


1 Introduction

Investigation of the physiology and regulation of the SOS response in FEs-
cherichia coli bacteria during the past decades has revealed the basic features
of mechanisms underlying functioning of the SOS system. The system con-
sists of at least 20 unlinked bacterial genes whose products are involved in the
SOS response. The basis for the SOS regulation is the specific interaction
of two SOS genes lezA and recd, as demonstrated in various biochemical
and genetic experiments [1]. LexA protein functions as a repressor for all
SOS genes, including lez4 and recA genes, and RecA protein in an active
form (RecA*) stimulates LexA autocleavage reaction. After DNA is dam-
aged following, for example, cell exposure to a typical mutagen ultraviolet
(UV) radiation, the SOS-inducing signal is formed which activates RecA for
its specific roles in the SOS response. RecA* then accumulates and conse-
quently the LexA concentration drops to the level low enough for increased
expression of various SOS genes, thus allowing the intreduction of the SOS
functions constituting the SOS response. SOS functions serve to recover a
cell from the damage. Elimination of the SOS signal results in accumulation
of LexA and return of SOS genes to their initially repressed state.

To understand the SOS response regulation a kinetic analysis of regulato-
ry lezA and recA genes expression after DNA damage is important. Earlier
we proposed a model for the SOS response regulation in a uvr™ mutant of
E. coli which is deficient in uvr4 BC-dependent nucleotide excision repair [2].
Excision repair is the major pathway for elimination of pyrimidine dimers -
(PD) from DNA, the principal type of DNA damage after UV irradiation [3].
While the importance of excision repair in cell recovery from DNA damage
was shown in experiments with E. coli uvr™ strains [4], the way excision

repair modulates SOS regulation is less investigated.
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In this paper we propose a means to calculate the level of the SOS sig-
nal in wild-type E. coli after UV irradiation and show how excision repair
affects the kinetics of the SOS signal, and subsequently the expression of the
SOS genes. The correlation between excision repair of PDs and SOS signal
generation is not obvious because it is not the PDs themselves but rather
gaps of single-stranded DNA (ssDNA) opposite PDs that constitute the SOS
signal [5]. The simulation of LexA repressor concentration agrees with exper-
imental data and the model is thus verified. We conclude that the essential
components of the SOS regulation in wild-type £. coli have been modelled
and a computational tool developed to be used in investigating quantitative
aspects of the SOS response induction in different strains of E. coli after
virtually any DNA-damaging treatment.

2 The Mbdel

The SOS regulation is based on such an interplay of LexA and RecA proteins
as to provide efficient repression of SOS genes under normal growth condi-
tions and to greatly enhance their transcription after DNA damage. It thus
appears that coordinated variaton.in LexA and RecA intracellular concen-
trations govern the SOS response induction. To describe the kinetics of the
SOS regulation we need to enumerate the cellular events responsible for the
observed LexA and RecA dynamics. From the current model for the SOS
regulation outlined in the Introduction (see also ref. [1])} we infer that LexA
concentration increases through lezA-controlled synthesis from the lezA lo-
cus and decreases through spontaneous and RecA*-mediated breakdown of
LexA. RecA concentration increases through lezA-controlled synthesis from
the recA locus and RecA” reversal to its non-active form (‘RecA), and de-
creases through RecA transition to the active form and RecA breakdown.
Activation of RecA occurs in the reaction with ssDNA that originates in the
chromosome after UV irradiation [5, 6].. The formulation of the SOS regu-
lation in terms of these “inflow” /“outflow” events allowed us to write differ-
ential equations with respect to LexA, RecA and RecA* concentrations [2].
Using notations Cr, Cr and Cg. for these concentrations the differential
equations read thus: '

: dCL ay,

d—t = m - bLCLCR* - 6LCL’ (1)

dCR ap

= — erCr — brC breCre, 2

o T knC, erCr — brCrCs + br.Cr (2)
dC R '

de = brCRCs — bp.Cha. : (3)

Here ('s denotes concentration of ssDNA in a cell which is used to mea-
sure the level of the SOS signal. Eqns {1-3) describe kinetics of LexA and
RecA concentrations in a cell after- DNA damage. The specificity of a DNA-
dm‘naging treatment is hidden in the fuhction Cs(t), the SOS signal kinetics,
and as soon as we somehow know this function we are able to simulate LexA
and RecA concentrations. In what follows we will calculate Cs(t) for the

case of UV irradiation.

3 Kinetics of t_hé SOS Signal

3.1 Increase in the Level of the SOS Signal

It has been shown previously that the SOS signal originates during replication
of a UV-damaged chromosome [5]. 1t is believed that when the replisome
encounters a PD. it disassembles, delays and resumes its movement further on
leaving a gap opposite the PD. Indeed, single-stranded defects were detected
in an experiment with replicating UV-irradiated wvrd 6 mutant of E. coli 7).
The process of gaps generation is schematically shown in Figure 1. Now,
the idea is that if we count each PD met by the replisome we will be able
to follow the accumulation of ssDNA of gaps. The rate of gaps production
is inversely proportional to the period of time required for the formation of
one gap (tg). Thinking this way we obtain the differential equation for the
number of gaps formed by ¢ min (Ng):

LS (@

dt tg
Let L be the number of base pairs in the E. coli chromosome, and Ny the
number of PDs introduced by a given dose of UV radiation. The value of
te can be calculated from the delay time, (¢p), and the time required for a
replisotne to travel between adjacent PDs. Assuming PDs to be distributed
uniformly along the chromosome with the average distance between them
I= L[Ny, which is true for Ny > 1, we obtain
{

lg=tp+ —, (5)
Vs



Fig. 1: Scheme for generation of gaps during replication. Two forks proceed
from the origin of replication (0riC) at identical rates producing gaps at each
PD met. Triangles denote PDs, large circle denotes the fork.

where vg is the rate of chain elongation by DNA polymerase I11. While ¢¢ is
constant in case of a uvr™ mutant because of a defect in the PDs’ removal
system, in a wild-type cell it becomes a function of time. The way excision
repair modulates the SOS signal kinetics is in fact by removing a portion of
PDs in front of the replication fork, thus reducing PDs’ density.

To calculate g, let L, be the distance covered by the replisome by ¢ min.
It is determined from the formula

L, = vs(t — tpNg),

where vgtp Ng accounts for the distance not covered by the replisome because
of delay at Ng PDs. The amount of parental DNA to be replicated calculates
from L, as

L L
Lponr = —2" - L, = 5 + 7)S(tPNG - t) (6)
Here 1/2 in front of L is to account for the fact that the replication is bidi-
rectional 1. To proceed let us introduce two auxiliary variables: Ng for the
number of PDs excised from an unreplicated part of the chromosome, and Ny,
for the number of P-Ds left in the unreplicated part of the chromosome and

potent to give rise to gaps. Variables Ng, Ng and Ny, follow the constraint

N
No + Np+ Ny = . (7)
Assuming the distribution of PDs to remain uniform, the average distance is
determined from the formula

7 Lnon—r

1Since two replication forks proceed from a single origin of replication at similar rates,
it is convenient to. perform calculations for one half of the chromosome only, and then
multiply the result by two. See Figure 1. '

Then, substituting [, Lyon_, and tg from eqns (8), (6) and (5) to eqn (4), we
obtain differential equation for N in the form

dNg Ng

= ’ (9)
.dt To+%tp—NEtp—t

where Ty = L/(2vs) is the length of the Cperiod of the cell cycle when the
DNA replication occurs. )

Kinetics of excision repair of PDs is to be described by an exponential (36)
(see Appendix for derivation). Function (36) in current notation can be
rewritten in the form of differential equation

dNg
—= =kNg. 10
& N (10)
From the constraint (7) and eqns (9-10) we obtain the differential equation
for Np:
dN. 1
~dt£ =N, — k| . (11)
tpNg +1t—To— _29'tP

From the biological meaning of Ng and Ni, ? there follow initial conditions
for eqns (10-11): v
Ng(0) =0,  Ni(0) =5 (12)

Thus, we have to solve eqns (10-11) with initial conditions (12), and use the
constraint (7) to obtain Ng(t). The increase in the concentration of ssDNA
will then follow the function
2Ng(t)LG

S

where Lg is the average length of a gap, N4 is the Avogadro number and V
is an average volume of a bacterial cell.

CFe(t) = (13)

3.2 Decrease in the Level of the SOS Signal

DNA damage induced in E. coli by UV radiation undergoes complex evo-
lution until it is repaired via multiple pathways [8]. Absorpton of UV light

2At the moment of irradiation there are no PDs excised, and ‘all of the introduced PDs

are in front of the replication fork.



energy results in the formation of PDs (primary lesions). Gaps in daugh-
ter strands (secondary lesions) form after replication proceeds past PDs (7]
Decrease in the SOS signal level is due to gaps repair. Repair of gaps can
be described formally by the differential equation in the following way. Let
Nr(t) be the number of gaps already repaired by ¢ min. The rate of repair is
then proportional to the number of intact gaps, which gives us the equation
7 "’UR(NG—NR) . (14)

with the initial condition
Na(0) = 0, : (15)
where vp is the parameter reflecting the gaps repair capacity of a cell. From
this it follows that the concentration of ssDNA of gaps will decrease according

to the function
2NR(t)LG

NV (16)
Finally, the concentration of ssDNA in a cell is calculated from formu-
lae (13) and (16) as

Cs(t) = C§(t) ~ C§=(t) = vy [Ne(t) — Na()]. (17)

To calculate (17) we need to solve equs (10—11) and (14), and use the con-
straint (7).

dec(t) —

2LG

4 Estimation of Parameters

Parameters of the model include ay, Ky, by, ey, ar, Kg, bgr, bp., €g, tp,
Lg, k and vg. We have estimated the majority of these parameters from
the experimental data elsewhere [2]. Parameter definitions along with their
values are summarized in Table 1. Only two parameters bg. (rate constant
of RecA* reversing its active conformation back to RecA), and vy (rate of
repair of gaps) are not available in the experimental literature and are to be
fitted.

Initial conditions for eqns (1-3) are C1(0) = 2.2 x 10~ M, Cr(0) = 1.2 x
107* M and Cg.(0) = 0. Other constants used in the above equations take the
following values: L = 4.72 x 106 base pairs (length of a E. coli chromosome),
vs = 5.9 x 10% base pairs per min (rate of DNA polymerization), Ty =
40 min (duration of a round of replication), N4 = 6 x 10*® mole~! (Avogadro
number) and V = 107"° litres (average volume of a E. coli cell).

Table 1: Values of model parameters estimated from experimental data

Notation | Definition Value

ar, Maximal rate of LexA production® | 2.9 x 107® M min™!
Ar Binding constant of LexA to lezA 5.0 x 10" M1

b Rate constant of LexA cleavage 5.8 x 10* M~! min™!
er, Rate constant of LexA autocleavage | 1.2 x 1072 min™~!

ar . | Maximal rate of RecA production® | 1.7 x 107> M min~!
Kg Binding constant of LexA to recA | 5.0 x 10° M~!

br Rate constant of RecA activation 3.7 x 10° M~! min™!
€R Rate constant of RecA breakdown 1.3 x 1073 min™

tp Delay time of replisome at a PD 0.17 min

L¢ Average length of a gap 900 nucleotides

k Rate of PDs’ excision repair 0.2 min™!

® As is the case for Lex A(Def) mutant with total abscence of the locus repression

by LexA protein.

5 Non-dimensionalisation of Equations

To perform numerical solution of model differential equations we need to non-
dimensionalize the equations. Let us introduce the following dimensionless

variables:
.o Cr, _ Cr __ Chg,
e YT CR(0) 77 Ca(0)
Cs t
§= = —
vy T
ng = Ng n Na_ n Ne n L (18)
G No/2’ R No/2 E7 No/2 LT No/2 ‘
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and the following dimensionless parameters:

arT . '
b=y R K0, k= bR,
arT ,
ky = e Ty, ks = C::((;))’ ks = KrCL(0),
brLT LaN

kr = erTy, kg = :[AVO’ 9 = %> k1o = kTo,

tpN
ki = —g?ﬂ A=brTo, B=vgle.  (19)

0

In dimensionless variables (18) model equations read thus:

d:r: k]
i kazz — kyz, (20)
dy k5
— = - —k 21
ar = T4 ks YT Reyst Az, 1)
dz = kgys — Az, (22)
dr
dn ~
. d—TE = kionz, (23)
dnL 1
— = -k 24
dT nr (k]](ﬂE—l)—l+T 10), ( )
d
“ = Blng = np), (25)
T .
ngzl——nL—nE, (26)
S = kg(nG - nR). (27)

Initial conditions for differential equations (20-25) are

2(0) =0,
nR(O) =0. (28)

y(0) =1,
ng(0) =0, n(0) =1,

Values of dimensionless parameters (19) calculated from Table 1 are sum-
marized in Table 2. Parameters kg and k;; are to be calculated at a given
number of PDs, {Np), and parameters A and B are to be fitted.

e
R

o

Table 2: Values of dimensionless model parameters

Notation | Value || Notation | Value

ky 52.7 | ks 0.052

ko 110 kg 1.16 x 10°

ks 278 || &y 1.91 x 10~ - Np
kq 0.48 || k1o 8

ks 56.7 | kn 2.13 x 1073 - N
ks 1100

6 Results and Discussion

The model formulated above allows simulation of LexA and RecA regula-
tory proteins kinetics. We have solved the Cauchy problem (20-25) with
initial conditions (28) numerically to obtain kinetic curves z(7),.... Values
of model parameters were from Table 2. Values of parameters A and B
were determined by a least squares method when fitting simulated z(7) to
experimental data on LexA concentration kinetics taken from [5]. The dose
of UV radiation in the experiment was D = 5 J/m’. The corresponding
number of introduced PDs equals Ny = 250 as calculated from the formula
Ny = 50D [7]. .
Simulated LexA concentration in a cell alongside with experimental data
from [5] is shown in Figure 2. One can see that the simulation agrees with
experimental data reasonably well. We believe that this agreement validates
our model. The last part of the simulated curve seems to disagree with
experimental data, however, we do not think that this inconsistence with the
data should be attributed to some kind of irrelevancy of our model. This
is rather due to inconsistence of the data set used here with some other
facts concerning LexA kinetics.. Indeed, it has been reported previously that
the level of lexA mRNA in a cell induced with a similar UV dose tends to
decline slowly, reaching its basal level only at 180 min [9]. This finding
indicates that LexA protein accumulates relatively sIowly as predicted by
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Fig. 2: Simulated LexA concentration in a wild-type (solid line) and a uvr™
(dashed line) E. coli cell after UV irradiation at the dose of 5 J/m®. Experi-
mental data are shown with symbols circles for wild-type and triangles for
uvr™ cells.

our simulation. However, to resolve this inconsistence to the endpoint, more
research is needed. ‘

To compare LexA kinetics in a wild- type cell to that in a uor™ cell, we
have chosen to show previously simulated in [2] LexA curve for a uvr™ mutant
(Figure 2, dashed line). As expected, LexA level stays low until replication
terminates at 60 min because no PDs’ excision occurs in a uvr” cell. The
effect of excision repair nonfunctionality is in that it lets the prolonged in-
duction ‘of the SOS response to ensure maximum recovery of a cell from the
DNA damage. This can also be seen, and more clearly, from the simulation
of the SOS signal kinetics, as shown for both wild-type and excision repair
deficient cells in Figure 3. In a wild-type cell.the concentration of ssDNA
increases shortly after UV irradiation to the level of about 12 uM, then de-
creases relatively quickly and finally disappears by 40 min. In contrast, in
a wvr— cell ssDNA persists for a longer time, as long as the replication of
the chromosome takes place. The maximum level of ssDNA is twofold high-
er (approximately 25 pM). When the replication is over, concentration of
ssDNA drops quickly because of DNA repair. Interestingly, the initial rate
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Fig. 3: Simulated concentration of ssDNA in wild-type (solid line) and uvr™
(dashed line) cells. UV dose is 5 J/m®.

of ssDNA production is the same in both wiid-type and uvr™ cells, implying
that excision repair in a wild-type cell does not remove PDs fast enough to
modify the rate of the SOS signal production, and consequently RecA acti- '
vation and LexA cleavage, during the first few minutes of the SOS response.
This is consistent with the finding of Sassanfar and Roberts [5] that initial
LexA cleavage rates are the same in wild-type and uvrd mutant strains.

We conclude that the SOS response is more pronounced and lasts longer
in wur™ mutant than in a wild-type cell because of the lack of excision repair
system functionality. Excision repair modulates the SOS response by directly
affecting the SOS signal kinetics. It removes PDs in front of the proceeding
replication fork, lowering the amount of ssDNA produced and speeding up
the SOS response turn-off.

Fitting of LexA kinetic curve to experimental data produced the following
values of parameters A and B:

A =150 + 40, B=10+2. (29)
Calculating dimensional equivalent of A we obtain

bre =4+ 1 min~!,

11



which corresponds to the half-life of RecA* reversing its activity equal to
tyj2 = 0.17 £ 0.04 min.

The value of t,/; calculated this way does not reflect an intrinsic stability

of RecA™ protein, but rather is the characteristic of the turn-over of RecA”

under specific conditions of SOS induction. At equilibrium RecA unbinds

from ssDNA with a half-life of about 30 min [10]. However, in a SOS-induced

cell ¢,/, appears to be much shorter because RecA molecules are displaced

from ssDNA when gaps are repaired. ‘
Calculating dimensional equivalent of B we obtain

v = 0.25 £ 0.05 min~?,

which is the rate of repair of gaps. This parameter is the characteristic of
repair capability of a cell. Interestingly, this value is similar to the rate of
PDs removal by excision repair (Table 1).

Concluding, we see that the core of the model [eqns (1-3)] possesses the
considerable generality in that the model can be used to describe the SOS re-
sponse kinetics after any DNA-damaging treatment, provided the SOS signal
kinetics (function Cs(t)) is known. Furthermore, one can add equation(s),
similar to eqns (1-2), to describe the kinetics of induction of any SOS gene
whose transcription is controlled by LexA. This would allow broader quanti-
tative investigation of expression of various SOS functions. Different mutant
strains can .in principle be investigated, by simply varying values of appro-
priate parameters and/or modifying the equations. An example of such an
approach is given in our previous work [2], in which we analyzed uvr™ and
dnaC?28 mutants: The latter one is a temperature sensitive replication initia-
tion mutant. Analysis of the LexA protein and the SOS signal kinetics in this
mutant strain provided insights into the role of DNA replication in the SOS
response regulation. One of the SOS functions is the enhanced mutability
of the bacterial chromosome. Kinetic analysis of this particular important
subset of the SOS response, mediated by products of reecA and umuDC SOS
genes, may also be performed with our model.

Appendix: Kinetics of Excision Repair

The mathematical formulation of the problem is as follows. We search for a
function Npp(t) describing the kinetics of PDs’ removal from a UV-irradiated
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bacterial chromosome by excision repair, provided that at the moment ¢t = 0
there are Npp(0) = Ny dimers induced by a given dose of UV radiation.
Consider stochastic process Z(t) with a denumerable set of states indexed
from 0 to co. Let us put the number of PDs, (Npp), into correspondence
with the state number. The change of the state of the process Z(t) occurs
at random times 71, 72,... as a result of PDs’ excision. Assume moments
T1,T2,... comprise a Poisson fluence with density p. Let variable £(t) be
the number of moments 7 from the interval [0,t). Hence, the probability

‘of transition from a state number n to a state number k is CFa" (1 — a)F,

and the probability to remain in the state number n is (1 — @), where C*
is the binomial coefficient and 0 < a < 1. Let P"(t) be the probability
for the process Z(t) be in the state number n at a given moment ¢. The
required variable Npp(¢) will then be the mathematical expectation of the
state number of the process Z(t). ; '

It can be shown that P"(t) satisfies the following denumerable set of
differential equations:

dpr" - n+i n i n n
— = ;{P*(t)CnHa(l-a)}—P(t) . m=0,1,... (30)
with initial conditions
PM0)=a, 20, Y an=1, (31)
n=0 )

where a, are constants. The problem (30-31) complies with the theorems
formulated in [11] from which it follows that there exists the unique, bounded,
equicontinual solution of (30-31) determinal at ¢ € [0, 00).

In order to find this solution let us introduce the generating function
according to the formula ‘ v

®(t,z) =Y _ P™(t)z",

where = € [0,>1]. Rewriting (30-31) in terms of ®(¢,z) we obtain the differ-
ential equation

0%(t,z)

S = et (l-ae+a) - 2] (32)

13



with the initial condition

®(0,z) = Z apz" (33)
n=0
and boundary condition
o(t,1) = 1. (34)

The solution of eqn (32) with initial and boundary conditions (33) and (34)
follows in the form of a series of functions:

(¢, z) —e“‘ZZan [1+( 1—a) Fa - 1)]". (35)

k=0 n=0

The mathematical expectation for the problem (30-31) is defined as M(t) =
d®/0z|,—. Differentiating (35) with respect to z according to this definition
and letting z = 1, we obtain

M(t) = M(0)e™ ",

Coming back to the number of PDs we see that it decreases with time fol-
lowing the exponential:

NPD(t) = Noe_kt, (36)

where k = oy is the rate of pyrimidine dimers excision.
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‘asa funcuon of time in'wild-type cells aftcr uhravmlct irradiation. th modd cq ations onc c:m simulate’
“kifetic’ curves. of SOS regulatory proluns aflcr DNA damage to; survey lhc SOS ‘response ‘kinetics.:
Slmulauon ochxA protcm klnellcs agrees- Wlth expcrlmental data. We compart. snnulalcd chA klnc,uc"

curve in wild- type and uvr, mutam bactena which is useful i in mvcxugatmg the way wrABC: dupcndum
excmon repair, ‘modulates the- SOS rcsponsc kinetics. Posslblc appllcauom of thc model to m’
: vanou aspccls ‘of the SOS mducuon arc dxscusscd :

ubna, 1997




