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By quantization of a classical system is usually under-
stood the construction of such a quantum system which
describes the phenomena of microworld in more detail.
The quantization means the introduction of a fundamental
quantity h such that for h - 0 the limit of the quantum
system is just the corresponding classical system.

Even intuitively, it is clear that this limiting transition
is not unique as the quantum system describing micro-
world in more detail can be of different structure though
having the same classical limit, Many different quantiza-
tion schemes exist, however, it seems that all these can
be splitted into two classes,

We call the first of them the local method. It employs
the canonical variables (q.p) and introduces differential
operators describing the quantum-mechanical system.
A mathematically rigorous formulation of the condition
for quantization of this kind has been given by G.Weil
in the form/1/

expliapl- explifql = explihep! - expliffq! + expliapl (1)

different from the Heisenberg commutation relations
boal = 1, 2

which are mathematically noncorrect due to unboundedness
of operators p and . The Weil scheme of quantization,
however, is applicable only to the classical systems with
flat phase space since it is based on the use of ¢anonical
variables (q,p).



_ We call the second class the global method because it
is based on the global properties of manifolds. Widely
known original Bohr quantization condition

(ﬁpdq= (2!14— 1)J’l’h (3)

belongs to the second class where the i
R e integral is taken
over some plane in the phase Space. However, the most
:)eautifu.l' and complete realization of the global method
si tf}e/z Feynman method of summation over trajecto~
rles » The idea of the method is that the probability
amplitude !,b’(x.t) is expressed via the probability am-
plitude ¢(x,t) by using the propagation function which
;:;n bﬁ obtaljrtzsd calculating the classical function of action
r all possible paths between {x, N
oerd points (x,t) and (x’t"), more
dix, ) = f<x, tixt>y(x't)dx’,
where
. x0Y)
<t x> = fexpll 7
. b xiny
n alternative way to calculate (4) is to de
fine the
skeleton history by indicating the sequence of interme-
diate moments of time <t Kty<.ut’, and giving, atthese
moments, the configurations X+ X1,X%2 ,00,%x” . The actual

calculations are to be performed
of the type P using finite differences

LEx(z), x(rY1dr ) Dix(r) ], 4)

Xpael = Xy
bear = b )

in the function of action instead
, of derivatives. Th i
however, some arbitrariness in expressing derfJ:til\rsé
through these differences. Such an arbitrariness, connec-
:ed with the ordering of cofactors in Lagrangiar; results
gr;v:hedit;ct thtat different choices of the skeleton historjes
erent expressions for the pro ti
In other words, such a quantizatij hod 1. nof wxon.
on method is not
What {s the nature of this no oo due.
. nuniqueness? It §
with an incorrect definition of '  trom ]
i quantization or ¢
very beginning underlied in itg mathematical st:$cTu::$
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To answer this question, let us consider in more detail
the global properties of quantum conditions using the
methods of differential geometry and topology. The
main idea of these methods is as follows: the quantiza-
tion is in connection with introducing the linear connec-
tion in a bundle space, the Hilbert space of states being
constructed of sections of the bundle space. These
methods have been proposed by A.A.Kirillov/3 and
B.Kostant /4/ who used the idea of quantization in the
theory of representations of Lie groups. Quantization
of the systems with a curved phase space has been con-
sidered by P.Dirac /5/. Some models of quantization
of the systems with phase space of a rather large class
are analysed by F.A.Berezin 76/,

MATHEMATICAL APPARATUS FOR CLASSICAL
SYSTEMS

In the description of classical systems the concept of
phase space is of primary importance. Polints of this
space are possible states of a system and functions on
it specify the different physical quantities related to
this system. Mathematically, the phase space is a symp-
lectic manifold, that is a smooth manifold of even dimen-
sion on which is given a nondegenerated closed two-form.
" Because in following we shall often use the concept of
the bundle space /?/ let us define it: '

A topological space £ is called a bundle space, if
there exist

1. a topological space M called the basic space,

2. a continuous map r: £.M called its projec-

tion,
3. a certain space Y, called the fiber, and the set

Y . defined by the formula

X

-1
Y, =r (x}, xeh,, (1.1)



4. for each point x<X there should be sucha neigh-

bourhood U and such a map ¢ called the ”coordinate
system” that

$:lxY=r"MU 7. $lxy) = x°, x'c U, ycy. (1.2)

Also a notion of the section is such a continuous map
f: m - f. ‘hat

meflx) = x, ., xeM. (1.3)

An example of a trivial bundle is the direct product
=Y with the natural projection » onto the first factor,

Every bundle can be "glued” out of the trivial ones in the
following way:

Cover the basic space N by a set of neighbourhoods
IUiL for every U, deftne the coordinate system ¢,

obeying (1.2). For any point x on the overlapping of t'vfro
neighbourhoods, f.e, xc U, r\l:j v the map

Bre B 1Y Y

(1.4)
transforms the fiber into itself, i.e., it defines an ele-
ment of a group G acting on the fiber

-1

Pix B G0 U N Uj- G, (1.5)
Functions Q‘,j(x) are called transition functions as they

"link” fibers of a bundle space. These functions possess
the following properties

gk (x)gji(x)ng (@ for xe Un U,

1

j

Qii(x)-l (identity element of G ), x ¢ U,

o %) =
Qu X jS(x) 1, x¢ U;""' Uj . (1.6)

Qij (x)QikaH(x) =1, xe¢ Ui"‘ Uj "L,

For the notion of "bundle” may be given another
definition. Call points (xi,yi )@UixY and (xj,yj)G Uj x Y
equivalent, if

X = xi, ¥; :;gijyj . | (1.7
then the bundle space £ is the coset space on this _equi-
valence relation, The above defined section f over U is
given by the set of functions |

f,: U0, - Y, where UCH (1.8)
called components of f and obeying the condition

f. ——-'gij(x)fj(x). xeUM un Uj . - (1.9)
Let '§ be an arbitrary smooth manifold of dimension

n which we call configurational space. If V, () denotes
a tangent to § space at pointgqc § and be, = .| is

dq!
its basis in a coordinate neighbourhood LU; with coordi-
nates lq' [, then the basis in the dual to Vg {(8) space

V* (8 (i.e., the space of linear functionals on v, 8 )
is defined by the following equations

i d Y :
dq I-d-q—i-l = 5i (1.10)
and any 1-form on ﬁj can be represented in a unique
way/8/ as
XA dq© 1.11
C,'Uj = X L Qa . ( . )

where A; are called the vector coordinates on V*(§)
The manifold V*(§)= uV*(d in every neighbourhood U,
can be represented ‘as’ a set of pairs 1q'.pil, where
P; © VE(3). The manifold V*(§) is the cotangent bundle
space, Iq‘,pil being coordinates of that Space in some
neighbourhood U; € V*(§) which is an inverse image of
Ui relative to the natural projection »: VE(3) 8.



The conjugated map

dn&m): V:(S)» va,p) (1.12)

allosws a unique definition of a covariant vector field on
V* (9)

o =2 k
o = Fhdat, (1.13)

called fundamental vector field of the manifold’?/. If on

the space V*(8) one defines a nondegenerated and closed

2-form, which {n the local coordinates Ix'] € U, ¢ v* ()
has the form i

© = Sw.; dxt A~ axd |

ij U
then it transforms into a symplectic one. That this form
is nondegenerated means that || will#0 and the condition

that it is closed, dw=0, where d - denotes the exterior
derivative, is written in the form

(1.14)

~

d d =
amﬂy + wa -0-6)/::,»0"8 0. (1.15)

In the geometry the following theorem takes place’10/;
Let © be a closed 2-form ona 2n -dimensional manifold
% throughout having rank . Then, near each point
in N one may introduce such coordinates !qi.pi! that

@ =% dpadg’ (1.16)

l.e.,, » will be equal to the exterior derivative of (1.13).
However, such a global separation of variables into
p and q may not exist. In a geometrical sense this
separation means to define the Lagrangian manifold
l.e., to define at each point x € U, the manifold, the;

dimension of which is equal to that of the configurational
space, and on which

9 a 3 a
s Pa Iq _ 9Py g 1= 0,

a aﬁi Bﬁj aﬁj aﬁi =

(1.17)

i.e., the Lagrange brackets of p(f),q(f) are zero. The
equation for this manifold is as follows

p = plo). 1177

Also it may be shown/“/ that if the Lagrangian' manifold
is uniquely projected onto q -space, it is given by a cer-
tain generating function §, so that

p. = as/aqi ) (1.18)
i .

Let the system state at an instant to be specified by
a point x of phase space N, then at instant t >ty the
state of the given system will be defined by pointx =U, (x¢),
with the following equality

‘1“2=U‘1 ‘Utz ‘ (1.19)
being fulfilled, i.e., in other words, the totality of all
U, composes a transformation semigroup, so-called
dynamical semigroup. The manifold of all points U (xy)

at fixed x, and varying t makes up a trajectoryin
phase space. The infinitesimal generator of the dynami-
cal group is the vector field defining the tangent vector
at every point of the trajectory. This vector field { is
called Hamiltonian one if the induced by it a set of trans-
formations conserves the form '

U

wa =0, (1.20

where Lf is the Lie derivative/!” along the vector
field £, In virtue of (1.20) the dynamical semigroup with
such a field transforms a Lagrangian manifold again into
a Lagrangian one. However, it may happen that at some
t” into one point q -of the configurational space S seve-
ral points from the new Lagragian manifold can be pro-
jected, these points being called ”critical”/13/.By intro-
ducing an operator ¢ lowering the degree of the diffe-
rential form, the Lie derivative can be written in the
form/14/



Log=diig +i; -d (1.21)

and equation (1.20) reads

duy =0, 1.22)
where
ay = ig o (1.23)

Relation (1.22) means that the form @, is the closed
one. We call { strictly Hamiltonian, i~ w_ is the exact
form, i.e., it takes place £

wE = dC (1.24)
for some function C on M. In general, the form w only
locally has the form dC being continued onto the whole
manifold it may be many-values, At the same time the
set of all closed forms composes the vector space where
the exact forms compose a Subspace; the dimension of
2 coset space with respect to this subspace depends
on the topology of a manifold only. This feature may be
generalized for p-forms, If all p-forms on W make
up a linear space .J] (M, and the closed p-forms com-
pose its subspace Z (M (l.e., cocycles), and differen-
tials !BP(JH) of the (p+1D) forms compose subspace of
the space of closed forms, then the coset space

zp /ﬁp = H? (M, R) (1.25)

is called the p-dimens'}tfn?,l cohomology group of de
Rham on the manifold M/'~ On the compact manifolds
the group HP (F,R) is finite-dimensional and its dimen-
sion is called the Betti p-number for manifold W .
Definition (1.25) can be given another form. One says that
two forms ;| and «, are called cohomological, a; ~ ay,
if and only if they differ from each other by the total
differential (the coboundary) dB, l.e.,

@) —a, = 4. (1.26)
10

Hence, the group B_ (M consists of those forms
a which are cohomological to zero,a~0, and the element
fa €HP is the equivalence class of the closed diffe-

rentials «, called the cohomological class. Then the
dimension of HP(M ,6R) represents the number of li-
nearly independent cohomological classes of closed dif-

ferential forms. . |
If the vector ¢ in local coordinates iq',p;1 C U,

has the form

£=3ta -4 oy 4y, (1.27)
i dql 1dpi
then from (1.23) and (1.16) it follows

= k_akdp 1. 1.28
g kZ lbkdq a* dp, ! ( )
From (1.24) and (1.28) it is possible to express the
Hamiltonian field components in terms of the generating
function C:

b= SC. k.. 9 (1.29)
L 9k T

If in the phase space for some coordinate neighbourhood
U; with the coordinates lqi.p,l one defines the trajec-
tory with the infinitesimal generator £ . then the equa-
tions for it have the form
. d f

L SO T S (1.30)

dr dp. dr dq!
Equations (1.30) give the one-parameter group of homo-
geneous tangent transformations in which C is anar-
bitrary analytic function of variables (q',p;), homogene-
ous of first degree in p,1%/. If now in the configuratio-
nal space 8 the Riemannian metrics is given '

d:a;2=‘.‘>_3giidqidqj . (1.31)
l} -

then as the generating function one may take

(1.32)

1



In this case eqs. (1.30) are

S s i, i1 ¥
ds }j'gpj’ds 2 jk 9q
at r==8.
In general, every real function f given on a manifold
M  may be treated as a generating function of the strict
Hamiltonian field #; defined in the local coordinate
system lqi,p,1 by theﬁ formula

(1.33)

S} P L A (1.34)

Any two smooth functions f and v given on the manifold
M obey the equality

fgl = wlé &)= € @=-¢ (D (1.35)

The value of expression (1.35) is called the Poisson
brackets. They have the following properties

If, gl =-1{g, 1,

(1.36)
[flg. hll & fglh, £l + §hif, g}l =0,

and therefore the space C (M, R) of smooth real func-
tions on M composes a Lie algebra infinite-dimensional
relative to these brackets

QUANTIZATION

The procedure of quantization is as follows: among
a great number of physical quantities describing the
behaviour of a classical system there is separated such
a subset !fii which produces a Lie algebra with respect
to the Poisson bracket (1.35). Then to each f; one
makes correspond fts quantum analog

12

;\(f) = % ) A .
b ( e - identity operator) (2.1)

A =&,

50 that the relation

exp iA(D expifi‘(g) = exp ih m(ff,tfg) exp A+ g) (2.2)
is fultilled, or in the infinitesimal form:

(A, A = ihAlIL gl = ihal(E,€,). (2.3)

Let X be the symplectic 2n-dimensional manifold

with l-form o =X dxi, then for any two vectors
1

X and Y on Y the relation’8/

2o (X, Y) = Xol¥) = Yo(X) = o0 X.Y} (2.4)
is tultilied.

Now let us construct the bundle space £ over M with
the fiber C i.e., the complex plane)

by introducing the linear connection

olx)
f= 220 f, 2.5
where X is a vector on M and f isa section. In this
case for every function ¢< C one has /4
V¢X = qslu Vx ,

(2.6)
Vy (bt = (X@) + ¢ f.

13



The Hilbert space of states of a physical system is
constructed from sections f of this bundle space.

Using (2.5) and (2.6), relation (2.4) can be rewritten
in the following form

2b(X,Y) = ihi[VxVYl -V[X,Yll = ihR(X,Y), (2.7)

where R(X,Y) is the curvature tensor. Substituting (2.7)
into (2.3), one obtains

A A 2
[AD, Alg)] = - -“-z-mgf,gg). (2.8)

Consider now the curve ¢ly) in M given by eqs.
(1.30). Using (2.5) one may define the covariant deriva-
tive :

g E (D + ST M3 (2.9)

Jr C ik C

of section feci’(£,M) along this curve. Or, it also reads

$r_dr 1 dx !
Jr- F;- + —"T‘—izai ""&";"" f. (2.10)

The equality of the covariant derivative to zero gives
the condition for translation of a differentiable path from
the basic space W to the bundle space © and thus de-
fines the connection in the latter:

i
df+—i%-‘-i‘laidx [0, 2.11)

Solving this equation, we obtain

f= expii:fza dxki,
he k' (2.12)

where the integral is taken along the path ¢; (0 in the
neighbourhood U; < M. Provided thatasa 1-form the
fundamental vector field (1.13) is taken, one has

14

i k
f= exp!—h—cji kZpkdq f (2.13)

It dq* is taken from the first equations in (1.33)
and substituted into (2.13), then

f= expi-;; [ Hdrd, (2.14)
¢

where H = Sgipp . :

Taking different 'paths ¢, € O, one obtains different
f. Thus, expression (2.12) defines the representations
of the manifold of paths ; of neighbourhood U, in
a set of the unit modulus complex numbers 7 which
composes the group T, with respect to multiplication
of these numbers, i.e.,

10,57, ~(2.15)

In other words, we have found the main bundle space
£ with the basis W and structure group T, (see
(1.5)). Hence, the problem of uniqueness of quantization
reduces to the algebraic topology problem on classifica-
tion of bundle spaces with a given basis and fiber. This
classification is performed by connecting a system of
topological invariants to each equivalence class of
bundle spaces,

Let us connect to each differentiable representation
f the main bundle space (£, »,%,T,) = with basis
M and structure group 1T, then £ is a space of
representation without fixed points the orbits of which
being fibers. Cover manifold M by coordinate neigh-
bourhoods 1U;l, then to each bundle space there cor-
responds the system of transition functions

@ .uyn
Gy P U U e T (2.16)

with properties (1.6). Using these, features it may be
shown that the system of maps g,, composes a cocycle
of dimension 1 and there is fulfilled the theorem 4 /17/ |

The equivalence classes of the main bundie Spaces
with basis N and group T, make up a set EM, T,)

15



which is in one-to-one correspondence withthe set 1*(%,2),
where H2(M, Z) is the two-dimensional cohomology group
of de Rham on the manifold M with integer coefficients
(see (1.25)).

Let two cocycles IG;; 1 and g 5} are given, then
the following functions

& =8, 8, 2.17)
compose new cocycles, If the given cocycles correspond
to the equivalence classes § ,¢&'¢ 6(’1‘,. Y, then the
class of equivalence containing the bundle space defined
by cocycle ig{}l will be ¢ ® ¢ and it is called the
tensor product of classes ¢ and &% The set &1, T))
in which such an operation is given is the Abelian group
isomorphic to group H? (W, 2), .e., '

ch: 6N, T) - NN, 2), (2.18)

This map makes correspond to each class of the bundle
space { with basis N the class of integer cohomologies
ch(§) of dimension 2. This class is called the charac-
teristic class of bundle space, From exp.(l1.6) and the
theorem A it follows that for the bundle space (£,~, N, T eé
and covering 1U;} the class ch(£) is represented by the
cocycle {§ ik | defined by the following formula

G =Gy -Gy Gy (2.19)

where x ¢ UU,"U,,the function I"gij(") being assumed
to be determined for each pair (U;.U]).'I‘his is not a con-

straint if one supposes that the intersections of sets
(U, ﬁUj ) are small enough so that

T 48 (UNU)D (2.19 )
1 ij i i
Let the covering 1U; | be chosen so that the intersec-
tions (U; "U;) are simply connected and (U; MU, DU, )
connected, Since 1§}i. | is a cocycle, from (l.' ) it fol-
lows that InGij are integer functions independent of
xcU;n Uj M Uy and composing a two-dimensional cocycle.

16

By the de Rham theorem/!% to this cocycle the cohomolo-
gical class of external forms of the second order cor-
responds. It can be shown that form « being the form
of curvature of infinitesimal connection (2.11) belongs to
this class, i.e., the image of the characteristic class of
the bundle space (£,#,M, T ) under the de Rham isomor-
phism contains the form of curvature of infinitesimal
connection. These forms may be introduced into the
bundle space by means of l-forms ¢ defined on M and
invariant relative the group T;.1ln a neighbourhood of
the bundle space »~!(U,) with coordinates {x',zl (see
(1.7)) these l-forms are :

o= Fa dx! +a, (dh - T, dd ), z=e P ), (2.20)
] ]

where a;, wge; do notdepend on ¢,

Then o is given by the formula
3oy, 1o, . . .

P B il R I R PO (2.21)

24 9x) a9y

Let assume that there exists an invariant under the dy-

namical semigroup Lagrangian manifold £ lying at the

energy X = const. Then the condition for form o« to be

integer means that

é‘ w =n:h (2.22)

whence, by the Stokes theorem, one obtains that for every
closed contour y on £ the relation

eﬁz}pidqi = uh (2.23)
]

holds which is equivalent to the Bohr quantization condi-
tion (3). If the characteristic class of bundle spaces
(£, MW T for covering {U;l equals zero, then the
cocycle {§;, ! is a coboundary. In this case the-bundle
space is trivial, i.e., equivalent to the one (£,7, M in
which £/=T xT, and #° is the projectionof £ on
the first factor. All trivial bundle spaces belong to one
equivalence class.

17



Consequently, the bundle space (£,,0,T,) with the
integrable connection, i.e., with that one the curvature
form of which is zero, is, generally, trivial. It is non-
trivial only if the group 112 (W ,7) contains nonzero pe-
riodic elements. The bundle spaces, for which these ele-
ments are characteristic classes, are spaces associated
with the universal covering of manifold M1 and represen-
tations of the homotropic group =; (M in group T,/19/,

Assume that the manifold ® is covered by system of
the neighbourhoods {U; !, '

Let in a neighbourhood U; at point x; at instant
t, a section f; <¢I"(£M) be given. Since the dynamical
system is defined on the Lagrangian manifold (1.1%7), then,
in virtue of (1.17 ), the sections depend only on the
projection »: M 48 of points of phase space onto the
configurational one, i.e., sections f; are functions of
coordinates only. Hence, according to (1.9), (2.13) and
(2.14) the section at point x°< r(U;} and instant L’ is
expressed through the section at point x¢»(l);) and
instant t; by the formula

’

» X '
f x5t =lexpt [ £ pdgteexpt (x ,t )=
(x [exph xfn % p o exp lfo Hdrl l‘i oot

;

: x {1
=lexpl  f
xo(lo)

Ly drif (x ot (2.24)

r,
; 0

where integrals are taken along some path ¢;C{; on
U; and should obey condition (2.19). Continuing the
{-form oy, defined on U; onto the whole space covered
by neighbourhoods one finds the transition function for

sections from one point xq to another x of manifold »(Ji)
as the limit /20/

o Mkl
Gt x,,t ) = lim IT expi L L, drl =
0°"o koo k h x{ Uy

x(1)

[ exp[—i-— der]T[c(r)},
x (1) h b

L}

(2,25)

18

where the latter is the continual integral taken along all
possible paths ccQy,x on M joining two given points.
Then the difference between two nearly paths going
through different neighbourhoods (see Fig. I) is :

LX
LI
hxo

Fig, 1

As is clear from the above, for the bundle space £ to
be not trivial, it is necessary that its characteristic class
be not zero, i.e., the form of the connection should not
be integrable. Consequently, only those paths contribute
into the continual integral for which

£do 0. (2.27)
If o=2%p, dq" , then taking account of (2.7), from the
integra‘iity condition we get

[ dpAdq - A0 (2.28)

A 2

19



whence
Ap-dg ~ - (2.29)

Let all the paths joining two given points in phase space
be projected on a configurational space »:Mi-§  which
is assumed to be smooth, and let «,a” be projections of
these points. Then points o and ¢’ are joined by a totali-
ty of piecewise smooth paths lying on 8. This totality
will be denoted by Q(a,z’, 8,

Let us assume that in & the metric (1.31) is defined.
For the path ¢ ¢ let us define the action of ¢ from
ato a”:

#

le

|2 4., (2.30)

T

w

#
R
j= W

If ;3- :U-Q 1is the two-parameter variation of a geodesic
y to which there correspond the variation vector fields

W, = -aﬁ-to.mc-vny, P12
then the sbcond derivative of the function of action
1 a%s /21/
3" 3w, Oy equals » o .
,Wl . JW]
-2<w2 A, _;i—r'—>—ér< w2.-—(-;—2-—+R(v.wl > dr, (2.31)
where
dy
v 'T.
and !
Tw Tw -
Ap —2 = Z (¢ - L7
dr r r

refers to the discontinuity at these points , R is the
tensor of curvature.

Assume that a point a is conjugate to « along
a geodesic y, the variation vector field w obeys the
Jacobi equation

»

20

D’
—d'-r—2- -R(V.W)V = 0. (232)
If alongﬂy one chooses the orthonormal parallel vector
fields le; | then at w=3¢'e. eq. (2.32) takes the form
1

2.1 T
gﬁ‘“" ];a‘quf =0, i=12.., (2.33)

where a; = R(v,ej )v.ei >, With notations

K, (W)= Riv,wy : (2.34)

properties of the tensor of curvature give that the ope-
rator K, 1is self-conjugated, i.e.,

<H (W), wo =<w K _(w)>, (2.3%5)

Hence, the orthonormalized basis |e. can be chosen so
that '

Ké -wle (2.36)

Y ] i 1
Now eq. (2.33) reads
d2¢t 2 -
_‘i;-..é_ + m] (;51 = 0, 1 = 1,2,uo . (2'37)

Let us show that to a conjugate pointa’ there corres-
ponds a stationary point (q,p) of phase space of the dy-
namical system, i.e., a point such that

Ut (q,p) ={q,p}. (2.38)
Relation (2.38) holds only when

p=0, (dV)q= 0 (2.39)
(where V is a potential).

The Lagrangian in a neighbourhood of such a -point
has the form pomn

L = ;,; [aij algd =Dy, qiql ] (2.40)
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are constants. By the known theo;'em of
l i transforma-

the linear algebra, there exists such a linegr
tion which diagonalizes both the quadratic forms, and,
consequently, the function L. in new coordinates reads

where a;; , b ;

I4=?[(‘f:‘i)2" m?(t}’)i)g] (2.41)

and the Lagrange equation is of the form
$i mf(/: b0, 1= 1,2, (2.42)
and thus coincides with eq. (2.37).

For the dynamical system with infinite number of
degrees of freedom eq. (2.42) takes the form

é K+ w2k ¢k = 0, (2.43)

The basis in this case is provided by the functions
e .

loy =e'** 1. (2.44)

Multiplying both sides of eq. (2.43) by these functions
and integrating over k, we get

[6He E* dk + fw0pke K dk - 0. (2.45)

3 d that it
Keeping the idea that wi{(k) 1is a frequence an
shm?ld be invariant under rotations in the three-dimensio-

nal space, one can assume that w?(k) = k?. Then eq.
(2.42) may be rewritten as follows
2 2
1% 9% dPew 976 o (2.46)

z ! axt ax2 - ax?
i.e., one arrives at the wave equation. This equatioq is
correspondent to the Jacobi equation for the variation
vector field, also infinite-dimensional.

Since the dynamical process is realized in space
and time, to each point of configurational space & of the
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dynamical system there corresponds a point of space-
time continuum .. § ., N. If now the action (2.30)
is treated as a function of the second point a, then it,
in its turn, becomes a function of space-time coordinates
(k,xg)€N; in other words,

8:N » R. (2.47)

Denote N* =81 (-w,a), IpeN, Sp<al.
If different hypersurfaces S(x) = const. are considered,

then equations of the orthogonal trajectories having in
the local coordinate system (xi] the form

Ox’ 598 (2.48)

dr i ox
define the shift N”.N" without changing the homotopy
type of manifold N°, if the set §'[a,h] does not contain
the critical points (these points correspond to the conju-
gate ones). If the level S(x)=5 is critical, i.e., contains
the critical point p, the orthogonal trajectories in neigh-
bourhcods of noncritical points of this level behave like
in other points, since

-g—_s;--zlgrad S!2>l>0_ (2‘49)

for all points lying outside small enough cylindrical
neighbourhood of the critical point (see Fig. 2)/21/which
is left fixed by those trajectories. In a neighbourhood of
the critical point there holds the Theorem B /22/,

Let :N-1} be a smooth Junction and p its non-
degenerated critical point with index A. Assume that
the set S'8-5+] where 5 _gp) s compact and
does nol contain the critical points of S other than
p Jor some ¢>(, Then for all sufficiently small 0 the
set NO+¢ has the homotopy type N B¢ with an attached
cell of dimension A.

Now let us make the assumption (+) that “production
of an elementary particle with mass m topologically is
équivalent to atiaching the three-dimensional cell e3
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2 .2, .2 <o< (D)2 (2.50)
X] kX bR <e (mc)

in the neighbourhood of the critical point of the function
of action.

S=5+¢ 7} X2

S=58-¢

Fig. 2. The cylindrical neighbourhood of point: §%=.- xf + xg .

Then, by Theorem B, the particle production is adequ-
ate to transition through the conjugate point defined by
the Jacobi equation (2.32), Indeed, physically, the ele-

mentary particle is realized at the point of the inter- -

ferring wave phases. Since the action (2,30) plays the
role of phase, then the above mentioned point is just
the point at which geodesics intersect with different
o but equal § (i.e., the conjugate point).

By a Morse lemma/2?/, in a neighbourhcod U of the
critical point p there exists such a local system of
coordinates 1x.iin U that the fdentity

520 =82+ alixlexdo xh- - -x) (2.51)

holds, where A 1is the index of S at point p, S(p) the
critical value of S, By an appropriate choice of a cons-
tant one can obtain S(pi=0. Keeping in mind that § plays
the role of phase and comparing (2.51) with the action for
free particle one finds that a2 =(m¢/h)2. Since, in our
case also A=3 the final expression for sZ(x is as
follows '
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2 0 2,2 2 2 2
S (x)=(5;-:=-) b g=x )~ xg=x3 1. (2.52)
Let us take ¢ > 0 small enough so that

1. the neighbourhood of the critical level does not
contain critical points other than p;

2. the image of U under the following imbedding

fxi{+ U » RY (2.53)
does contain the closed sphere

. : ¥ 2 2.54
i(xo.xl.xz,xs).l(xi) < 2. ( )

Define now e as a set of points from U, where

2

2
X5+ X 3

2.
17 T

<e¢e, x, =0, (2.55)

+ X a

The configuration obtained is schematically drawn
in Fig. 3. Note that e3 » N8~¢ is exactly the boundary
e3 and thus the cell e3 is attached to N8-¢ in the
topological sense/22%/, From the assumption ()} it follows
that the equation for a. produced elementary particle can
be obtained from the condition that the eigenvalue p of
the quadratic functional of the second variation of the
function of action (2.31) with the normalization

,

4]
J fwi2dr=1 (2.56)

be nonzero., In other words, the Jacobi equation (2.32)
a system with infinite number of degrees of ireedom which
reads

e -3 -3

(k) + 02 (k) pk)=—peh (k). (2.57)

Here p should be negative as the interval (a,2”) includes
a conjugate point. On the other hand, since y 1is an

eigenvalue of the functional of the second variation of S,
then
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p=< grad’$>2 (2.58)
whence, by using (2.52) we find
fo= (-.“i}@-)?. (2.59)

Multiplying both sides of eq. (2.57) by ek % and integra-
ting over k we arrive at the Klein-Gordon equation
I S S 2%4

———

SRRV %2 Ty 2 2
¢ h 9 %9 ng 6x3

2
N (—‘l:‘E) $=0,(2.60)

S=5-f

M.x2.x3

Ssa—(

i S=8+¢

Fig. 3.

In conclusion, the author thanks sincerely Drs. D.1.Blok-
hintsev, V.G.Kadyshevsky and V.C.Suslenko for interest
in the work.
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