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A great desl of current ¢fforts in fleld theory is centered
about the idea of & spontaneous breakdown of symmetries in gauge
theories with masegless fermions and vector mesone. In these
approaches the particles acquire usually their masces gpentane -
cusly via the Higgs mechanipm leaving us with renormalizable
theories of massive fermions and vector megonas. Thip ig at pre=-
sent a widely accepted method to construct unified theories of
weak and electromagnetic interactions. It is, however, also
depirable to inveatigate the possibility of a dynamical sponta-
reoup breakdown of eymmetry without introducing elementary Higgs
fields having a vasuum expectation value. Thus, one has to meek
for symmetry-violating solutions of the dynamical equations of
the theory. Thie polnt of view has been formulated already a
long time ago by Nambu and Jona-Laainio/1/ in their attempt to
describe the spontansous breakdown of chiral symmetry dynamical-
ly using the close snalogy to superconductivity., They have stimu-
lated a large amount of work in this kind of field 2,3/

In thie paper we exsmine an Abelian geuge model of interac-
ting quarke and vector gluons where the radiative corrections
turn out to be the origin of the spontaneous symmetry breaking.
Throughout the work functional methods are enployed which have
been recongnized to be a very effective tool for treating dyna~
mical symweiry breaking. Ae will be shown in Sect. 2, the gene-
ration of e symmetry-violating scalar mans term in the fermion
propagator may conveniently be studied by introducing a biloecal
dynamical variable in the path-integral representation of the



generating functional. The action principle applied to the
effective action of the bilaocal field yields then as the "clag-
sical” field equation the differential version of the Schwinger-
Dyson equation in the loweot nontrivial approximation of pertur-
bation theory. In Sect. 3 we shortly discuss the solutions of
this equation that wag years ago the starting point of the
finite quantum electrodynamice of Baker, Johnson and Willay/4/.
In Sect. 4 a syatematie abnormal perturbation expanasion of the
patheintegral has been worked out that uses the ayrmeiry=breaking
solution an the lowest opder torm, It takes into account higher
order effecta of quantum fluctuations around the stationary
peint of the effective bilooal action, Finally, the relation of
the resulting abnormal perturbation diagrams to usual Feynman
diggrane is demonstrated for the simplest Oreen's functions of
the model,

2, Generating Punctional and New Dynamical Varisbles

Let ue conpider a theory of massleas fermions ("quarka")
interacting with a massless neutral vector meson (“gzluon") field

(for simplicity intarnal degrees of freadom ars not taken
into account), The gensrating functional of all Oreen's funge
tionn, including the disconnected ones, 18 given in the path-
integral formulation by‘ ’ N
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Here J,., ?‘ 7 are the external sources of the fields A. ¥ §
and "N is a nomalization factor chomen such that Z(000) «1,
We remark that the Lagrangian aprearing in eq, (1) is invariant
#ith reapect to (i) chirel and {1i) meale transformationa,
¥ 2en(apd)y |, (9 H> A2 14O |, Ao A (0.
Let us now mhow that the expression (1) may develop a sealar
hasa~llke term for the fermion field leading to a dynamical

) AB we are not concerned with renormalization questiona,
necessary counterterms have been omitted ip eq. (1)

breakdown of the v -invariance of the theory., For this purpose
we tirst integrate over the vector field A’M and then introduce
a new bilocal field contalning a scalar component. The A},-intet;-
ration ylelds
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Z( - N [DDT enp [ _[ (<-4 w4y
+ '-l-?{ r'?lz] - %Jd’# Li}[J“(f)Dﬂv(r-a)Jv{a) -

e 8T8 19 Doy (o) T gy W]}
(2)

where D‘,,('@'} 1s the gluen propagator in the Landau gauge
[+
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(Throughout we upe the notations and conventions of rgf./ /.)
Let ums next introduce the abbreviation

K (g, %v) "(bf“)ag,s&:D‘“(k"t)(JV%A,S(AZ"?‘) $lpr) @

XeB,004,)
and( re;c’r;'?e the four-fermion term in the exponent of eq. {2} as
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The eign minug in front of the integral in eq. (5) arises from
the interchange of the ¥ § fields that have to be considered
ag anticommuting Grassman variablees. Purthermore, for notatiomal
aimplicity, a pair of discrete and continuous variables {2}
ip abbreviated by a latin index A, (summation over equal latin



indices includes an integration over the continuous variable)
Eq. (5) is then linearized in the expression 7};{#)’?#()) by
performing a (bilocal) Gauss intggration')

eep | £ 9°([T34), K [F03]) -
 [Det K"J%JDX ecp =5 (X, K"N) Ty, 37(“}‘6)
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where the bilocal field Xdﬁ(t, y}) ie treated as a  C -number
field, It can be decompoged in scalar, pseudosenlar, vector,
axlal vector and tensop components

Klxy)= Sixy L DAY A guds Aulay) +H;,.,3,] Tueta 1)

#1th eq. {7) the integretion meapure reads DX =DSDPDVIADT .
thserting eq. (6) in eq. (2) and performing the integration over

tho quark field the generating functional (1) can be rewritten
ih the final fomm

Sy
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with
.S(]() = [-%()('K")()-Lfrfk{d 43(;0)()} )
EQ5200) = exp [~ 1 Je D gy + i 7 Glak-§Au)y +
rte da(1-9G31)A,) ] (10)

The Green's functicens G(gk’-gﬁm) and G° are defined ams
follows

{8eGolny) = ~8(e-y) .
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") tn ref.76/ an analogous technique hasg been uged for a
nonrelativiatic aystem of interacting fermions and boaons to
obtain the gap aquation of superconductivity,

where
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and we have used the abbreviation Jullv.J, =Idr<d}}(*)-h.,ldy)Jl))
Pinally, to arrive at eq. (B), we have employed the identities

Det A= etrfrﬂuA and
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where f* denotes the trace of the operator in aquare-bracketa
considered as an integral operator in the functional space as
wall as the usual trace over matrix indicea.

Lot ua consider for a moment the fermion sector only by
setting =0, The sxpression Zf0,7,7iX)=@p€7_C(gl)7 may
be understood an the generating functional of a fermion moving
in an external bilocal random fiald Q((r,y) of probablity
distribution exp ¢ S{X), :

3,0 " F d Bquations and

Discuspion of Sgq lutiong

The functional S(X) that appeara as a weight factor in the
functional integral (8) may be naturally interpreted ag the
effective action of the bilacal field X(t,)) + The "classical"
field M(xy) is then determined by the molutions of the squation

§ s:‘l";('/gx-u =KMo 0 o

following from the action principle. Multisslying eq. (13) from
the left by the opsrator K yields alao‘

M«‘s("'. = - éﬁa-Dﬂv(r"y) [d’ﬂ- G(n/le')d"’Jqu
-'Src(*.ym)‘“ Id.'a M(¢2)Gl2y M) = -5(*-)) (19)

As the equations (14) do not involve the external sources it is
natural to asesume tranglational invariance of the solutions, i.e.

whare

]
’ Such a manipulation may in prineciple change the class
of golutions,



Mxy) = M{e-y) , Glxyln) = Gleyim)

Purthermore, going to the momentum speace, eqae. (14) read
SR LA - o

M(F) = A(jﬁ?}t jvd ] D,uv(f F)d',n M{T)-‘T g

G(rfh) < '1/M(P)-'p
Pecauge of PT and ‘T Invariance the possible solutions
contain only sealar and vector componentn, hWoreovar, the vector
part can be shown to vaniah in the transverss Landau gauge (1),
Thus, we finally arrive at

t Y .

Mip = -4 _%Jii‘ AL A e
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It ie worth remarking that eqs, (15), (16) are just the Schwinger~

Dygon equatlions for the quark propagator in the lowest nontrivial

approximation of perturbation theory’*+*?/, Moreover, eqs (123) ip

the differential form of thies equation

M{p)
(1 )ZM() = -4 z (17}
Ips P Pt~ M(p)
Tt 1s equivalent to the Integral equation {16} if one takes
into aceount the boundary conditione

lrhMP—M; L M(P)] -0 lf”dﬁfﬁ’] , =0 (1)
df’ P‘-i-p. dP p=o _
that ¢an be read off from eq. {16) aftar performing the angular
lntegrations.') Eq. (16) admite, in particular, a trivial sym=
metrie amolution M(ﬁ?'°’ + The nontrivial eolutions of a linea-
rized version of eq., (16) have been studied years ago in the
finite quantum electrodynamics of Bakar, Johnaon and Wiiley/4'7/
for large values of opace-like momenta, Recently, the scolutiona
of the nonlinear equation (17) have been studied, too, and
axtended to the timelike ragionla .

indeed, one easlly finds nontrivial asymptotic solutions
of eqes (17), (18) by inserting the asymptotic expressions

‘)In the functional approach used here there follow boun-
dary conditions from tha requirement that the action integral
&ohverpes,

{15)

M(p)»c(~rl)‘c,ffz for Fz""'o",*'-}o . This yields

Mlp= Mo(-p™ 270 L =p'>

Mz(f’)“\ rh(i*%')) ) P-‘, sy (19)
Purthermore, the numerical inveatigations performed in ref.la/

show that H:/?a < 1 for Fa>0 + Thus, the quark propagator

G(riH):ﬂ*%)T:—Q does not develop n pole, the quarks being econ=-

fined., Ap the asuthors of ref.la/ emphasize, the situation may
change drastically if the vector gluon becomes masaive, too,

Nambu and Jona-Lasinio’ V/ pointed out first that eq. {16)
ia the relativistic analogue of the gap equation In superconduc-
'l;ivit:,r/9 + They puggested that a mapsive Dirac particle should
ba a mixture of bare fermiona with opponite chiralities but
with the pame fermion number similarly as a quasi-particle in
& superconductor is a mixture of bare electrons with opposite
slectric chargeas but with the pame spin. It is convenient to
decompone the Green's function (15) Lnto its "normal" and "ab-
normal” partg

GIM = [ G+ Gu(a] + [Go () + Ge (] (20)
where

Gae(ro- A7 gy 128

Gy G = 5= G0 2500

,pelong to the combinations (A ?F“qAﬁ' 8tc. of quarks of right
and left chiralities,?kaﬁg;il Lhr Jo= 15y » We obtain
s
GfE(P’M)‘—' 123:{? P P‘fﬂz(r) (22)
Gere (pim) = A Mo
Thus, the abnormal quark Green's functions vanish identi-
cally in the aymmetric case of no mass gap. Assuming the invari-

ance of the vacuum under chiral tranaformations yields the
tranaformation law

{21}




ag can eanily be seen by expressing G as a vacuum expectation
value of the T -product of field operators. A nontrivial mase
gap Fﬂjﬂ? O ohbviously violates eq. (23) being associated to

a non-invariant vacuum, It is Just the existence of such sym-
metry breaking solutiona to the equations of the theory that
has led to the concept of a dynamical apontaneous breakdown of
a symmetry.

Coneluding this pection, we mention that eq. {16) when
rewpitten in terms of the funetion M{(p)p* M(p) 1is identical
with the peeudosealar sector of the homogeneous fermion-anti-
fermion Dethe=Salpeter equation at total four-momentum Pls 0
with the nontrivial propagator (15) used’ 1%/, Thus, for Mpy§o
there exists alsc a nontrivial solution Y(p0)~¥v W[’VP’—M’(f) of
the homogeneous Bethe-Sanlpeter equation., As has been discussed
at length in the literature {for a linearized propagator), these
polutions belong, however, to a continuous spectrum and they
are not normalizable 11,. An ildentification of these solutione
with the ueua) Goldstone bosons arising if a symmetry is broken
ppontaneously seems thua to be excluded.

4, Abnormal Perturbation Expanpion

The nontrivial solution of the nonlinear eqa. {17}, (18)
defines a8 quark propagator that includes already & definite class
of radintion correctlons of ordinary perturbation theory. let
us now phow how further corrections to this symmetry breaking
polution, aa ¢.g. vertex and gluon propagator corrections, may
be tsken into account in a systematic way by expanding the
integrand of eq. (8) around the "classical" solution .
Taking the nontrivial eonfinement solution /8 of the Schwinger-
Dysan gap oquation as s lowest order term, this approximation
scheme has the advantage of preserving sutomatically some of the
nonlinear features of field theory., For this purpose, we shift
the fleld variable X around the solution  M(xY) of
eqe. (17}, (18)

g X(xy) = M(x-y) + §PCe)) (24)
and expand the integrand of all the relevant path-integrale
in the bilocal gquantity 8 ¢(¥J) that characterizes the strength

of the field fluctuations around M , The generating functional
(8) ig then rewritten as

10
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where

S (@) = 4 f%ﬁf te[ Gooo]” (26)

e
LN

@ - £ & G Mpx (27
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In eq. (25) we have sbsorbed the term exp ¢ S{(M) in tne new
normalization constant N and used the fact that the linear
torm in the functional Taylor expansion of S(X) is absent due
to eq. (13). In the following the path-integral averaging, e.g.
of eq, (25), will be written in short as

o« £ P 20350 1M g0
2 - Smmmyy

let us now define the propagator %4’_ (;))‘; *%') af the bilocal
field d;,ﬁ(x,)) oy A d ,
_ o1
b(! e ‘4‘.<¢ (x v, - S“)(M)J (,(8 x!r)
= YO 5(» Y3l (29}
:(fo;ag' Y ap 4 Ost 'y% [ ap,40)
Note that :D¢ acts ns a two=particle propagation kernel that

patinfiea the following intsgral equation of the Lethe-Jalpeter
type

:R't;a*s; i} ’Y"éab’& ¥ ’532 'g"/‘:""cf"m) GJ?(H)?:{;,;J”) (30)

From eqs. (29), (27) we obtein the perturbation expansion

-1

{28}

DAt 0 = (42 (g Dus (9 S
+ig* Lge GOty pg)as Dlep {85 Gyl Mg D875
*(4az)zfd“z dw [ ClrulM) g Glwy' 1M ] s F

3 [ G(x Mg Gt Dunlo D55 Dplasd .+ 51,

‘ *) These definitions always include a normalization factor
<1)h which is suppreseed for brevity.
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The graphical representation of eq. (29) and (31) is given in
Fig, 1.

(XY;xY) = cooo_ .
(4p;¥6)

' E+E+

Fig, 1,
Here the daghed line symbolizes the propagator of the original
bllocal field @  which will be also sometimes written in
the forme of a contraction ¢ﬁ:?;;5—akg(¥j,g + In the second
rew of Plg, 1 we give the sxpansion of the propagator in terma
of Feynman graphs where the solid linee represent tha quark
Green'a functiona G(x,y|M) that are aolutions of eq, (14),
This class of graphs will alasc he represented by a zigzag line
aymbolizing the many-gluon exchange, The expectation value of
a8 produet of n bilocal fields may now eagily be evaluated by
means of a Wick theorem, We have.‘ for example,

COL.0,0 - 60.43, + 485,3, » G504, o
<QS1 ... ¢.~m4>gp =0
In the following we use the ¥ick theorem alsc i{n the compact form
(L P
- z(,s" é‘%) : (33)
<]C(¢)>¢ e B f(® ,Ewo

Let us now compute as examples the complete two-particle
Green's functlone G,A of the quarka and vector gluons as well
%
as the quark-gluon vertex [7 , we get

¥
’ One may alaso obtain a elightly modified expansion of tha
quark Green's function by seeking for the etationary point of the
whole integrand of,e?. (34). Instead of the field equation (13)
e have then {umle' ™Gy im)T =0 . It can eaally be shown that
the resultlnf Schwinger-Dyson gap squation includes now the
averaged field (1, () of eq, f}??. A aimilar result has been

obtained for g aystem of interacting Fermi and Bose particles in
I‘ﬂfo/12/c
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4§ 52
Qulan = 3 ety St 70

= <e"S““(¢)Z(J.°,Of"1*3&9)%(*.?“’!*3%3 Ae g (34)
or, using eq. {33),
. -4f - 4—5;..«(8) . )
G lxy)= € £ 0L [e 5(3,0,01/\4;55{5 (35)
3 Gyloyl MegB-Aug),

and, gimilarly,

N WY -
A},,(K',y) A STy § Jul® }7-5-0

St (9) .
N WEOE 3‘fd% dudy (e P, 000 5

pte[ 5 Glaui M r@(P--ng) g GluviMrgd-gh,., ]Dn("?%
PR “&ne {¢’) "'S-m@)
¢ 82. [<€ AY (‘P)OA(*)(),Q% -<e Q},(a‘% <€ 0?,{3)>(¢36)

Here

fate = = [y Duben [ Qoo+ gt gy GO Hegh-gAen)]

R
is a puperposition of the exiernal vector potential Aeu(-‘f)
and of the affective averaged potential induced by the ?xterna{
current in the vacuum in the presence of the extermal blloca}
field ?( . The three-point function is given by the fellowing
expression (including radiation corrections on the external

~ 49 § 42 [ -
Falsn®) = 73 S0 S0 870 Iyegeo

linea)
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=<@;S‘..,J¢)Z(J‘OIO]M,3¢) )
g{fd";'@(aix'lMoatﬁ-gﬁ,,‘)b,,,(x'oa)gvG(*.’HM*JQ"“gA‘m)
UG bt et >
"321'('“" (J'(” Fe tr[ 1-3JG(M*3¢)§¢.¢G5"]GH'J) *

3 w,,(xtacry,r!wgsb-gx’x‘"a}}p

(38)

The lowest order term of the three-point function {for 3-=0)
fd*r'C(}-t'lM) [yv] Gixixelm) Dy (x-2) (39)

Juet leads to the bare coupling of eq, (14) as it should be,
Finally, Fig, 2 shown, for i1lustration, aome graphical examples
of the abnormal perturbation expanaion of the Qreen's functions
(34), (36), (30), The graphs on the left-hand side represent
sentributions obtained hy oxpanding the integrand of the pathe
Integrals in the biloenl fisld ¢ {closed quark loops aptse
from S,.(¢) ), whereas on the right-hand pide the correspond-
ing clagees of Peynman grapha are drawn, We recall that a solid
line denoter the nonperturbative quark propagator G(PIM) of
eq. (14),

B ion d _Concluding Re k

1% hap been ehown that the dynamiesl breakdown of chiral
symmetry may convenlently ba ptudied by using bilocal integra-
tlon variables in the patheintegral vepremsentation of the genaw
rating functional, It turna out that the "elaseical" equation
of motion of the bilocal field ip identical with the differen-
tial version of the Schwinger-Dyson equation for the quark pro-
Pagator in the lowest nontrivial approximation of perturbation
theory. The aexistence of nontrivial solutiuns to thig differen-
tial equation with the boundary conditions (18) has been shown
in rer,/®/, There it has been found that the quark propagator

14

Pig. 2,

15



dees not develop a particle pole in the timelike region, the
quarks being confined. It should be remarked that this proof
heavily relies on the boundary conditions {18) obtained from
the integral form of the Schwingar-Dywon gap equation. It would
be Interesting whether quark confinement holds also if the addi-
tiocnal radiative corrections are taken into aceount,

Finally, an abnormal perturbation expanslon taking the
nonperturbatlve solutlon of the Schwinger-Dyson equation as the
lowest order term hag been formulated and the ¢orrespondence
of these diagroms to the Feynman diagrams has been eptabllshed,

Coneludlng we mentlon that our approach bears a resemblence
to the method of billoecal mources of Jackiw, Cormwall and Tom=-
boutis’ ! which hosg been umed to econatruct an effective poten~
tLal for componite operators, These authors have obtained the
Sehwinger-Dyson gap equation from the mipimum of the affective
potential,
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Added note

After completing this work we have obtalned a paper of
H.Klainert/14 where the gap equation (13) has been derived,
%00, using biloeal techniques,
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