СООБЩЕНИЯ
 OБbЕАИНЕННOГO ИНСТИTУTA月 $\triangle E P H$ IX ИССАЕАОВАНИЙ
 AYБHA

DYNAMICS OF RELATIVISTIC POINT PARTICLES
AS A PROBLEM WITH CONSTRAINTS

I.T.Todorov*

DYNAMICS OF RELATIVISTIC POINT PARTICLES
 AS A PROBLEM WITH CONSTRAINTS

[^0]
Sumanary

The relativistic n-particle dyamics is studied as a problem with constraints of the type

$$
\begin{equation*}
\left(2 \phi_{i} \equiv\right) m_{i}^{2}-p_{i}^{2}+\Phi_{i}=0, \quad i=1, \ldots, n, \tag{c}
\end{equation*}
$$

where Φ_{i} are Poincaré invariant functions of the particles' coordinates, momenta and spin components; Φ_{i} is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case we assume in addition that the Poisson bracket $\left\{\phi_{1}, \phi_{2}\right\}$ vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrödinger equation obtained in this manner is a local quasipotential equation.

Introduction

It is often arcued that there could be no consistent theory of relativistic interacting particles without tin presence of a field which modiates the interaction. Althougil the field mediation 1 s indeed physically more roalistic, fic direct interaction betwoen particles is also Iofic.211\% possible (see, e.E., $/ 8,7,26,18 /$ the last reference also contains an extensive bibliography). Lowever, there seen:; to be no generally nooepted dynamical framework to dial with such a problem. Moreover, too stralghtforwari attempts to generalize the non-relativistic canonical formalism to tho relativistic case have led to embarrassing ao-interaction theorens (see the review $/ 7 /$ where earlicr napers of Currie, Jurdon and Sudarshan are also ciled). The non-hanil Loniaz upproach of ref. $/ 23 /$ (started in earlicr wowk of Van Dand and Wigner cited there) is chearly self-consistent, but neverthcless, does not seem to stir much enthusiasm among students or the field, presumably, because of its somewhat unconventional apyearance. On the other hand, the quantum mechanical (say, off energy shell) dynamios of 4 relativistio particles has been treated with some success, e.e., 1 refs. $/ 5,22,23 /$. The 1 dea has even come to mind $/ 11,6 /$ to derive the correct formulation of the classical relativistic two-body problem as a limit (for $t \rightarrow 0$) of some relativistic quasipotentiel equation in the quantun framework (see, e.g., $/ 15,16,20 /$; the last refereace also contains a bibliography up to 1974)). No unanimity on the right chaice of the theory has been aohieyed in that approach
cithen. The offeenesey shell Fomulation (of the type used, say, in $/ 5,15,22,23 /$) lacks manifest covariance; the treatment in res. /II/ is not symuetric with respoct to the two partleles (see, in particular, Secs.VI and VIII of that poricerace).

In the present paper we propose a mandfestly covaciant Forimlation of classical relativistic mechanics of noint particles, troated as a dynamical theoly with non-inolonomic constraints $\%$) The constraints are deffned as generalisations of the mass \rightarrow mhell conditions. (The strict mass-shell relation $\boldsymbol{\rho}^{\mathbf{2}}=\boldsymbol{m}^{\mathbf{2}}$ for a given particle is only recovered asymptotically, When Lis distance to all other particles tends to infinity.) I-t the special case of the two-body problem we deal with two sonstraints $\varphi_{1}=0=\varphi_{2}$ whigh arc assuned to have wealiy vanishing Poisson brackets (i.e., $\left\{\varphi_{1}, \varphi_{2}\right\}=0$ for $\varphi_{1}=0=\varphi_{2}$). An invariant characteristic of the particles'motion is
x)

Tlue idea of formulating the entiro classical mechanics as ? theory with constraints (excluding the anthropomorphic notion of force) is a rather old one. It has reached a high joint in the posthumous bools of Herz/l3/ . The nost fundamental difference is that in the 19 th century physicists tried tog go further and "explain" the constraints (by inventing ingeneous mechenisma with hidden maisses, etc.). The modern mind is satisfied io find that the equations reflect the underlying symmetry of the problem.
riven by their smantime trasectoves. Whe aroitrartas: an the choice of the (time)-parmeter on each trajectnay .ives rise to a "gauge" freedom, A gaige insarlant formulation of the two-body problem is tiven, employing tha technics o: ref. /lo/. The quantiaation of the two-aricicle relativi: motion leads to a (local) qua:ipotential Schiöiniser opotion of the type applied recently to the bound state pioblen In quantum elcotrodynanios (see $124,25,20,21 /$).

In Sec.l we present a Lorentz and gauge invorinnt description of free relativistic classical particles with arbitrary spin. Seation 2.A contains a general discussion of relativistic n-particle dynamics ns a problem with an n constraints. The two-particle case is treated in wore detail unier some additional assumptions in Secs. 2 D an:l gC. A brief disoussion of the quantization of relative (two-particle) motion is given in Sec. 3.

1. Govariant desoription_of relativistic_1-narticle_nhicie_snace. A. Positive energy orbits of the Poincaréaroun

According to the general group theoretical approach of Kirillov /14/ the phase space of a (free) relativisitic point particle can be identified with an orbit in the cowadjoint representation of the (proper) Poincaré eroup $\mathcal{P}_{x} \mathcal{S}_{*}$. We shall present here (for the reader's conventence) Reyman's desoription $/ 19 /$ of the positive enerisy orbits (see also ${ }^{\prime 1-3 /}$) In a mandfestly covariant form.

There are two types of positive mass orbits:
ne: it orbit: ale 8-aimensional and have the topological structure o: tic direct product $\mathbb{R}^{6} \times S^{2}$ (\mathbb{R}^{6} being the G-dinumsional real Euclidean space and $\2 standing for the r-dinenioional sphere in R^{3}): if the radius ρ of the sphere \int^{2} iss aero, then we have a 6 -ainetisional orbit corresponding to the phase space of a spinless particle. The roodjaint action of the Poincare twanfometion $g=(a, n)$ on the generators P_{μ} and $M_{\mu \nu}\left(=-M_{\mu}\right)$ or the Lie algebra or \mathscr{P} in tver by $P_{\mu} \rightarrow{ }^{\prime} P_{\mu}=P_{\lambda}\left(A^{-1}\right)_{\mu}^{\lambda}$
$M_{\mu \nu} \rightarrow{ }^{g} M_{\mu \nu}=M_{\kappa \lambda}\left(A^{-1}\right)_{\mu}^{\kappa}\left(\Lambda^{-1}\right)_{\nu}^{\lambda}+{ }^{g} p_{\mu} a_{\nu}-P_{\nu}^{g} a_{\mu}$
(it follows lat ${ }^{g} P^{\mu}=A_{\nu}^{\mu} D^{\nu}$, etc), Tho casirir invariant a me
$P^{2}=P_{\mu 1}^{T}=P_{0}^{2}-P^{2}\left(=m^{2}\right) \quad\left(P=\left(P_{1} P_{2}, P_{3}\right)\right)(1.2 a)$
$W=\frac{1}{2} P^{2} M_{\mu \nu} M^{\mu \nu}-P_{\mu} M^{\mu \sigma} M_{\nu \sigma^{L}} D^{\nu}\left(=m^{2} \rho^{2}\right)$

In order to five e covariant description of the relativistic phase space $\mathbb{R}^{6} \times S^{2}$, it is convenient to imbed it in a wider space. To this end, wo introduce along with the 4 -momentum p_{μ} also the 4 -vector x^{μ} of the particle spacetime position and a complex Lorentz 3 vector \boldsymbol{z}_{j} which is translation invariant and transforms like $\frac{1}{2} \varepsilon_{j k \ell} M_{k}-i M_{o j}$ under homogeneous Lorentz transformations. (It is however not
covariant under space reflections). We consider tine sit n. infinitely differentiable functions of x and P wifi are nolymmials ins z and introduce a poisson brnciet, satisfying the usual conditions (see, eec., $/ 2 /$) and such that the only nontrivial breckete of the basic cooniaizaten are $\left\{x^{\mu}, p_{\nu}\right\}=-\delta_{\nu}^{\mu}$,

$$
\begin{equation*}
\left\{z_{j}, z_{k}\right\}=\varepsilon_{j k e} z_{\ell} \tag{7.3}
\end{equation*}
$$

($\varepsilon_{j k \ell}$ is the 3-idmensional, totally antisjwetrio init tensor). The senerators of the poincare Lie algebra cai dit expressed in terns of these coordinates as follows:
$P_{\mu}=p_{\mu}, \quad M_{\mu \nu}=L_{\mu \nu}+s_{\mu \nu}$,
where

$$
\begin{equation*}
L_{\mu \nu}=x_{\mu} p_{\nu}-x_{\nu} p_{\mu}, \quad s_{k t}=\varepsilon_{j k \ell} z_{j}, s_{r j}=i z_{j} \tag{1,5}
\end{equation*}
$$

The poisson brackets among the generators P_{μ} and $M_{\mu \nu}$ reproduce the known commutation relations in the Lie al cobra of the Poincare' group. The symplectic structure, defined by those brackets is ron-degenerate on the manifold

$$
\begin{equation*}
\Gamma=\mathbb{R}^{8} \times S^{2}(\mathbb{C})=\left\{(x, R ; \underline{z}) \in R^{8} \times \mathbb{C}^{3} ; \underline{z}^{2}=\rho^{2}\right\} \tag{1.6}
\end{equation*}
$$

(The 2-dimensional complex sphere $S^{2}(\mathbb{C})$ is regarded here as an analytic manifold.) The Poisson brackets are however degenerate on the mass snell

$$
\begin{equation*}
m^{2}-p^{2}=0 \tag{1.7}
\end{equation*}
$$

(it for no other reason because the manifold

$$
\begin{equation*}
M=\left\{(x, p) \in R^{\prime \prime}, z \in S^{2}(C) ; m^{2}-p^{x}=0\right\} \tag{1.0}
\end{equation*}
$$

1.3 oùà dimensional).

For pattsijing (1.7) we Introduce the Pauli-Lubansici-- marmara vector

$$
w^{\mu}=\frac{1}{2} \varepsilon^{x+\rho \mu} s_{k \lambda} p_{g} \quad\left(c_{0,23}=-\varepsilon^{012 s}=1\right) \quad \text { (1.9a) }
$$

:HAh components

$$
\begin{equation*}
W^{0}=\underline{P} \underline{\underline{E}}, \quad W=P_{0} \underline{\underline{I}}+i \underline{\underline{E}} \wedge \underline{P} \tag{1.9b}
\end{equation*}
$$

$\left(P_{0}>0, \quad\left(z_{A} P\right)^{j}=\varepsilon_{j k R} z^{\kappa} P^{\ell} \quad\right)$. We notice that the
4-vector character of p and w agrees with the 3-dimensional (couples) trangromation ln: for \underline{E}. For example, for a Lorentz boost along the third axis we have $P_{0}^{\prime}=P_{0} c h \alpha-P_{3} \operatorname{sh} \alpha, P_{1}^{\prime}=P_{1}, P_{2}^{\prime}=P_{2}, P_{3}^{\prime}=-P_{0} \operatorname{sh} \alpha+P_{3} c h \alpha$, (1.10a) $z_{1}^{\prime}=z_{1} \operatorname{ch} \alpha-i z_{2} \operatorname{sh} \alpha, \quad z_{2}^{\prime}=i z_{1} \operatorname{sh} \alpha+z_{2} \operatorname{ch} \alpha, z_{3}^{\prime}=z_{3}, \quad(1.10 \mathrm{~b})$
which imply $w_{0}^{\prime}=\omega_{0} c \alpha-\omega_{3}$ sh α, etc.
We final assume that the 4-rector \boldsymbol{W} is real (it is sufficient to assurae this property in some special frame since $\boldsymbol{w}^{\boldsymbol{r}}$ is transforming under a real representation of the Lorentz group).

Then for a positive mass particle ($m>0$) the spin
$\underline{s}=\frac{1}{1 x}\left(\underline{w}-\frac{w_{0} \underline{P}}{m+P_{0}}\right)=\frac{1}{m}\left(P_{0} \underline{z}+i \underline{Z} \wedge \underline{P}-\underline{\underline{P}} \underset{m+P_{0}}{p}\right)$
is also real. It $L s$ easily checricu tiat $-\frac{1}{m^{2}} \boldsymbol{\omega}^{2}=\underline{y}^{2}=\underline{z}^{2}\left(=\rho^{2}\right)$. Uader the above assumption $\quad \rho=0$ is equivaleat to $z=0$.
B. "Gucen invariance *ith respect totice cho coc of ticetime parancter

According to the general prescription of Faddeev /10/ (sce, in particular, the Appendix to that reference) the physisal l-partiole phase spice $\Gamma^{+\boldsymbol{p}}$ is outained froni hi by factoring out the trajectories of the constraint (1.7). In other words, we consider for a noment the function

$$
\begin{equation*}
\varphi=\frac{1}{2}\left(m^{2}-p^{2}\right) \tag{1.12}
\end{equation*}
$$

as a Hamiltonian ($4 / m$ is teried "relativistic Hirititonian" in ref. /6/ or a "Lagrangian" in ref. /11/). Then we can regard the variable

$$
\begin{equation*}
\tau=\frac{1}{m^{2}} \times p \tag{1.13}
\end{equation*}
$$

as a conjugate (Mproper") time (since $\{\tau, \varphi\}=1$) and write for any (generalized) coordinate $q(x, p ; i)$ the equation of motion

$$
\begin{equation*}
\frac{d q}{d \tau}=\{q, \varphi\} . \tag{1.14}
\end{equation*}
$$

(τ is actually the proper time divided by the rest mass; it has a non-zero $11 m i t$ for $m \rightarrow 0$-cf. $/ 4 /$). Wa have, in particular,

$$
\begin{equation*}
\frac{d x}{d \tau}=p, \quad \frac{d p}{d \tau}=0=\frac{d \tau}{d \tau} . \tag{1.141}
\end{equation*}
$$

Givea a point $g_{0} \in M$ ieq, (1.14) dcfines a undque trojectory through it. The phase space Γ^{*} is obtained froin hi by identifying all points on such a trajectory. We wntjee that the free parlicle world line $\left(x^{\mu}=p^{\mu} \tau+x_{0}^{*}, p_{p} ; x_{k}\right)$ is thus identified with a point of Γ^{*}. Clearly, the special norinalization of the function \mathcal{Q} (i.e., the factor 1/7 in (1.12)) and the corresponding chotce (1.13) of the tine parameter are not important for this construction: for another choice we would have obtained a different parametrizalion of the game trajectory (and hence of the same factor space Γ^{*}).

An altcrnative way to look at the above construction is to consider ïq. (1.13) as a subsiciiary condition, which fixes the "cauge" - in our case, the arbitrary paraneter on the particle world line (cf. /L2/). Such a choice amounta to picking up a representative point in each equivalence class of Γ^{*}. The constraint (1.13) defines the proper time which has (by definition) zero Poisson bracket with any physical quantity. (Note that the alternative non-covariant gauge $\quad \boldsymbol{x}^{a}=\mathrm{t}$ leads to the Hewtonfligner coordinates, see $/ 17,12 /$).

Writing (1.13) in the form

$$
\begin{equation*}
\mathscr{Z}=\tau-\frac{x p}{m^{2}}=0 \tag{1.131}
\end{equation*}
$$

we obtain pair of second class constraints $\dot{\varphi}=0=\mathcal{X}$ (in the terminology of Dirac $/ 9 /$), since the Poisson bracket op φ and \boldsymbol{X} is not (a incur) :sro:

$$
\begin{equation*}
\{\varphi, x\}=\frac{p^{2}}{m^{2}}=1 \tag{1.15}
\end{equation*}
$$

This allows one to define a modified (Dirac) bracket. $\{$, f. on Γ^{*} whicin respects the constraints

$$
\begin{equation*}
\{f, g\}_{*}=\{f, g\}+\{f, \varphi\}\{x, g\}-\{f, x\}\{\varphi, g\} \tag{1.16}
\end{equation*}
$$

 The modified bracket for the canonical conidisate: a ni
momenta are

$$
\begin{align*}
& \left\{P_{\mu}, P_{\nu}\right\}_{\mu}=0, \quad\left\{x_{\mu}, x_{\nu}\right\}_{\infty}=\frac{1}{m^{2}} L_{\mu \nu}=\frac{1}{m^{2}}\left(x_{\mu} P_{\nu}-x_{\nu} P_{\mu}\right) \\
& \left\{x^{F}, P_{\nu}\right\}_{\infty}=\frac{1}{m^{2}} p^{\mu} P_{\nu}-\delta_{\nu}^{\mu} \tag{1.17~b}
\end{align*}
$$

(The brackets if the spin variables remain unchanged). In order to rederive the equations of motion (1.14')
in the * - bracket formalism, we have to take into account that Eq. (1.131) Gives an explicit τ-dependence to \boldsymbol{X} which cancels the implicit τ - dependence generated by the Poisson bracket of \boldsymbol{X} with the miariltonian \mathbb{L} :

$$
\begin{equation*}
\frac{d X}{d \tau}=\frac{\partial x}{\partial \tau}+\{x, Q\}=1-\frac{p^{2}}{m^{2}}=0 . \tag{1.18}
\end{equation*}
$$

Hence, for an eroltrary $f=f(x, p ; 2)$, the τ-derivative is given iof the (unmodified) Poisson bracket:

$$
\begin{equation*}
\frac{d f}{d \tau}=\{f, \varphi\}+\{f, \varphi\} \frac{d \eta}{d \tau}=\{f, \varphi\} \tag{1.19}
\end{equation*}
$$

For $m>0, \rho>0$ (positive ulass and spin) the stability groun of a point in Γ^{*} is 2-dimensinnal abelian: it consicets of tavnslations T_{p} along P and rotations the ?-plane orihogonal to p and W. For $\rho=0(m>0)$. tine :stability froup of a point on the orbit is 4-dimensional: It is $T_{r} \otimes S O(3)_{p}$, were $S O(3)_{p}$ is the (Wigner $/ 27 /$) "little sroup" of p. For zeromass particles the spin 4-vector W^{T} is roportional to the monentum

$$
\begin{equation*}
p^{2}=0 \Rightarrow w=\lambda p \tag{1.2G}
\end{equation*}
$$

($\lambda^{2}=\rho^{2}, \lambda$ need not be positive) Γ^{*} is the 6-dimensionel space of points (x, p) satisfying (1.7), (1.13) (the "proper tirien $\tau \quad$ and the helicity λ being hela flyed). The stability group of a point on Γ^{*} is in this case $T_{p} \otimes E(2)_{p}$ ($E(2)_{p}$ being the 2-dimensional Suclicier... subgroup of the (proper) Lorentiz group $\operatorname{sof}^{\top}(3,1)$, which leaves the vector p invariant).

2. A fully oovariant formulation of the relativistic ? - bocio nroblem

A. Relativictic_n-particle_diamics_3s_problem_t上
constran=nts

The aoral from our diceussion of the phare space dymaic: of a free relativistic particle can be stated as follows. ilte entire (invariant) information about thic particle trajucis.', and equations of motion is contained in the constraint equation (1.7). There is no need to introduce a special Hamilionian other than the function φ (1.1?) in the left hand side of the constraints. The preferred Lorents 1nvariant gauge (1.1才) is characterlaed by the propesty of the "proper timen, defined by the right tiaud sidc of (1.1.3), to be canonically conjugate to the "Hantltonian" φ. :ie small assume that for a system of n interacting particles the dynamics is given by n poincaré invariant constiainc:s on the points in $\Gamma=\left(\mathbb{R}^{\ell R} \times\right.$ spin variables $)$. These constraints should only reproduce the on-mass-shell conditions asjmptotically, when the distance of a given particle to all othors goes to Lnfinity. Without such a relaration of Eq. (1.7) it would leave no room for a poteritial energy in the non-relativistic limit of the heory.

We postulate the following set of constraints wilch should define the dynamics of n relativistic interacting particles

$$
\begin{equation*}
2 \varphi_{i}=m_{i}^{2}-p_{i}^{2}+\phi_{i}\left(p_{i}, w_{1}, \ldots, p_{m}, u_{n} ; x_{j k}\right) \quad\left(x_{j n}=x_{j}-x_{k}\right) \tag{2.1}
\end{equation*}
$$

$$
i, j, k=1, \ldots, n
$$

The functions ϕ_{i} are assumsa to satisfy the conditums listed below.

$$
\begin{align*}
& \text { (i) Entente invariant: } \\
& \phi_{i}\left(\Lambda p_{j}, A w_{j} ; A x_{j k}\right)=\phi_{i}\left(p_{j}, w_{j} ; x_{j k}\right) ; \tag{2.2}
\end{align*}
$$

here Λ na; or may not involve reflections depending on the phivácal nobler at hand. In care if it does one has to keep ian mite tint tin: w's are axial vectors. With our choice if variables in (2.1) translation invariance is automatic; therefore Eq. (2.2) actually implies the Poincare invariance of the constraints.
(ii) Asymptotic on sigil condition:

tins condition reflects the physical requirement that if the 1-12: particle is far away from all the others, then it moves as a free particle of mass $m_{i}(\geqslant 0)$.
(iii) Relativistic causality. The idea that the velocity of a particle carnot exceed the velocity of light is supposed to be valid in some form even in the interaction region, where the particle lose: sone of 1 ts identity (it has no, for instance, a fixed mass). He shall consider two inequivalent formulations of this property.
(a) Strict causality: the particlu mononturi P_{i} ou tho surface (2.1) should never become space-lite. That 1 mplics the inequality

$$
\begin{equation*}
m_{i}^{2}+\phi_{i}\left(p_{j}, w_{j} ; x_{j k}\right) \geqslant 0 \quad i=1, \ldots, n . \tag{3.4}
\end{equation*}
$$

If ve regario ϕ_{i} as a (senerakized) potential thea Eq. (2.4) tells us thet very strang attractive potentials (in particular, singular negative potentials) aie e.ciluice. Such a requirement actually indicates the linitatictas o.' the olassical theory witi a fixed number of partici :in; In reality, if two high energy particles corie ciose tocetins: they will create other particles (and particle-antiparticle peirs). On the other hand, it is technically tow stringent, stace it even excludes the attractive Couloub fotectial. In oxder to allow for such (weakly sixuluar) potentinl: we shall also consider an alternative, less restrictive, josra of the causality assumption.
(b) Weak (or mean-value) causelity, Starting vitil sonie equations of motion ($t o$ be specified below) we can regard the dynamical variables $P_{i}, W_{i}, X_{j k}$ as functionj of a time parameter τ. Then we shall require that a time average counterpart of (2.4) takes place:

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left[m_{i}^{2}+\phi_{i}\left(p, w_{j} ; x_{j k}\right)\right] d r \geqslant 0 \tag{2.5}
\end{equation*}
$$

In the non-relativistic limit that assunftion should just exclude singular attractive potentials which would have led to falling on a centre.

Conditions (i)-(111) should be supplemented by soar Gullailiz essiomptions on the functions $\boldsymbol{\phi}_{\boldsymbol{i}}$, which would guarantee, in particular, the existence of Poisson brackets.

L. A_Gauge invariant formulation of the two body problem

Before trying to further develop and apply the above general acican :is shall proceed to the case of two interacting porticoes and shall make the following additional assumptions :mich will simplify our task.

Ne assume that the potentials ϕ_{1} and ϕ_{2} are equal x)

$$
\begin{equation*}
\phi_{1}=\phi_{2} \equiv \phi\left(P, p ; w_{j} ; x\right) \tag{2,6}
\end{equation*}
$$

Where
$P=s_{1}+p_{2}, \quad x=x_{1}-x_{2}$
$P=\mu_{2} p_{1}-\mu_{1} p_{2}=\frac{1}{2}\left(p_{1}-p_{1}\right)-\frac{m_{1}^{2}-m_{2}^{2}}{25} P \quad\left(\mu_{1}+\mu_{2}=1\right.$,
$\left.\mu_{1}-\mu_{2}=\frac{m^{2} n_{2}^{2}}{3}, s=P^{2}\right)$
anu that ϕ satisisies the transversality relations
$P \nabla_{x} \Phi\left(P, p ; w_{j}, x\right)=0$
$D V_{p} \Phi\left(P, p ; w_{j}, x\right)=0$
x) An equivalent hypothesis is made in the quantum context in reps. $/ 10,24 /$.
on the surface ($\cap .1$) (often such equalities are temned "rreak").

Conditions (2.6) and (2.3) inmly that the constraint: φ, and φ_{2} (see Eq. (2.1)) are in involution, that 1 :, their Poisson bracket $\left\{\varphi_{1}, \varphi_{2}\right\}$ in weiniv zero. The trensveraninty relations (2.8) (2.9) wotild vo automaticilily s.athoried 1) ϕ depends on x and p through the (psoucio) sectars $x^{2}-\frac{1}{5}\left(P_{x}\right)^{2}, \quad p^{2}, \quad x p, x \wedge p \wedge P_{\wedge} w_{\infty},(1=1,2)$

$$
\times \wedge P \wedge w_{1} \wedge w_{2}, \quad p \wedge P_{\wedge} w_{1} \wedge w_{2}
$$

Following agatn Foddeev's prescription $10 /$ ve can define the physical phase space Γ^{*} in a gauce inrariant manner (of. Sec.lb). For the reader's convenimen be dive here a pedestrian (non-rigorous) surmary of tie Appendi: to ref. $/ 10 /$. One starts with the one parametcr fanilly of MLamiltenians"

$$
H_{\alpha}=\alpha \varphi_{1}+(1-\alpha) \varphi_{2} \quad 0 \leq \alpha \leq 1,
$$

where $\varphi_{1,2}$ are the functions defined by the l.eft-land side of the constraints (2.1). Such a Hamiltonian gives rise to a trajectory through each point q of the phase apace Γ, defined as the solution of the syntem of aifferential
equations

$$
\frac{d q}{d t_{\alpha}}=\left\{q, H_{\alpha}\right\}
$$

(where q is in ieneral a 20 -component quantity: $q \in \Gamma \approx \boldsymbol{R}^{16} \times S^{2} \times S^{2} \quad$. We then define Γ^{*} by identifying the points on all such trajectories (whes t and α vary) on the manifold

$$
\begin{equation*}
M=\left\{q \in \Gamma ; \varphi_{1}=0=\varphi_{2}\right\} \tag{2.11}
\end{equation*}
$$

(The assumption thint $\left\{\varphi_{1}, \varphi_{2}\right\}=0$ is a prerequisite for the oonsistency of til alove construction.) I_{n} suon a way M cas: be regarded as a fibre bundle with base Γ^{*} and a two dincosional fibre in each point of Γ^{*} (generated by the "Ivailtonians" H_{a}).

C. Description of the relativemotion_ina Lorentzinvariant

bauge

Our task in this subsection is to separate the centre-ofHinas motion of the two particles and to give an explicit Lorentz invariant descriftion of the non-trivial relative motion.

To do that, we stert uy revriting the constraints
(2.1) In the form
$\varphi\left(\equiv \varphi_{2}-\varphi_{1}\right)=\frac{1}{2}\left(m_{2}^{2}-m_{1}^{2}+P_{1}^{2}-f_{2}^{2}\right)=P_{p}=0$
$H\left(\equiv \mu_{2} \varphi_{1}+\mu_{1} \varphi_{2}\right)=\frac{1}{2}\left[\Phi\left(P, r, \omega_{1}, \omega_{2}, x\right)-b^{2}(s)-p^{2}\right]$
where P, p and x are eiven by (2.7) and

$$
\begin{equation*}
f^{2}(s)=\frac{1}{4 s}\left[s^{2}-2\left(m_{1}^{2}+m_{2}^{2}\right) s+\left(m_{1}^{2}-m_{2}^{2}\right)^{2}\right] \quad\left(s: P^{2}>0\right) \tag{2.14}
\end{equation*}
$$

is the on-shell cenremof-masis 3-momenturi squared.
We shall impose one Lorentz invariant gauge condition which fixes the relative time variable to be zexo in the centre of-mass frame:

$$
\begin{equation*}
\chi=\times P=0 \tag{2.15}
\end{equation*}
$$

It is conjugate to φ in the sense that
$\{\varphi, X\}=s(>0) \quad\{H, \chi)\left(=\frac{1}{2} P V_{p} \Phi-P P\right)=0$
(In dariving the last equality we used (2.9) and (2.12) .)
Further, we identify the "Hamiltonian" with the furction
H (2.13) (which defines the second constraints). The totel momentum P has aero Poisson brackets with H. (as well as with φ and \mathcal{X}), and ience does not change in time

$$
\begin{equation*}
\frac{d P}{d \tau}=0\left(=\frac{d s}{d \tau}\right) \tag{2.17}
\end{equation*}
$$

On the other hand, the contre-of-mass variable does not eater exther of the functions (2.12)-(2.15). Therefore, we can study (for fixed P_{μ}) the relative motion of the two particles in the phase space

$$
\begin{equation*}
\Gamma_{r e \ell}=\left\{(p, x) \in \mathbb{R}^{8} ; \varphi=0=\chi\right\} \times S^{2} \times S^{2} . \tag{2,18}
\end{equation*}
$$

The Dirac brackets of the relative variables are fiven by

$$
\begin{equation*}
\left\{P_{r}, P_{\nu}\right\}_{\pi}=0=\left\{x^{r}, x^{\nu}\right\}_{\pi} \tag{2.19a}
\end{equation*}
$$

(since $\left.\left\{P_{\mu}, \varphi\right\}=0=\left\{x^{\mu}, \notin\right\}\right)$ and

$$
\begin{equation*}
\left\{P_{\mu}, x^{\nu}\right\}_{\mu}=\left\{P_{r}, x^{\nu}\right\}-\frac{1}{s}\left\{P_{\mu}, P_{x}\right\}\left\{P_{p}, x^{\nu}\right\}= \tag{2.19b}
\end{equation*}
$$

$$
=\delta_{\mu}^{\nu}-\frac{1}{s} P_{\mu} P^{\nu} \equiv \prod_{\mu}^{\nu}
$$

In the centre of nass frane we recover the conventio!al canonical commutation relations for the 3-vectors $\underset{\sim}{2}$ and x. The equations of motion road

$$
\begin{align*}
& \dot{p}\left(\equiv \frac{d p}{d \tau}\right)=\{P, H\}_{r}=\{P, H\}=\frac{1}{2} \nabla_{\mu} \Phi \tag{2.20}\\
& \dot{x}=\{x, H\}_{*}=\{x, H\}=p-\frac{1}{2} \nabla_{p} \dot{\$} . \tag{2.21}
\end{align*}
$$

We sinould remember that τ bas dimension of (mass) ${ }^{-2}$ in these equations. In the non-relativistic lindt Eqs. (2. 20) (2.21) (in the centre of mass frame) go into the familiar Nerton equations, if we set

$$
\begin{equation*}
\tau=\frac{m_{1} m_{2}}{m_{1}+m_{n}} t, \quad \phi=2 \frac{m_{1} m_{1}}{m_{1}+m_{2}} V \tag{2.22}
\end{equation*}
$$

and demand tirn V is independent of p.

3 - quantization. Relation to tie_quasipotentipl_approach

Given the phase space formulation of classical mechauics In terms of Poisson (or Dirac) brackets the problem of quantization becoucs trivial (at least in a practical sense): we have Just to replaoe the olassical brackets by the comatator (dovided by i). We shall discuss here the Schrödinger representation of tire quantized relative motion of two relativistic particles.

We consider the Hilbert space $\mathscr{H}=\mathcal{H}_{s_{1}, s_{2}}$ of vector valued wave functions $\quad \psi(x)$ defined in a neighbourhood of the
hyperplane x) (2.15), taking values in tin ($25_{1}+1$) ($2 s_{2}+1$) dimensional complex space $V_{S_{1}} \otimes V_{S_{2}}$ (where s_{1} and s_{2} arc the spin values of each of the two particles), ant? having finite norm:
$\|\psi\|^{2}=\langle\psi, \psi\rangle=\int(\psi(x), \psi(x)) \delta\left(P_{x}\right) d^{4} x<\infty$,
where

$$
\left(\psi, \psi^{\prime}\right)=\sum_{s_{1}=-s_{1}}^{s_{1}} \sum_{s_{2}=-s_{2}}^{s_{2}} \bar{\psi}_{s_{1} s_{2}} \psi_{s_{1} s_{1}}
$$

is the scalar product in $V_{s_{1}} \otimes V_{s_{2}}$.
Then x^{μ} is defined (as usual) as a multiplication
operator within domain $D_{\left[x^{*}\right]}=\left\{\psi \in \mathcal{K}:\left\|x^{\mu} \psi^{\|}\right\|<\infty\right\}$, wile P_{μ}
is given by

$$
\begin{equation*}
P_{\mu}=i \Pi_{\mu}^{\nu} \frac{\partial}{\partial x^{\nu}}=i\left[\frac{\partial}{\partial x^{\mu}}-\frac{1}{s} P_{\mu}\left(P \nabla_{n}\right)\right] \tag{3.2}
\end{equation*}
$$

(where Π is the projection operator (2.19is)). In the centre of mass frame, setting $\quad \underline{x}=\left(x^{k}\right), \quad \underline{p}=\left(p^{k}\right), k=1,2,3$ we come to the conventional expression

$$
\begin{equation*}
\underline{p}=-i \frac{\partial}{\partial \underline{x}} \quad\left(\text { for } \quad P=(\sqrt{5}, \underline{0}), p^{0}=0\right) \tag{3.21}
\end{equation*}
$$

x) More precisely \mathscr{K} should be defined as the completion of the set of equivalence classes of continuous functions $\psi^{\prime}(x)$ (continuity is necessary if we wish to give unambiguous meaning of the integral in (3.1)). Two functions should be ascribed to the same class if they coincide on the hyperplane (2.15).

In oriar to give e quantur thooretical meaning to the potential Φ, we assuna thet it is a polynomial in P anc prescrit ach tem of this polynomial in a symactric fom (ss that real Φ go into Ilemitian operators). The spin projections are given b_{y} the infinitesimal operators of the representations (s_{i}) anci (s_{z}) of $\operatorname{SU}(2)$.

We notice that the constraint (2.12) is automatically satisfied by the exprossion (3. 6) for tie relative nomentum opelator. The gauge condttion (2.15) is taken care of by the δ-function in the definition of the scalar product (3.1). Tine constraint (2.13) on the other hand should be inposed as a subsidiary condition to the wave function. In the centre of mass frane it asswaes the form of a statioaary Scirodiugcr equation:

$$
\begin{equation*}
\left[\Delta+b^{2}(s)-\Phi(s ; \underline{x},-i \underline{v})\right] \psi(s, x)=0 \tag{3,3}
\end{equation*}
$$

where Φ is, in cenerol, a matrix in the spin indices.
This is the type of equation encountered in the local version of the quasipotential approach, introduced and successfully applied to problens of quantum electrodynamics) in refs. $/ 24,25,20,21 /$ (in that case the potential is extracted from the Feynhan perturbation expansion of the elastic scattering anplitude). An investigation of the classical counterpart of this equation for specific choices of $\bar{\Phi}$ is under way.

Acknowledgements:
I thank Ludvig Faddeev who indicated to me the relevance of the gauge invariant approach of ref. $/ 10 /$ to prote ems
involving conmuting constraints. Discussions with j.Cherap, A.A.Kirillov, F.Kulish, A.A.Iogunov and T.T.Wu are alsu gratefully acinowledged.

References:

1. Arens, R.: Hamiltonian structures for hologeneou: spaces, Communemath. Phys. 21, 125-138 (1971).
2. Arens, Re: Classical relativistlc particles, Comman. riath. Pizys. 22, 139-149 (1971).
3. Arens, R.: Classical Lorentz-invariant partjolus, Joliath. Phys. 12, 2415-2422 (1971).
4. Chernikov, N.A., Shavokhina, N.S.: Conformal momelitu:t, Teor.Mat. Fi\%. 18, 310-317 (1974) (in Russian).
5. Coester, F.: Scattering theory of relativistlo particles, Helv. Pins.Acta. 37, 7-23 (1965).
6. Crater, H.W., Naft, J.: Classical limit and generalizations of the homogeneous quasipotential equation for scalar interactions, Phys.Rev. 17p, 116,-1177 (1975).
7. Currie, D.G., Tordan, T.F.: Interactions in relativistic classical particle mechanics. In: Lectures. in ineoretical Physics, rol. XA, Quantum Theory and Statistical Physics, ed.by A.O.Barut and W.E.Brittin (Gordon and Breach, I.Y., 1968), pp.91-139.
B. Dirac, P.A.M.: Forms of relativistic dynamics, Rev. Nod. Phys. 21, 392-399 (1949).
8. Dirac, P.A.M.: Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva Univ., N. Y., 2964).
9. Fidideev, L.D.: Feyman integrals for singular Lagrangians, Teorniat.rin., 1, 3-18 (1969) (in Russian).
10. Fronsial, Co: Relativistic anc realistic classical. mechanios of two 1nt eracting point particles, Phys.Rev. D4, 1639-1706 (1971).
11. ihmon, Aes., Regge, d', Teitelboim, C.: Constraint Haniltonian systems, Institute for Advanced study, preprir.t 10-74, Princeton (1975) (to be published by Noademia Nazionale dei Lincei , Roma).
12. Herz, H.: The Principles of Mechanios, Presented in a Liew Form (Dover Publication, N.Y., 1956).
13. Kirillov, A.A.: Elements of Representation Theory (Nauka, h. ; 1972) (In Iussian); see, in particular, $\mathcal{F} 15$.
14. Logunov, A.A., Tarkhelidzes A.N.: Quasiooptical approach 1n quantun field theory, Nuovo Cim. 29, 380-399 (1963).
15. Kiatveev, V.A., Muradyan, R.M., Tavkhelidze, A.H.: Relativistic-covariant wave equations for i. particles in quartwn fleld theory, JIirR, preprint P2-3900, Dubna (19j8).
16. Jewton, T.I., Higner, R.P.: Localized states for elementary systems, Rev.inod. Phys. 21 , 400-406 (1949).
17. Pauri, Hos Prosperi, Goko, Canonical realisetion of the Polincaré group,
I. General heory, J. Math.Phys. 16, 1503-1521 (1975). II. Spaee-time description of two particles interacting at a distance, Newtonian-like equations of motion and approiliately relativistic Lagrangian formulation, Jofiath. Phys. 11, 1468-1499 (1976).
18. Boyman, A.G.: Relativistic and Galilean invariant classical uechanical systems, In: Differential Geometry, Lie Groups and Mechanics, ed. by L.D.Feddeev, Zap. Nauch.Sem. LoliI, v.37, (Nauka, Leningrad, 1973), pp. 47-52 (in Russian).
 the bouni state problem in quantum elewtionjan:ife:

19. Rizov, T.Á, Tocioror, I.T., AnPra, R.L. : juanjnotontinl anpruach to the Coulomb bound state problerl for anire 0 and spin 范 particles, wucl. Phys.
20. Sokolov, S.N.: Relativintic dymailcal lawovintina os directly interacting partlacla ristom, Linep propijut,

 Encrey Physics and iluclear Structure, Dentia Fc, 1975) (soe al so referencos thorin).
21. Solrolov, S.N.: Relativistic quautum descyiptinil cer divect interaction changing the number of nnrticles, IfEP preprint, OT Φ 76-50, Serpukhov, 1976).
22. Todorov: I.T.: Quasipotential equatiou cozresponding to tice relativistic elkonal approzination, Piy:.Rev. D3e 2351-27j0 (1971).
23. Todorov, I.T.: Quesipoteatial approach to tinc tivouods problem in quantum field the ory, Iil: Propolies of Fundameatal Interactions, vol: 9C, ed. by A. Zichichi (Bditrice Compositori, Bologna, 1973), pp.951-979.
24. Todorov, I. 'L: Sur la quantification d'un système mécanique avec des contraintes de dewxienc classe. Ins preprint, Bures-sur-Yrette (1976).

Lnhondgeneous Jodenta group, An.0i linth. 40, 149-204 (1939).

porticles, lus Coral Gables Fonference on Fundopontil
 (Govion ant iseach, di.y. , 1969), np. 344-355.

Roceived by Publishing Department on Sentertbor ?2, 2976.

[^0]: * Address after September 1, 1976: Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia lll3, Bulgaria.

