle dynamics as a problem -.itth 

The moral from our discussion af the phase npace dynamics 
of a free r e l a t i v i s t i o par t ic le can be stated as follows, i'ho 
entire ( invariant) information about the par t ic le trajectory 
and equations of motion la contained in the constraint 
equation ( 1 . 7 ' . There i s no need to Introduce a special 
Hamiltonian other than the function <f (1.1Я) in the 
le f t hand side of the constraints , 'fho preferred Lorente 
invariant gauge (1.13) i s characterised by the property of the 
"proper time", defined by the right-hand side of (1.1Л), to 
be canonically conjugate to the "Haniltonian" (@ . V.'e shall 
assume that for a system of n interact ing par t ic les th j 
dynamics i s given by n Poincare invariant constrained on the 
points in P — ( R x spin var iab les ) . These constraints 
should only reproduce the on-mass-shell conditions asymptoti­
cal ly, when the distance of a given par t ic le to a l l others goes 
to In f in i ty . Without such a relaxation of Eq. (1.7) 
i t would leave no room for a potential energy in the 
non-re la t iv is t ic limit of the ftieory. 

We postulate the following set of constraints which 
should define the dynamics of n r e l a t i v l s t i c interact ing 
par t ic les 
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2f l »K-lf++ t CP l .«i 1 . . . f p^ J X / l , ) (Ъ-Ъ-K) С 2 Л ) 

l,j, t i B f , - - . j "I • 

The functions <p are assumed to natiofy the conditions lintecl 
"uelovu 

(.1) Inrentr: invariant: 

here A na;' or may not Invoke reflections depending on the 
physical r>i-пЫегл at hand. In case if i t does one lias to keep 
in mind that ti.i; W's *эгп axial vectors. With our choice 
if variables in (2. }) translation invariance i s automatic; 
therefore Eq. (2,?.) actually implies the Poincare* invariance 
o f t h e c o n s t r a i n t s . 

( i l ) Asymptotic on shell condition: 

А (Г; > Ч > *:. ) -> 0 for **r t**£>»i со j (2.3 ) 

k*i, ..,* 

thin condition ref lects the physical requirement that if the 
1-th par t ic le i s far away from a l l the others» then i t 
moves as a free part icle of mass -Hi. ( ^ 0 D • 

( i i i ) Rela t iv is t ic gajjsalj-.fcj * The idea that the 
velocity of a par t ic le cauuot exceed the velocity of l ight 
i s supposed to be valid in some form even in the interact ion 
region, where the par t ic le lose:; some of i t s ident i ty ( i t 
has no, for instance» a fixed mass). We shall consider two 
inequlvalent formulations of th i s property* 
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(a) S t r i c t causality: the par t ic le rnonciltura f>. on tho 
surface ( ? . l ) should never become space-Шгс. That implies 
the inequality 

(P.4 
ml +%(Г{,иг};}С^) >0 1=1,-,*-. 

If we regard ф. as a {generalised) potential then 
Eq. (2.4) tells us that very strjng attractive potentials 
( in particular singular negative potentials) ;ue u.:cludcd. 
Such a requirement actually inlicates the liLiitatici.n of 
the classical theory with a fixed number of particle..; 
In reality, if two high energy particles cor.ie clone together 
they will create other particles ( and particle-a.itiparticlo 
pairs). On the other hand, it Is technically toi; stringent, 
since It even excludes the attractive Coulouh potential. In 
order to allow for such ( weakly singular) poteuti-\l~ v.-o 
shall also consider an alternative, less restrictive j iO} TV. 
of the causality assumption. 

(Ъ) Weak С or mean-value) causality. Starting vii.th r.ome 
equations of motion ( to he specified belov/) we can regard the 
dynamical variables f. tJ- r X«k as functions of a time 
parameter ТГ . Then we shall require that a time average 
counterpart of (2.4) takes place: 

In the non-relativistlt limit that assumption r.hould oust 
exclude singular attractive potentials which would have led to 
falling on a centre. 
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Conditions ( i ) - ( i i i ) should be supplemented by soao 
j-cjulai-lt/ c.s.-.umptions on the functions Ф. , which would 
guarantee) in par t icular , the existence of Poisson brackets. 

В. А даиде Invariant formulation of the two-body problem 

Before trying to further develop and apply the above ge­
neral зодс.лц ••••и :.hall proceed to the case of two interact ing 
par t ic les ,-лД shall make the follovrtng additional assumptions 
which will simplify our task. 

,/e .i.isune th.-!t the potent ia ls 4> and ф are equal x^ 

\ = ФЛ&ФС&, f; v. ; x) , C2.6) 

where 

X = , V f i . , X=X ( -X X (2.7a) 

and that ф satisfies the transversality relations 

P\?$0>>;?.>o-o (2.3 ) 

J Лп equivalent hypothesis is made tn the quantum context in 
refs. ' 1 6 > 2 4 / . 
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on the surface (.H.l) ( often such equalities oi'ij Lonnod 
"weak " ) . 

Conditions (2.6^ and (2.3) iuply that the constraint.-, ^ 
and Хг С s e e Eq. (2.1) ) are in involution, that lc, 
their Poisson bracket fip ^x\ i'~ VQ'^:"Ll/ ~ero. Tivj transverr.a-
lity relations (2.S) (2.9) would be automatically satisfied 

depends on X and b through the (pscudo) scalars 

(2.10) X * - X ( P X ) , p*, xp, ХАрлРлИГ;,(, = 1,2; 

Following again Faddeev's prescription ' "' v/e can 
define the physical phase space Г in a gau;;e invariant 
manner ( cf. Sec . lb) . For the r e a d e r s convenience v;e J'LVJ 
here a pedestrian ( non-rigorous) suiamary of the Appendi:: to 
ref. ' . One s t a r t s with the one parameter far.iily о С 
"Ilarailtonians™ 

side of the constraints (2 .1 ) . Such a Hamiltonian fiives riso 
to a trajectory through each point Я. of the phase npace / 
defined as the solution of the syntcm of different ia l 
equations 

Й = Ьл} 
(where 9 i s in general a 20-component quantity: 
4 £ Г ~ R" X <С\<Сг ) . We then define Г" by iden t i ­
fying the points on a l l such t ra jector ies ( when t and a. vary ) 

on the manifold 
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С The assumption that { tf̂  , <̂ Л ~® ^3 a P r t ; r e ( l u : i - S i t e for 
the consistency of t h : .--.Love construction.) In such a way /V[ 
can "be regarded as a fibre bundle with base f and a two 
dinr.ir.lonal fibre in each point Ox Г* ( generated hy the 
"ЛллЩоШапБ" Ид ) . 

С. Pgqc_ri^tioii_of_the Relative motion in a. Lc-rentz Invariant 

Our task in th i s subsection i s to separate the centre-of-
-j.iasr. motion of the tvio par t ic les and to give an explicit 
Lorentz invariant description of the non-tr ivial re la t ive 
motion. 

To do tha t , we s ta r t by rev/riting the constraints 
(2.1) in the form 
^ ^ - ^ ) = l « - ^ + P , ^ p / ) ^ P p = 0 (2.12) 

H ( 'Mi «"MO - H ФС Р, Г, ^.«r, , , ) - f^-^ (2.13) 

where i , p and * are given by (2.7) and 

i s the on-shell cenre-of-masr, 3-momentun squared. 
We shall impose one Lorenta invariant gauge condition 

which fixes the re la t ive time variable to be zero in the centre 
of-mass frame: 
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It is conjugate to ^ In the sense that 

( In deriving the last equality we used ( 2.9) and (2.12) .) 

Further, we identify the "Hamlltonlan" with the function 

fV (2.1Э) ( which defines the second constraints). The 

total momentum ip has яего Poisson brackets with H ' 

( as well as with f and % ) , and hence does not cha-n̂ c 

in time 

On the other hand, the contre-of-raass variable does not enter 

either of the functions ( 2,12)-(2.15). Therefore, we can 

study ( for fixed J. u ) the relative motion of the 
Г 

two particles in the phase space 

The Dirac brackets of the relative variables are i;lven by 

tfrX}, = 0= {*',*% (2.19a) 

ffr- ' l- faS! -H'r.'P*}{Pfy}= С2.19Ъ) 
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In the centre of mass frame we recover the convcntlo'ial 
canonical commutation relations Tor the 3-vectors ;- and x 

The equations of motion road. 

* = {*."!, ={«>«}= P - i ^ r * - ( 2 # 2 1 ) 

We should remember that т has dimension of (mass) in 
these equations. In the non-relativlstic liiait Eqs. (2,20) 
(2,21) ( in the centre of mass frame) go into the familiar 
Newton equations, if we set 

and demand thnt у is independent of p , 

3 • quantiar.tlon. Relation to the quaslpotentlal approach 

Given the phase space formulation of classical mechanics 
in terms of Poisson ( or Dirac) brackets the problem of quantiza­
tion becomes trivial ( at least in a practical sense): w« have 
Just to replace the classical brackets by the commutator 
(devlded by i ) . We shall discuss here the Schrodinaer 
«presentation of the quantized relative motion of two 
relativistic particles. 

We consider the Hilbert space /i~/t- c °^ vector valued 
wave functions YM defined in a neighbourhood of the 
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hyperplane ^ ( 2.15), takins vnlues in the (2 S, <• I ) (2 5.K ) 
dimensional complex space Ц & Ц;,. С "here ь, ani Sj. 
arc the spin values of each of the two particles), anil 
having finite norm: 

iyt=< V ̂> = J" (VM^OSYPX) Л <•*=, 
(3.1) 

where 

Is the scalar product in Ц;, ® ^s^ . 
Then x'* is defined С as usual) аз a multiplication, 
operator with domain Ъ[х*1 ~ f ¥<="}(:\\r*Уl< **} » w:-_ile P 
is given by 

pr = ^Vi^-^- ip , (P^] ( , г ) 

(where | | i s the projection operator (2.19u) ) . in the 

centre of mass frame, set t ing л - (x") , p = (pk): ь = i,z,i 

we oome to the conventional expression 

f , . ; l (for p = ̂ , 0),f = o ) . C 3 , 2 , ) 

x'More precir-еЗу /C should be defined аз the completion 
of the set of equivalence classes of continuous functions 
Ц/(х) С continuity is necessary if we vfish to give unambiguous 
meaning of the integral in (3.1)). Two functions should be 
ascribed to the same class if they coincide on the hyperplane 
(2.15). 
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In orC'jr to give c. quant JT.I theoretical meaning to the poten­
tial <p t Y/e азаиг.з thr.t It is a polynouial in f 

anc present each tern of thi3 polynomial in a symmetric form 
( so that real ф до into Hermitian operators). The spin 
projections are given by the infinitesimal operators of the 
representations ( sf ) and ( s. ) of SU(2). 

We notice that the constraint (2.12) is automatically 
satisfied by the expression (3*?.) for the relative f.ionentum 
opeiai.or. The ^аиде condition (2.15) is taken care of by 
the о -function in the definition of the scalar product 
(3-1). The constraint (2.13) on the other hand should be 
imposed as a subsidiary condition to the wave function. In 
the centre of mass franie it assumes the form of a stationary 
Sciirodiiiccr equation: 

where ф is, In general) a matrix in the spin indices. 
This is the type of equation encountered in the local 

version of the quasipotential approach, introduced &nd 
successfully applied to problems of quantum electrodynamics) 
in refs. /p*>25>20,21/ <• l n t h a t o a g. e t h e p o t e c t i a l l s 

extracted from the Feynuan perturbation expansion of the 
elastic scattering amplitude). An investigation of the 
classical counterpart of this equation for specific choices 
of ф ls under way. 
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