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Summnmnary

The relativistic n-particle dyaamics is
studied as a problem with constraints of the

type
(2¢is)m?-—p%+¢i =0, i=1,...,n, (c)

where ®, are Poincaré invariant functions
of the particles’ coordinates, momenta and
spin components; ®; is assumed to vanish
asymptotically when the i-th particle
coordinates tend to infinity. In the two
particle case we assume in addition . that
the Poisson bracket {¢,,¢,1 vanishes on the
surface (C). That allows us to give a for-
mulation of the theory, invariant with
respect to the choice of the time-parameter
on each trajectory. The quantization of the
relative two-particle motion is also dis-
cussed. It is pointed out that the stationa-
ry Schrddinger equation obtained in this
manner is a local quasipotential eguation.
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Introduction

It is often argued that there could be no consistent
theory of welativistic interacting particles without the
prescnce of a field which mediates the interaction. Althougin
the field mediation 1s indeed physically more rcalistic, Lic
direct interactlon between particles is also loglcally
possible { see, e.g.,/8'7'28’18/ the last reference also
contains an cxtensive bibliagraphy). However, there seeus
to be no generally accepted dynamical framework to dval with
such a problem. Moreover, too strailghtforward attempts to
generallze the non-~relativistic canouical formalism to the
relativistic case bave led to embarrassing uac-interaction
theorens ( see the review 17 wherc earlicr papers of
Curriey Jurdan and Sudarshan are also cited). The non-Hamillenlan
approach of ref. 728/ ( started in carlier work of Van Dam and
Wigner cited there)is clearly self-consistent, but neverthcless,
does not seem to atlr much enthusiasm among students of the lleld,
presumably,becauge of 1ts somewhat unconventlonal appearance.On
the other hand, the quantum mechanical (say, off energy shell)
dynamics of 1t relativistio particles has been treated wit®
some SuUccesSy €.fsy 1o refs. /3122,23/ « The ldea hay even
come to mind 11,6/ to derive the correct formulation of the
classical relatlvistic two-body problem as a limit ( for X — 0)
of some relativistlc quasipotential equation in the guantum
framework ( see; e.g., /15416,20/ 3 the last referepce also
contains a bibliography up to 1974) ). No unanimity on the
right cholce of the theory has been achieved in that approach
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cither. The off-energy shell formulation ( of the type used,
sayy in /5515, 22,23/ ) lacks manifest covariance; the treat-—
ment in ref. 1y is not symmetric with respect to the two
partlcles ( see, in particular, Secs.VI and VIII of that
relcrence).

It the present paper we propose a manifestly covoriant
Tormulation of classical rclativistic mechanics of noilnt
particles, trcated as a dynamical theory with non-holonomic
constraints ) « The constraints are defined as generalisations
of the mass—shell condltions. ( The strict mass—shell relation
Pr=m* for a glven particle is only recovered asymptotically,
when lis distance to all other particles tends to infinity.)
I.. the special case of the two—-body problem we deal with
two constraints ’€1=0=¢e& which arec assumed to have wealkly
vanlshing Polsson brackets ( lee., {Q’,,QA*O for € =0=%, ).

An invariant characteristic of the particles motion is

%) The idea of formulating the entire classical mechanics as

~ theory with constraints ( excluding the anthropomorphic
notion of force) is a rather old one. It has reached a high
yoint in the posthumous boolc of Herz /13/ « The most
fundamental difference is that in the 19th century physicists
tried to go further and Yexplain" the constraints ( by inventing
ingeneous ntechanisms with hidden maisses,etc.), The modern

mind 1s satisfied to find that the equations reflect the under-
lying symmetry of the problem.



siven by their smace—time trajcetories. The arvitrarin
the choice of the (time)-parmmeter an each trejectnry ives

rise to a "gauge®™ freedom. A pauge invarlant formulation
of the two-body problem i1s piven, employing the technics ol
ref. /1e/ « The guantizatlion of the two- artlcle relative
motion leads to a (local) qua-ipotential Schrddinger cauation
of the type applied reccntly to the bouud state problan
in quantum elcctrodynamics ( see /24525,20, 217y

In Sec.l we prescnt a Lorentz and gauge invrrinnt
description of free relativistic classical partilcles with
arbitrary spin. Section 2,A contalns a general discussion of
relativistic n—-particle dynamics ns a provlem with an
n constralnts. The two-particle case 1s treated in nove
detail under some additional assumptions in Secs. ?B aal fC.

A brief disocussion of the quantization of relative ( two-particle)

motion is given in Sec.l.

1. Covariant description of relativistig l-particle phase_space.
A. Positive energy orbits of the Poingcard groun

Accordlng to the general group theoretical approach
of Kirtllov 1%/ e phase space of a (free) relativisile
point particle can be identified with an orbit in the
co~adjoint representation of the (proper) Poingare group ?sf,
We shall present here { for the reader's convenience) Reyman's
description 719/ or the positive eneryy orbits ( see 3150/1-3/)

in a manlfestly covarlant form.



Thers are two types of positive mass orbits:
nest orbits are 8-dimensional and have the topological
steucture ol tac dircet product Rﬁxsﬁ ( Rs belng the
6~dincnslonal real Euclidean space and Sl standing for the
f=dinensional spiere in R’ ): if the radius ? of the
sphere Sl is zero,then we have a 6—Gilmeusionsl ordit
correspnnding to the phase space of a spinless particle. The
coadjoint actinn of the Poincare transformation = (a, A)
an thc generators R and M,“,(F'M,'.) of the Lie algebra
of 9 is given by

F . < BE,
3 * '3 —1\2 an b} (1.1)
Mpw = "M,y = M.“(/\_) " (A ) v * fral" Pva}‘

( 1t Tollows Lhat sP":A"VP” y etcd. The Casindr

invariants are

P = Pr DF_ P: _fz (=m?) (P= (E,EB)) (1.2a)
W=+ PzM,w Vad P,c MEM, P’ (‘;M,J,z)‘ (1.2v)

ot
In order ts give 2 covariant description of the relativistic
§ 2

phase spacc R X S ; it 1s convenient to imbed 1t

in a wlder space. To thls end, we introduce aleong with the
4—monientum };‘ also the 4-vector = of the particle
space-time position and a complex Lorentz J veetor B,

which is translation invariant apd transforms like.} Eire Mk‘-lM,j

undcr homogeneous Lorentz transfornations. (It 1s however not



covarlant under space reflectlions). We consider the szt of
infinitely dfferentiable functions of Xx and p walen are
nolynomials iz 2 and Introduce a Polsson bracicet,
satisfying the usual conditions ( see, e.g., /27 ) anc such
that the only nontrivial breckets of the basic coowdinatas are
{x", Pu}= -8" R 2‘-,2“}= .::que
.3

( Ejtt 1s the 3~dimensional, totally autisyumotric uait

tensor), The generators of the Poincard Lie algebra cau be

expressed in terms of these coordinates as followss

= — (1.4)
Pr k., M'M, = /_'w + S0,
where

- B . (1.3)
L’,g XPPV XyP R s‘(ﬂ = ;jklzj’ sr.;:p E'- .

The Poisson braclkets among the generators Pr. anc Mr"
reproduce the known comautation relations in the Lie 2l ebra of
the Poincar€ groups The symplectic structure, defined by

those trackets iu ron~degenerate on the manifold
~__ 4 2 3 2
=R'x§*(0) ";{(x;r;g)é Rix (s 2 =¢ } -6

2
(The 2-dimensional cowplex sphere S([) is repardcd here asg
an analytic manifold.) The Poisson brackets are however

degenerate on the mass snell



R G, (1.7

( if For no other reason because the manifold
M= {(x,r\ék z€ §°C); m-pr=0}

1s odd dimensional),

(1.5)

For p satisfying (1.7) we introduce the Pauli-Lubanski-—

~pBarmmann vector

s
wh =4 ger9r Sien by {togna==£""=1) (1.92)
witlh comvonents
wl=pz, W=PZ+rizap (1.9b)
(pR>0, (}Af)'=‘ Ejgﬂ Z‘Pt ). We notice that the

4—vcctor character of p and 2 agrees with the 3—dimensional
(complex) transformation law for 2 ., For example, for a
Lorents boost alony the thiid axis we have

&ﬂ:ﬂ,cﬂ«a-?,s‘a, K=F, p'=P, . &!z_,;slu*r’cl,“(l.lo‘a)

2,’=z,o£a-£z,9ﬁd, a; =iz,9[d+z,c£d' 3e2

3. (1.100)

' ,,[
which imply w;=“’;a£«°l'- Wy X, etc.
Ve shall assume that the 4-vector &7  is real ( it is
sufficient to assume this property in some special frame since
W  is5 transTorming under a real representation of the

Lorentz fToup).



Then for a positive mass particle (™M >0 ) the spin

) (1.11)

is also real. It Ls easily chceelzed that -;Z. wiz 3tx 2t (—'—'f‘).

<
e

s=p(w- )=t (hevizar— 2

o
>

Uader the above assumption y =0 is cquivalent to 2  =0.

BeGoupe® invariance wilth respect to thc cho.ce of the time

parameter
According to the general prescription of Faddeev /10/
( sce, in particular, the Appendix to that reference) tac
physinal l--particle phase spiice ] 18 cutalned frocu o
by factoring out the trajectories of Lhe constraint (1.7).

In other words, we consider for a moment the functlon

=L (m~p*) (112)

as a Hamiltonion ( ¥fss 1s teried "relatilvistic Hanlltonian"
in ref. 15/ or a "Lagranglan® in ref. /11/) « Then we can
regard the variable
= 1 (1.13)
T= 5 %P
as a conjugate (“proper®) time ( since i, ‘e}: 1) and
write for any (generalized) coordinate 1 (x,p:a)

the equation of motion

5’%= {3,

(T is actually the proper time divided by the rest mass;

(1.14 )

i1t has a nonm-zero limit for M — Q-cf. /4 ). Wa have,

in particular,



’4x - dp dz (1.14Y)
A== 0 =0k

Givea a point 1,&“ Eq. (1.14) dcfines a unique

trojectory through it. The phase space [ '* 1s obtained

from ii by 1dentifying 211 points on such a trajectory. We
untice that thec free particle world llne (x'": [ a4 4—’1,’: ,;.“‘)
is thus 1dentified with o point of r* « Clearly, the
special normaalization of the function ¢ ( i.e., the factor
1/? in (1.12) ) and the corresponding chotce (1.13) of the
time parameter are not important for this construction: for
another choice we would have obtained a Giffergnt parametriza-~
tioa of the pane trajectory ( and hence aof the same factor
space r* Y.

An altcrnative way to look at the above construction is

to conslder iLq. (1.13) as a subsidiary condition, which fixes
the "paupge" - in our case, the arbitrary parameter on the
particle world line ( cf. r1af Y« Such a choice amounts to
picking up a representative point in ecach equivalence clasas
of [™ . The constraint (1.13) defines the proper time
which has ( by definition) zero Polsson bracket with any
physical quantity. ( Note that the alternative nom-covariant
gauge X°= t leads to the MNewton-Wigner coordinates,

see 717212/ ).

Writing (1.13) in the form

x=T~-XE 9 (1.13%)
nd



we obtaln palr of second class constraints (‘?:—- O=x
( 1n the termlnology of Dirac 9/ ), since the Pcisson

bracket of € ana y4 is not ( a weak) uevo:
fez}= E=1.

This allows ane to define a modified (Dirac) brackot {, }.

(1,15}

»
on r which respecis the constraints

{#.55 = (a9t (R ebz i -frpsiegh e s

{ We have {F,Q}_‘: 0={"\,2}, for any function # ou I )
The modified bracket for the canonical conrdicates and

nomenta are
iP ;?y},=0, {x""""}»:,.:'zl_,w a‘”‘?(xr PV—X"PP) (14175

{XF, P,L= P l’"l’,—-gi:, . (1.170)

{ The brackets c® the spin variables remain unchanged).

In order to rederive the ecquations of motion (1.14')
in the % - bracket formalism, we have to take into account
that Zg. (1.13') gives an euxplicit 4~ dependence to X
whilch cancels the implicit #nr - dependence generated by the

Poisson bracket of X with the "Hamiltonian ® &  :

d¥ _ % | — »”
—_— L rep=1-5=0
AT 97‘1{ } > (1.18 )

1"


http://Ci.i7.-0

ilence, for an erbiltrary -F: fonp;2) , the o =derivative
is given Uy the (unmodified) Poisson bracket:
4= {ho}+ (Rt =fhe)
For m>o, >0 ( positive mass and spin) the stabllity
sroun of o point in r_’ 15 2-dimensional abelian: it
consicts of trunslations TP along p and rotatlons in the
2-plane ovthogonal to p  and ¥ . For @ =0 ( m>0)
the s5tability group of 2 point on the orbit is 4-dimensional:
Tt is _I; ® S0 | where SO(J)P is the (Wigner /277 )
#little sroup" of p - For zero-nass particles the spin
4-vector % is proportlonal to the momentum
(1.20)
P=0=> w=2ap
( A*=¢* , A need not be positive) ™ is the
6-dimensionnl space of points (x, p) satisfying (1.7), (1.13)
( the "proper time® r and the helicity A
being held fixed). The stability group of a point on r-*
is ia this case —l; ® E(Z)P ( E("L)P being the 2~dimensional
Tuclicer.. subgroup of the (proper) Lorentz graup 507(3,1),

which leaves the vector p invariant).
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2. 4 fully covariant formulation of the rvelatlvistic f~bogyr

prablem
A. Relativictic n—particle draamics as_a _problem with

sonstraiabs

The noral from our discussion ol the phase spoce dynaics
of a free relativistic particle can be stated as follows. The
entire (invariant) infornation about thc particle trajeciacy
and equatlions of motion 1s contained in the constraiant
equation (1.7). There 1s no need to introduce a special
Hamilionian other than the functioan @ (1.12) in the
left hand side of the constraintse. 'The preferrcd Lorents
invariant gauge (1.1)) is characterized by the propesty of the
®proper time®, deflned by the right-haud side of (1.13), to
be canonically conjugate to the "Hamiltonian® (? . Ve shall
assume that for a system of n interacting particles the
dynamics 1s given by n Poincard tnvariant constrainis on the
points in r = (R'nx spin variables), These constraints
should only reproduce the on-mass—~shell condliions asymptoti-
cally, when the distance of a glven particle to all others soes
to Lnfinity, Without such a relaxation of Egq. (1.7)
it would leave no room for a potentlal energy ian the
non-~relativistic 1limit of the heory.

We postulate the followlnz set of constraints walch
should define the dynamics of n relativistic lnteracting

particles

13



= ;2o p2 _ (2.1
2¢=m; Pt*"’;(ﬂ.“’«.---,r,,ur.;xj,) (=X =% ) (2.1

i,j,h= [ R
The fuactions 4: are assumal to satlsiy the conditions listed

helow,
(1) Lovents invarinnt:
A A A i i
. (2.2)
AR Aws 160 = (% 5 %)
here A nay or nay not luvelve reflections depending on the
phyaical problen at hand. In caze 1f 1t does one has to keep
in nind tuat ti. W’S  are axial vectors. With our choice
2L vrriables in {2, 1) transletlon invariance is automatic;
therefore Eq. (2.2) actually implies the Poincaré invariance
of the constralnts.

(11) Asymptotic on suecll condition:
TR RS RE ALl o0

R infx2 )
é;(f;;’ ; X',‘)-—}O 1(’0" ’m',"("u)-’w; (2.3
k#i
kaf, ..n
thls condition reflects thie physical requirement that il the
1-ik particle is far away from all the othersy then it

moves as a free particle of uass M. (z 0 3.

(1ii) Relativisiic causality. The idea that the
velocily of a particle caunct e.cced the velocity of 1ight
is supposed to be valid in sone form even in the interaction
region, where the particle loses some of 1ts identity { 1t
has no, for instanccy a fixed mass). We shall consider two

inequivalent formulations of this property.

14



(a) Strict causality: the particlc monentum P on the
bbbyl anhailg .
surface C?.l) should never become space-lile, That dimplics

the inequality
b i 2.4)
m, + '*%'“3”‘)‘0 20 Lzt —h.

[

IT we regard 4: as a {generakiced) potential tlea
Eq. (2.4) tells us thet very strong attractive petcnlials
( in particular, singular negative potentizls) are v.cludcc.
Such a regquirement actually indicates the limitaticrs of
the classical theory wiik a fixed number of particlua;
in reallty, i1f two high energy particles cone closc togctier
they will create other particles ( and partic.le'—:.utiparticlc
pairs). On the other hand, 1t 1s technically tou striugent,
slnce 1t even excludes the attractive Coulonb poteniial. In
order to allow for such ( weakly singular) potenti-lz we
shall also consider an alternative, less restrictive, Ifown
of the causality assumption.

(b) Weak ( or mean-value) causality, Starting with some

Potite petiemB bt gyl taid &

equations of motlon ( to be specified below) we caun regard the
dynamical variables Pi."’h 7‘;,‘ as functloas of a time
parameter ‘T « Then we shall require that a tine average

counterpart of (2.4) takes places

T
&'ﬂw L 5‘ 'Y (2.%)
™ m, ), W X >
Toseo 0[ ‘+$‘(PJ, J’x}h)]dc /O.

In the non~relativistic limit that assumption should just

exclude singular attractive potentials which would have led to

falling on a centre.
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Condltions (i)~(1i1) should be supplemented by soic
sreglavity cssumptions on the functions é_ sy which would

guarantee, in particular, the existencc of Polsson brackets.

BLe A_gauge invariant_fomulation of the two-body problem

Before trying to further develop and apply the above (je—
neral schcac wre thall proceed to the case of iwo interacting
prrticles ~and skall make the following addlitional assunpiions
which will simnlify our task,

Je assume that the potentlals d’, and 4;{ are equal x)

b=d=¢(P r;w;x), 2.6)

vihare

P = S+p, X=X, =%, (2.72)
2 2, .

P=pb=peby =2 (h-p) - =% (P4t~ 1, {2.70)

25
2
Mimpa= s = P*)
andg that é satisfies the transversality relations

PV. @(P, f‘;kj-.Jt)-fO, (2.8 )
PV,@(P,;H},:)'—'O €2.9)

x) An equivalent hynothesis 1s made in the quantum context in

refs, 116,24/ .
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on the surface (2.1) ( often such equalities ar¢ Lermed
ieak") .

Conditions (2.6) and (2.8) imply that the constraint. lp’
and ?z ( see Eqe (2.1) ) are in lnvolution, that ic,
their Poisson bracket {@“ (&_§ i1s weukiy mero. The transverna—
1ity relations (2.8) (2.9) wonld ULe automatlically satisfied
i} 4’ depends on X and P through the (pszudo) ssalars

' 2
XI_ELCPX) N P", xp, XAPAPA%'(IZ’]‘z)

x/\P/\U/:/\w,_, v"/\?/\w’,/‘.w?.-
/lo/

(2.10)

Following again Faddeev?’s prescrintion e can
define the physical phase space ™ ina gauge dnrariant

manner ( cf. Sec.lb). For the reader's conve.alcnce we Jive
here a pedestrian ( non-rigorous) summary ol tiie Appendix to
/1o0/

ref. « One starts with the one parameter family of

"llamiltcenians®
H,,('—‘ot‘(’LJr(d—ot)(P2 Ocx<t,

where ke"l are the functlons defined by the leftwhand

side of the constraints {2.1). Such a Hamiltonlan gives risz

to a trajectory through each point 1 of tlhie phase space /— N
defined as the solution of the system of differential

equations

At - { % Hd}

(where tL 1s in ;jeneral a 20-component quantity:

ge [ = R*x S"Xsl ). We then define | ~ Dby identi-
fying the points on all such trajectories ( wheu t and & vary )

on the manifold
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M={$er; %=0=@z} (210
( The assumption that { ¢, ,@17& =0 1s a prerequisite for
the consistency of tii: ~love construction,) In such a way M
can be regarded as a fibre bundle with base ('"' and a two
dincasional Tibre in each poiat of ¢ generated by the
wimiltonians®  H, ).

C. Description of the relative motion in a Lorentz invariant

Lauge
Our task in thils subsection 1s to separate the centre—of-
-1a55 motion of the two particles and to give an explicit

Lorentz iuvariant description of the non-trivial relative

motion.

To do thaty we stort Ly revwrlting the constraints
(21) in the form
W(f[el—ﬂ): 'T(M: - +Pl"-f‘:) :PP - o

H (El“z@t *‘P‘c'ﬂ) = ;“L (b( Porw L x) = 8?»-#} (2.13)

(2.12)

where P, P and x are given by (2.7) and
2
ey= 1 [ . * 2
g b’ﬂg[sl_ﬁ(‘m:*”’i“* (1}~ ) ] G- 950) (2.13)
is the on-shell cenre-of-mass J-momentum squared.

We shall impose cne Lorentz invariant gauge condition

which fixes the relative time varliable to be zero in the centre

of-mass frame:

‘18



(2.13)

Z=xP=O.

It is conjugate to ¢ 1in the sense that
(ex}=5G0) {W2}=1PUE-,P)=0 (2.16)

{ In deriving the last equality we used ( 2.9) and (2.12).)
Further, we identify the "Hamiltonlan" with the “unction

H (2.13) ( which defines the second constraints). The

total momentum P has szero Poisson brackets with H -

(as well as with ¥ and ¥ ), and hence does not chaunge

in time JP
e _ _ds (217
4T 0 (= o(r) ’

On the other hand, the centre-—of-mass varlable dees not entcer
either of the functions ( 2,12)-(2.15). Therefore, wo can
study ( for fixed P

r&—
two particles in the phase space

[l e0eR?; e=0=2}x§'x Q"

The Dirac brackets of the relative varlables arc given by

) the relative motion of the

(2.18)

{Fe. R}, = 0= {x", =} (2.192)
(since Jf;,‘{’}: o:{xr‘)x}) and

fox’l = {p. 2" - £ {5, Dx] {Pp.x"}= (24190 )
=5 -3+PP=n"

19



In the ceatre of mass frame we recwver the conventlonal
cauonical commutation relations lor the 3-vectors » and x .

Tk¢ ecquations of motlon rcad

p(= :%E) ={p.H], = {re}= Ve (2.20)
X = = {x =p-% Cb
%= {x HL { 'H} Prz % (2.21)

We should remember that - has dimension of (mass)"2 in
these equations. In the non-relativistic limit Eqs. (2,20)
(2.21) ( in the centre of mass frame) go into the familiar
Newton equatlions, 1f we set

(2.22)

T = Pu™ C#:Z’M'M‘V
) —

m e o, " em,

and demand that \/ 1s independent of p .

3 . Quantizatlon. Relation to_the_quasipotential approach

Glven the phase space formulation of classical mechauics
in terms of Poisson ( or Dirac) brackets the problem of quantiza-
tion begoues trivial ( at least in e practical sense): we have
Just to replace the classical brackets by the commutator
(devided by ( ). We shall discuss here the Schrodinger
representatlion of the quantized relative motion of two
relativistic particles.

We consider the Hilbert space %:Zﬁ; of vector valued
weave functions (V(y) deilned in a neighbourhood of the



hyperplane 9 ( 2.15), taking vnlees in the (25+1 ) (2s5:tL )
dimensional complex space ?/;@U;L ( waere 5 and S,
arc the spin values of each of the two partileles), aad

having finite norm:

W =<y, ¥> = J(Vo, ¥oo) §(Px) d* <

.0

where

(vy) =3 3 U ¥,

Sp=-3 5=

15 the scalar product in M; X Us’; .

then  x* 1s defined ( as usuel) as a multiplication
operator with Comain D[,,-] = {l}f’e]{;/};-"lﬂlk -a}, while Pr
1s given by

Pl = % - P(PV)] (302)

(where ﬂ is the projection operator (2.,19%) ). In the
centre of mass frame, settiug X={(x"), P =(P") k=123
we come to the conveniional expression
.2
Pe=-iy (for  P=(s.0), r=0)

x

(3.29)

x)llore precicely % ghould be defined as the completion

of the set of equivalence classes ol continuous functions

Wy ( contlnulty is necessary if we wish to give unambiguous
meanring of the integral in (3.1)) Two functlons should be
agcribed to the same class if they coinclde on the hyperplane

{2.15).
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In ordzer to give o quantan thioretical meaning to the poten-
tial y we assume thet 1t is a pelynonizl in r

anc prescnt zach term of this polynomial 1n a symetric fomm
( 52 that real é £o into Hermitian operators). The spia
projections are given by the infinitesimal operators of the
representations ( S, ) and ( s: ) of su(2).

We notice that the constraint (2,12) is automatically
satisfied by the expression (3.7) for the relative nomentum
operator. The gavge condition (2.15) is taken care of by
the 5 ~function ir the definition of the scalar product
(3.1). The constraint (2.13) on the other hand should be
1mposed as a subsidiary condition to the wave function., In
the centre of niass frame it asswies the form of a stationary
Scurodiager eguatiosns

[:A+-£1(s>—d>(ﬁ::,—il7)] Vs, x)=0 (2.3)

where é is, in generol, a matrix in the gpin indlces.

This is the typc of equation encountered in the local
version of the quasipotential approach, introduced @nd
successfully applied to problems of gunantum electrodynamics)
in refs, /24,25,20,21/ ( in that case the potential is
extracted from the Feynuan perturbation expansion of the
elastic scattering amplitude). An investigation of the
classical counterpart of this equation for specific choices
of ¢ 1is under way.
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