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SUHMMARY

In the covariant formulation of a relativistic Hamiltonian

theory, glven inrefa,/1-)/,the momenta of all physical partioles

belong te the masg~shell, In the vertices of diagrams the to-
tal 4-momentum of physical particlea and the additional spurion
line i conserved. The momentum of the spurion is proportional
to the constant time~like vector on which the on-shell S-matrix
doen not depend,

In the present paper a version of a relativistie Hamiltonian
theory 18 developed in which the 4-momentum of spurion lieas on
the light cone, The essentially new point in this scheme i3 a
apecific regularization, by which the singularities accompany-
ing oach field theory in tﬂé light=front varisbles are removaed
in all diagrams, The unitarity and causality conditions are
analysed in detail. It is shown that the choice of regulariza=-
tion is defined by the causality condition.
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I.INTRODUCTION

About 10 years ago in papers /1-3/ a covariant formulation of
a relativistic lHomiltonian theory was proposed, The acheme is
baged on the Tomonaga-Schwinger eguation for the scattering mat-
rix S@h-o@), defined on the apace-like surfacesa of the type:

—l — .
AX MANgXKy = N X = O, (1.1)
where A i3 the fixed time-llke vector
a2= i, XN>O. (1,2)

The Tomonaga-Schwinger equation has the form

A _5,(‘%;“'_"2,.].[(3))5(8,”), (1.3

where the quantity }1(CT,)V) im connected with the internc~
tion Hamiltonian 1i(x) by the ladon transformation

Hie,n) = SHx)B (- »x)d'x . (1.4)

Yle can aleo expreas the operator }4(631) in terms of the
Fourier-tranoform of the {lamliltonian

Hep) = §& ™ Hxd'x (1.5)

. with the help of the relation

He) =2 (e Ho®)d=e, (1.6)

where %€ is the one-dimeneional invarinnt parameter.
In this paper we shall consider the ilamiltonian
H(x) =~ g19°0): (1.7)
where Y(x) is the operator of a scalar field in the interaction
representation. The total scattering matrix S(coroc) =&£ﬁx§@x-ug
has the form



S(00700) T, exp 4 G0} -

=1+ E (—iilje(ml- AX ) 9(“;')-*,)}{@,)'"H(Xn)clq’(,"- d'x o (1.8)

Rui

In fact the S—matrix does not depend on A , because 1in the
time~like region we have always QCA.X)"G(X°), and in the space-

like region the Hamiltonian ordering has no sende dus to the
locality condition.

[H(x),H(‘-O]’-'—O ,  when (x—y)e4 Q, (1.9
The independence of the S-matrix of A follows from the in-
variance of the sign of time in the tims-like rogion. In faat,
we can understand the substitution x°-- MNX , aB the (proper)
lorentz transformation, The T, ~ordering coinsides with the
ugual T-ordering,
Let us put

)

co {8
S(G‘,-OO)= 1+ ﬁ:i&@ﬂl@*—d&,

- IR YA {1.10)
S(o0,-ox) = { +1 R (0),
1t 19 easlly seen that the operator R(N) obeye the following
integral equation
Pog it

R(J&BEP-HC'N?E)‘%(SH(’*@"’*QD%?{ER('*"391)- (1.11)
From thie fisld-thooretic scheme there follows the gpecitic
diagram technigque in which to E)-pnzticlea thers correaponda
the “propagator - D¥-funcwion, 1.e.,these particles are on the
zasg shell, Besides, in each vertex there enter the linps, car-
rying the momentum A¥® with propagator

{
®W_it + In the verti-
e¢8s of dlegrams the total Y-momenium of the physical and quasi-

particles is comserved. To the virtual states there corresponds
the non-zero quasi-particle momentum (22 #0). In this point the

gcheme considerad differs esgentially from the Feynman-Dyson
formalism,where the total 4-momentum of the physical particles
An vertices of dlegrams is conserved, but the fields in the vir-
tual states are not on the mass shell.

The diegrams with the on-shell external Lines reduce to the
Feynman diagrams, The proof of this fact is trivial and is based
on the well-known relation, the validity of lest being directly
connected with the causal properties of the theory

:Di(x)=@(>~")@(?x)‘ @("%*)JOK?X)E :Dc(x), (1.12)
or, in the momentum representatiocn, o
¢ - .
fD,‘(P) - S d clqs: [S(p+k+me)2)(s<)+'i>(P+K— xae)@(k)lg (1.13)
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D)= 65 (ot ym 06 ABOE ). )

The covariant Hamiltonian formulation was applied to solve a

where

number of problems, The ultraviolet divergences are concentrated
here in one~dimensional dispersion-type integrals over & .,
Exploiting this property of the theory it is possible to "eurve'
the one-dimensional momentum ® ~space /4/ which makes the the-
ory convergent,

When solving the two-body problem, the quasi-potential typs
equations /5/ naturally arise. The procedure analogous to that
which in the usual theory leads to the Deths-Salpeter equation
gives in the new diagrem technique three-dimensional equations
/6/. The three-dimensional character of equations is evident
from the very beginning. Due to the d —funetion, entering inte
the "propagator™ D<+), all integrals in mcmentum space are btaken
over the hyperbnloeid

P=m > (1.15)



on vhich the three-dimensional Lobachevsky geometry is realized.
The expansion in terms of the matrix elements of the unitary
irreducible representations of the Lobachavaky space (the lorentz
group) allows one to introduce ths adequate configurational ;:_
reprasentation /7/. The resulting scheme is a completely rela-
tivistic and possesses at the game time all the most important
features ¢f quantum mechanics, The difference is that the free
energy operator here is the finite-difference one with step equal
to the Compton wave length of the particle /Anc.

The aim of thia paper 1a to develop the version of a covariant
Hamiltonian field theory in which the pPlanes of the form

HX= poxo- KX = & (1,16)

a7e used ingtead of planes (1.1), Here W 1o the fixed lighte
like vector

W=o, H=o0, .17y

This formulation is an alternative to the Hamiltonian field
theory with the time-like X\ wvector. The transition from the
deseription of the time dependence of the events to the descrip—
tion in terms of @ is equivalent to the transition to the
light—rrqnt variables,

The origina) idea of the¢ formulation of & field theory on
hyperplanes tangent to the 1ight cone goes back to Dirae /8/,
In hadron physice the precursor of the light~front formulation
was the 1nrinite-mqmantum limit technique /9/, The kinomatical
properties of the generators of the Poincars group in this appro-
ach were made clear and their usefulness in the description of
the properties of hadrons /10/ was establighed. There are impor-
tant pepers /11/ in which, on the basis of the quasipotential

equation in terms of the light-front variables the form-factors,

wave functions, and other features of the relativistic composite
particles are investigated.

Let us note especially papers /12/, where the spurion techni-
que was explolted for analysis of wave functions of the relati-
vistie bound systems. We suppose that the elegant formalism of
Refs /1-3/, being the covariant form of the old-fashioned per-
turbation theory, is the most appropriate basis for the const-
ruction of quantum fleld theory on the light front. In this
gcheme 1t is possible to formulate explicltly the causality
condition in terms of the "proper time" fLX + The additional
#ingularities on the light cone which accompany each quantum
field theory in the light-front variables are regularized by
using the limiting procedure {gee Sec.2) which 18 nécensary for
the formulation of the causality condition. The prodeéting pro-
perties of the wave functions and other guantities follow di-
rectly from the formulation itself and do not require any special
proof {ef./9,11/).

2. THE CAUSALITY AND UNITARITY CONDITIONS

In the &=X-representation (see /1/)} the formulation of the
causality condition 1s based on the group property of the S-mat-
rix

5(00,9)5(6‘.-°°)=5(00,-°°)- (2.1)
It i3 important here that relation (2.1) reflects the causal
properties of the theary due to the validity of the "strong"
condition of the space-like cheracter of the hyperplanes(1.4)
[%,- %/ | <w|%-%]

AX % WX = & w=const < 1. (2.2)

r

Due to the arbitrariness in choosing of A this condition al-
lows one always to separate, by the hyperplane of the type (1.1),



two space-time regions of switching on the interaction G1 = 62
(the sign £ means that peints X, € G2 are elther space-like
with respect to points x, € G4, or x%<.x5 J. .
In the case of light-like M -vector the condition (2.2) is "
not fuifilled. All surfaces of the type (1.16) are tangent to l
tha light cone along the generatrix
X=x"wpp, xp=xlh=o,
-oe QLo

(2.3

There exist consequently a very wide class of switching on re-
giona, which are unseparable by the planes of the type (1.16),
It is possible to connect gsuch regions by the light signal pro-
pagating along the atraight line {2,3),

Te formulate the causality principle in terms of the hyper-
planes (1,16), we consider the light-like 4-vector F- ad a limit
of the sequence of the time-like vectors 9\3

o Xt
:fa =d° ) 3:5>'C’.
Supposing that the limit R(H&):%in:ﬁ(}»sae) exigta, we come to
the follewing aquﬂtlon {ef./1/)
R(pae)- R (-pa) =
=L S dae [R(}zae- k)R (')~ R(flae )R(Faﬂwae)] (2.5)

2n

{(2.4)

Hlere the operator R is introduced, which obeys an equation of
i
the form (1.11) with the propagator e if ¢
Following to /4/ we shall call this squation in what follows

the causality conditicon in the @ -representation. Another, r
equivalent equation describing the causality condition in tha ;
fwrapraaontation han the Torm , ‘l
SiP) 4 ~
SPEx) 2n S ]+ Ap-x), (2.6)

whareJ(P)is the current operator

d(P) SEP( P S » (2.7)
which obeys in the configurational representation the locality
condition (ecf.{1.9)); ji(?-K) is a Tourier-transform of the so-
called quasilecal terms and S is a scattering matrix extended off
the energy-momentum shell.

Let us alaso present the relation which provides the equiva-
lance of the *L ~vactor formulation with the Feynman~Dyson
theory (cf.(1.42) )

e ) &
QDH(X) = Q(HX)QD (x)- 9(’§1")@ (x) - {2.8)
This relation is also established by taking the limit (2.4).

The unitarity conditlion of the S-matrix, formulated in paper
/1/, 19 Yransferred to the given scheme without change, We have
only to remember the necessity to take the limit (2.4).

This condltion has the form
qu% R(-pad) =
{2.9)
= e [R( Hae)quae hae )+R(pae—pa:)quae)]
On the energy-momentum shell ®=0O and {2.9) colncides with
the unitarity condition

R(0)~ R(0) = 1 R()IE (o),

(2.10)
or 85*= 1.
The fermal solution of the Tomonaga-Schwinger equation {1.3) in

the case of surfaces given by relation (1.16) has the form

S = Tuexp{-fHeod'x} =
= {+ Z(L)je(px—pxz)--e(px ux, YH( ) Hix, )d_x c{)( 2

Tl

In caelculating the matrix elements of this operator thers will



arise expressions containing the products of aingular functions
with singularitiesa, coineiding not only at the top of the light
cone, but along the genmeratrix (2,3), It turns out that the limié
ing procedure (2.4), which allows one %o formulate the causality
condition, is at the same time a regularizing procedure. Thege
singularities do not contribute tc the matrix elements of S-mat-
rix,
3. THE DIAGRAM THCHNIQUE

In paper /2/ it was shown that iterations of the equation
(1,11) in the A -formulation lead to a pecnliar diagram tech-
nique which differs from the Feynman one. In the case of the tl-
formulation we get the appropriate dlagram technigue by only
alightly modifying the diagram technique of the N approach,
Let us formulate these rules (cf./2,9,12/).

4+ In the Faynman diegrem corresponding te a given process in
the usual appreach, number all vertices in an arbitrary way.
To the phyaical Tp-particles there correapond solid lines,which
are oriented along the direction of decreasing vertoex number.
Omit &1l disgrams{except vacuum ones), which have et lsast one
vertex with all lines incoming (or outgoing). Such diagrame we

ghall call in what follows the diagrams with vacuum transitions,

Ve,
2, Connect the first vertex with the second, the second with

the third and ac on, by dotted lines, Orient these dotted lines
along the direction of increasing vertex number and ascribe to
aach of them the 4-momenta }LEE% {J = 1,24¢0..0~1), where n is
the order of the diagram., lLead intc the first vertex and lead
out from the last n-th vertex dotted lines with a free end,
aseribing to them the 4-momenta M2  and rlaE”, respectively.
3. Asaign to each internal solid line with the 4-momentum k

0

the function D(+)(k), to each internsl dotted line with the 4-
momentum }\L&j - the "propagator" 5‘; ;J_‘L'ﬁ .

4, Assign to the i-th vertex the factor %S(F&l: Fz;‘é.k'):
where the sum EK, is the total momentum of the incoming and
outgoing aoli§ lines in 811&? verf%f. Assign to each sxternal so-
1id line the factor (2x) CQP.) » where P is the 4-momentun
of the given solid lins,

5, Integrate over all independent 4-momentum k and all ‘&J
in the infinite limits.

6. Sum the coefficient functions, which result from all n!
numbering of vertices of the given diagram. Symmetrize the result
ing ffotal coefficient function in those womenta ¥k, in which it
remaine unaymmetrical after summation. Multiply the regult by the
factor 1/r, where r is a number of permutations of the external
linea which enter into the diagram symmetrically.

let us show that the DVT in ract(§ive no conbridbution. Let us
1

IR
introduce three 4-vectors M, € , € | which satisfy the condi-
tions 2 (2) » (LB 0 @
“spe '=fe -ee =0

’
2 @2 »

L{}]

e'=e =-1, TpE=1,

and correeponding projections of 4-momentum k on these dirsctions

K+=}.LK’ K-RP*K, E:((KQ(I,)‘(KQ(U) ’

2 + - ~2
K =K K - K |

(3.1}

(3.2)

It 1s easy to see that in eaoh vertex the k+—projeotion of the
momentum of phyeical particles is conserved (the projection of
the momentum of a quasi-particle on the 4-direction rL equals
zerc). In the case of a DVP it follows from the existencs of the
factor E;(k°) in the propagator that the kf-projaction of each

individual line equals zero, Such diagrams, as is easily seen,
squal zero.



Let us consider, ag an exampls, the diagram of self-energy
in the lowest order

K K
P 1.2 p p 21 p
H&+P-K H&-P*K
a) )
Fle.s 1,

The diagram b) is a DVT and does not contribute. The matrix
element, corregponding to the diagram a), has the formi
2¢ dae ) () y
ol N - (3.
Fegd {22 DD (pasp-rdk, 3.3)
or, after integrating over 8@ ,

@ | OCup-pk) L
F=g SQD( )'T_—T"m_-(p-k)-aed"‘ . (3.4)

The presence of tho @ -function in the integrand reflects the
so=-called projecting properties of thig formalism (ef./11/).
It 13 convenient to introduce the variables (3.2), then after
integration over k- we get
P.SAK' 8(<) 6(p- ")
P S GG s (e

-

After putting k*=xp® and K=k'+xP, we come to the usual (Feynw

(3.5)

man'sa) expresaion for F
[<J o (O
%‘ X VM ¥ x (- x0pi- it

4, THE QUASI-POTENTIAL TYFE EQUATION

(3'6)

A5 it was shown in Ref./6/, the Bethe-Salpeter type equation-

for the two-particle scattering amplitude in a field thecry with
a )\ -vector turns out to be a three-dimensional one, Let us de-
monstrate that in the P.-technique a three—dimensional equation
of the quasi-potentiml type also arisea. In the light-front vari-
ablea this equation coincides with that obtaeined in the noncovari-
ant old~fashioned perturbation theory /9/ (in the infinite-momen-
tum frame). inother derivation was given in /11/. Let us empha-
size that the projecting properties of the amplitudes and wave
functions ln the acheme with a rL ~vector follow immediately
from the dlagrammatic rules, formulated in the preceding section
and do not need any proof.

Conaider two particle scattering. We dencte the initial and
tinal four-momenta of particles by q.,¢, and PysPp 0 correspond-

ingly.
The definitions of Ref./6/ are naturally transferred to the

cass of light-like Hf -vector under consideration, Let us recall
them., Each connected disgram is called irreducible, if 1t cannot
be divided into two connected diagrams which are linked by two
8olid lines oriented from right 5o left, and by one dotted line
orlented in the opposite direction. It la suppossed that the time
axia on the graphs is directed from right to left and extermal
ends are oriented in the proper way. If such a division is possihls,
the diagram is called reducidle., The procedure analogous to that
which leads in the ugual technique to the Bethe-Salpeter equation
gives here

TOPP3%%:19 =V(P.R %5, pw)ﬂ‘*" s BBl

@3
(4.1

%V(Rﬁ, thz,}"x‘ )'T(]"z',‘(gkz',Q'ﬁ;F%S(erz— E - Pz-pz'),



where V 15 the “"potential", corresponding to the sum of all
irreducible diagrems, T is two-particle amplitude.
On passing in (#.1) to the total P,Q,XK and relative p,q,k m o

menta by meanc of formulae

f% jg [3 L Ct‘- gg t K ‘;§ K

= 402
: (.2)

und poerforming the integration over the variable X, we gott

TERNGIP)* i §EEHE

(4,5)
V(P,K,P)T(Ka)dk*dr;
O %(P m+ mgz)_ ie
wheroe
Pa +K &B%*K' (4.4)

Haore we have taken into account the followlng representation

for - func:i?n
D (k)= 9(: )S( 'm+|< ) C .5)

Let us pogse on to the variables
P g
SRR AN -3 -3
+
In terms of the Z-variable ths factor S(P )6(A")  ia rewritten

in the fomm 9(!)9(1-2)') + Taklng into account (4,6), the equution
(4,3) 1o represcnted in the form

X =%+

2 . 2=%

(1.6)

8 projec actor, being typical o old-theoretic
)‘I‘hi Jecting fact being typical of all field-th ti
schemes in the light-front voriableo(cf./9,11/) urifeg here auto-
matically due to the transition to the propagator D

As a raocult,the projecting properties of this scheme do not
require any esdditional verification.

Tp%3) V(P 3B) +

+Sdi§ tde V(Xﬁ;z,ﬁ;ﬁ)T(ij_ﬁ;v,@) @)
Gy J20-2) 2 (Ble )| m& (B-RP_ e
° Zz 1-2

The equation (4.7} ig written in an arbitrary reference {ramo,
Consider alsc another form of the eq.(4.1). Parforming the
integration over t‘l&,dka, and dkf , We got

TE3)-VEIPBW+
4% O(pP- k1) -z S (2.8)
+EE‘.2-ISSSK QDi _D V(E,K,D,P)T(Kh 1)

Since for the external ends

Q(Hp‘qual,_ (5.9)

we can rewrite the equation (4,8) in the fomm

(4.13)

- dk,V(H-Ki.QF)T(Kn%)
TEA)VETB 2l 2p s b- e

In the c¢.m.s. (3'- 0) we get an equation with the simple Green
function (Eq(Ek~Eq-i£ )'1, which colincides with the equation
obtained earlier /13/ in another way.

LN ]
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