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1 Introduction 

Investigation of the physiology and regulation of the SOS response in Es
cherichia coli bacteria during the past decades has revealed the basic features 
of mechanisms underlying functioning of the SOS system. The system con
sists of at least 20 unlinked bacterial genes whose products are involved in the 
SOS response. The basis for the SOS regulation is the specific interaction 
of two SOS genes lexA and recA, as demonstrated in various biochemical 
and genetic experiments [l]. LexA protein functions as a repressor for all 
SOS genes, including lexA and recA genes, and RecA protein in· an active 
form (RecA*) stimulates LexA autocleavage reaction. After DNA is dam
aged following, for example, cell exposure to a typical mutagen ultraviolet 
(UV) radiation, the SOS-inducing signal is formed which activates Rec~ for 
its specific roles in the SOS response. RecA * then accumulates and conse
quently the LexA concentration drops to the level low enough for increased 
expression of various SOS genes, thus allowing the introduction of the SOS 
functions constituting the SOS response. SOS functions serve to recover a 
cell from the damage. Elimination of the SOS signal results in accumulation 
of LexA and return of SOS genes to their initially repressed state. 

To understand the SOS response regulation a kinetic analysis of regulato
ry lexA and recA genes expression after DNA damage is important. Earlier 
we proposed a model for the SOS response regulation in a uv,- mutant of 
E. coli which is deficient in uvrABC-dependent nucleotide excision repair [2]. 
Excision repair is the major pathway for elimination of pyrimidine dimers 
(PD) from DNA, the principal type of DNA damage after UV irradiation [3]. 
While the importance of excision repair in cell recovery from DNA damage 
was shown in experiments with E. coli uv,- strains [4], the way excision 

repair modulates SOS regulation is less investigated. 



In this paper we propose a means to calculate the level of the SOS sig
nal in wild-type E. coli after UV irradiation and show how excision repair 

affects the kinetics of the SOS signal, and subsequently the expre.ssion of the 

SOS genes. The correlation between excision repair of PDs and SOS signal 
generation is not obvious because it is not the PDs themselves but rather 

gaps of single-stranded DNA (ssDNA) opposite PDs that constitute the SOS 
signal [5]. The simulation of LexA repressor concentration agrees with exper
imental data and the model is thus verified. We conclude that the essential 

components of the SOS regulation in wild-type E. coli have been modelled 

and a computational tool develop_ed to be used in investigating quantitative 
aspects of the SOS response induction in different strains of E. coli after 
virtually any DNA-damaging treatment. 

2 The Model 

The SOS regulation is based on such an interplay of LexA and RecA proteins 

as to provide efficient repression of SOS genes under normal growth condi
tions and to greatly enhance their transcription after DNA damage. It thus 

appears that coordinated variaton in LexA and RecA intracellular concen
trations govern the SOS response induction. To describe the kinetics of the 

SOS regulation we need to enumerate the cellular events responsible for the 

observed LexA and RecA dynamics. From the current model for the SOS 
regulation outlined in the Introduction (see also ref. [1]) we infer that LexA 
concentration increases through lexA-controlled synthesis from the lexA lo

cus and decreases through spontaneous and RecA * -mediated breakdown of 

LexA. RecA concentration increases through lexA-controlled synthesis from 

the recA locus and RecA* reversal to its non-active form (RecA), and de

creases through RecA transition to the active form and RecA breakdown. 

Activation of RecA occurs in the reaction with ssDNA that originates in the 

chromosome after UV irradiation [5, 6]. The formulation of the SOS regu

lation in terms of these "inflow" /"outflow" events allowed us to write differ
ential equations with respect to LexA, RecA and RecA * concentrations [2]. 

Using notations CL, CR and CR* for these concentrations the differential 
equations read thus: 

dCL 
dt 

aL 
1 + KLCL - bLCLCR* - eLCL, 

i2 

-. 

(1) 

dCR 
dt 

aR 
1 + J{RCL - eRCR - bRCRCs + bR*CR., 

dCR. di = bRCRCs - bR.CR•· 

(2) 

(3) 

HPrf' Cs dP11otes concentratiou of ssDNA in a cell which is used to mea
sure t lie kvel of the SOS signal. Eqns ( 1-3) describe kinetics of LexA and 

Re'.:A concentratio11s in a cell after DNA damage. The specificity of a DNA
damaging treatment is hidden in the function Cs(t), the SOS signal kinetics, 

a11d as soon as we somehow know this function we are able to simulate LexA 

and RecA concentrations. In what follows we will calculate Cs(t) for the 

case of UV irradiation. 

3 Kinetics of tp.e SOS Signal 

3.1 Increase in the Level of the SOS Signal 

It ha.s lwen shown previously that the SOS signal originates during replication 

of a UV-damagPd chromosome [5]. It is believed that when the replisome 
e11connt1•rs a PD, it disassembles, delays and resumes its movement further on 

leaving a gap oppositP the PD. Indeed. single-stranded defects were detected 

in an experiment with replicating UV-irradiated uvrA 6 muta11t of E. coli [7]. 
The process of gaps generation is schematically shown in Figure l. Now, 
the idea is that if we count ea.ch PD met by the replisome we will be able 

to follow the accumulation of ssDN A of gaps. The rate of gaps production 

is inversely proportiona.l to the period of time required for the formation of 

one gap (fa). Thinki11g this way we obtain the differential equation for the 

num her of gaps formed by t min (Ne): 

dNc 1 - = - (4) 
dt ta 

Let L be the number of base pairs in the E. coli chromosome, and N0 the 

number of PDs introduced by a given dose of UV radiation. The value of 
iG can be calculated from the dela.y time, (tp), and the time required for a 
replisome to travel between adjacent PDs. Assuming PDs to be distributed 

uniformly a.long the chromosome with the average distance between them 

l = L /No, which is true for N0 ~ 1, we obtain 

l 
ic=tp+-, 

Vs 

:J 

(5) 
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Fig. 1: Scheme for generation of gaps during replication. Two forks proceed 
from the origin of replication ( oriC) at identical rates producing gaps at each 
PD met. Triangles denote PDs, large circle denotes the fork. 

where vs is the rate of chain elongation by DNA polymerase III. While ta is 
constant in case of a uvr- mutant because of a defect in the PDs' removal 
system, in a wild-type cell it becomes a function of time. The way excision 

repair modulates the SOS signal kinetics is in fact by removing a portion of 

PDs in front of the replication fork, thus reducing PDs' density. 
To calculate ta, let Lr be the distance covered by the replisome by t min. 

It is determined from the formula 

Lr= vs(t - tpNa), 

where vstpNa accounts for the distance not covered by the replisome because 
of delay at Na PDs. The amount of parental DNA to be replicated calculates 

from Lr as 
L L 

Lnon-r = 2 - L, = 2 + vs(tpNa - t). (6) 

Here 1/2 in front of L is to account for the fact that the replication is bidi
rectional 1 . To proceed let us introduce two auxiliary variables: NE for the 

number of PDs excised from an unreplicated part of the chromosome, and NL 
for the number of PDs left in the unreplicated part of the chromosome and 

potent to give rise to gaps. Variables Na, NE and NL follow the constraint 

No 
Na+NE+NL= 2 . (7) 

Assuming the distribution of PDs to remain uniform, the average distance is 
determined from the formula 

_ Lnon-r 
l = -;:;;-· (8) 

1 Since two replication forks proceed from a single origin of replication at similar rates, 
it is convenient to. perform calculations for one half of the chromosome only, and then 
multiply the result by two. See Figure l. 
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Then, substituting Z, Lnon-r and ta from eqns (8), (6) and (5) to eqn (4), we 
obtain differential equation for Na in the form 

dNa NL 
dt = No ' 

To+ -tp - NEtP - t 
2 

(9) 

where T0 = L/(2vs) is the length of the Cperiod of the cell cycle when the 
DNA replication occurs. • 

Kinetics of excision repair of PDs is to be described by an exponential (36) 
(see Appendix for derivation). Function (36) in current notation can be 

rewritten in the form of differential equation 

dNE = kNL. 
dt 

(10) 

From the constraint (7) and eqns (9-10) we obtain the differential equation 

for NL: 

dNL = N [ 1 _ kl 
dt L No 

tpNE+t-To- 2 tp 
(11) 

From the biological meaning of NE and NL 2 there follow initial conditions 

for eqns (10-11): 

NE(O) = 0, NL(O) = No 2 . (12) 

Thus, we have to solve eqns (10-11) with initial conditions (12), and use the 

constraint (7) to obtain Na(t). The increase in the concentration of ssDNA 

will then follow the function 

cine( ) = 2Na(t)La . 
s t NAV ' 

(13) 

where La is the average length of a gap, NA is the Avogadro number and V 
is an average volume of a bacterial cell. 

3.2 Decrease in the Level of the SOS Signal 

DNA damage induced in E. coli by UV radiation undergoes complex evo

lution until it is repaired via multiple pathways (8]. Absorpton of UV light 

2 At the moment of irradiation there are no PDs excised, and all of the introduced PDs 
are in front of the replication fork. 
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energy results in the formation of PDs (primary lesions). Gaps in daugh
ter strands (secondary lesions) form after replication proceeds past PDs [7]. 
Decrease in the SOS signal level is due to gaps repair. Repair of gaps can 
be described formally by the differential equation in the following way. Let 
NR(t) be the number of gaps already repaired by t min. The rate of repair is 
then proportional to the number of intact gaps, which gives us the equation 

dNR 
dt = vR(Na - NR) (14) 

with the initial condition 

NR(0) = 0, (15) 

where VR is the parameter reflecting the gaps repair capacity of a cell. From 
this it follows that the concentration of ssDNA of gaps will decrease according 
to the function 

ctec(t) = 2NR(t)La 
NAV . (16) 

Finally, the concentration of ssDNA in a cell is calculated from formu
lae (13) and (16) as 

Cs(t) = C1nc(t) - ctec(t) = !~~ [Na(t) - NR(t)]. (17) 

To calculate ( 17) we need to solve eqns ( 10-11) and ( 14), and use the con
straint (7). 

4 Estimation of Parameters 

Parameters of the model include aL, KL, bL, eL, aR, · KR, bR, bR., eR, lp, 
La, k and VR. We have estimated the majority of these parameters from 
the experimental data elsewhere [2]. Parameter definitions along with their 
values are summarized in Table l. Only two parameters bR• (rate constant 
of RecA* reversing its active conformation back to RecA), and VR (rate of 
repair of gaps) are not available in the experimental literature and are to be 
fitted. 

Initial conditions for eqns (1-3) are CL(0) = 2.2 x 10-6 M, CR(0) = 1.2 x 
10-5 Mand CR.(0) = 0. Other constants used in the above equations take the 
following values: L = 4.72 x 106 base pairs (length of a E. coli chromosome), 
vs = 5.9 x 104 base pairs per min (rate of DNA polymerization), T0 = 
40 min ( duration of a round of replication), NA = 6 x 1023 mole-1 (Avogadro 
riumber) and V = 10-15 litres (average volume of a E. coli cell). 
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Table 1: Values of model parameters estimated from experimental data 

Notation Definition Value 

<lL Maximal rate of LexA productiona 2.9 x 10-6 M min- 1 

f{L Binding constant of Lex~ to lexA 5.0 X 107 M- 1 

h Rate constant of LexA cleavage 5.8 x 104 M-1 min-1 

eL Rate constant of LexA autocleavage 1.2 x 10-2 min-1 

aR Maximal rate of RecA productiona 1. 7 x 10-5 M min-1 

J{R Binding constant of LexA to recA 5.0 X 108 M- 1 

bR Rate constant of RecA activation 3.7 x 105 M-1 min- 1 

t:R Rate constant of RecA breakdown 1.3 x 10-3 min-1 

tp Delay time of replisome at a PD 0.17 min 

La Average length of a gap . 900 nucleotides 

I, Rate of PDs' excision repair 0.2 min- 1 

~ --

a As is the case for LexA(Def) mutant with total absce-nce of the locus repression 
by LexA protein. 

5 N on-dimensionalisation of Equations 

-

To perform numerical solution of model differential equations we need to non

dimensionalize the equations. Let us introduce the following dimensionless 
variables: 

CL CR CR. 
X = CL(0)' y = CR(0)' z = CR(0)' 

Cs t ,-
. - L/(NA\I)' T = Tu' 

Na Nn NE N1, 
(18) nc; = Nu/2' 11n = Nu/2' ns = Nu/2' nL = Nu/2 
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and the following dimensionless pa.rameters: 

aLTo 
ki = CL(0)' k2 = J{LCL(0), k3 = 6LCR(0)Tu, 

k6 = I<RCL(0), 

k1 = eRTo, 

k4 = eLTo, 

bRLTo 
k --, 

8 = NAV 

aRTo 
ks = CR(0)' 

kg= LaNo 
L ' 

tpNo 
k11 = 2To ' A= bR.To, 

kw= kTo, 

B = vRTo. 

In dimensionless variables (18) model equations read thus: 

dx k1 
- - ---- k3xz - k4 x 
dr - 1 + k2x ' 

dy ks - = --- - k7y - k8 ys + Az, 
dr 1 + k6 x 

dz 
dr = ksys - Az, 

dnE 
dr = kwnL, 

- = nL ------- - kw , dnL ( 1 ) 
dr k11 (nE-l)-l+r 

dnR 
dr = B(na - nR), 

na = 1 - nL - nE, 

s = kg(na - nR)-

Initial conditions for differential equations (20-25) are 

x(O) = 1, 

nE(0) = 0, 

y(0) = 1, 

nL(0) = 1, 

z(0) = 0, 

nR(0) = 0. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

Values of dimensionless parameters (19) calculated from Table 1 are sum
marized in Table 2. Parameters k9 and k11 are to be calculated at a given 

number of PDs, (No), and parameters A and B are to be fitted. 
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Table 2: Values of dimensionless model parameters 

Notation Value Notation Value 

k1 52.7 k1 0.052 

k2 llO ks 1.16 X 105 . 
k3 27.8 kg 1.91 x 10-4 • N 0 

k4 0.48 kw 8 

ks 56.7 kn 2.13 x 10-3 · N0 

k6 1100 

6 Results and Discussion 

The model formulated above allows simulation of LexA and RecA regula
tory proteins kinetics. We have solved the Cauchy problem (20-25) with 
initial conditions (28) numerically to obtain kinetic curves x( T ), •••. Values 
of model parameters were from Table 2. Values of parameters A and B 
were determined by a least squares method when fitting simulated x( T) to 
experimental data on LexA concentration kinetics taken from (5). The_ dose 

of UV radiation in the experiment was D = 5 J/m2
• The corresponding 

number of introduced PDs equals N0 = 250 as calculated from the formula 

N0 = 50D (7). 
Simulated LexA concentration in a cell alongside with experimental data 

from (5] is shown in Figure 2. One can see that the simulation agrees with 

experimental data reasonably well. We believe that this agreement validates 
our model. The last part of the simulated curve seems to disagree with 

experimental data, however, we do not think that this inconsistence with the 
data should be attributed to some kind of irrelevancy of our model. This 
is rather due to inconsistence of the data set used here with some other 

facts concerning LexA kinetics. Indeed, it has been reported previously that 
the level of lexA mRNA in a cell induced with a similar UV dose tends to 

decline slowly, reaching its basal level only at 180 min (9]. This finding 
indicates that LexA protein accumulates relatively slowly as predicted by 

9 
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Fig. 2: Simulated LexA concentration in a wild-type ( solid line) and a uvr

( dashed line) E. coli cell after UV irradiation at the dose of 5 J / m 
2

• Experi
mental data are shown with symbols: circles for wild-type and triangles for 

uvr- cells. 

our simulation. However, to resolve this inconsistence to the endpoint, more 

research is needed. 
To compare LexA kinetics in a wild-type cell to that in a uvr- cell, we 

have chosen to show previously simulated in [2] LexA curve for a uvr- mutant 

(Figure 2, dashed line). As expected, LexA level stays_ low until replication 
terminates at 60 min because no PDs' excision occurs in a uvr- cell. The 
effect of excision repair nonfunctionality is in that it lets the prolonged in
duction ·of the SOS response to ensure maximum recovery of a cell from the 
DNA damage. This can also be seen, and more clearly, from the simulation 
of the SOS signal kinetics, as shown for both wild-type and excision repair 
deficient cells in Figure 3. In a wild-type cell. the concentration of ssDN A 
increases shortly after UV irradiation to the level of about 12 µM, then de
creases relatively quickly and finally disappears by 40 min. In contrast, in 
a uvr- cell ssDNA persists for a longer time, as long as the replication of 

the chromosome takes place. The maximum level of ssDNA is twofold high
er (approximately 25 µM). When the replication is over, concentration of 
ssDNA drops quickly because of DNA repair. Interestingly, the initial rate 
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Fig. 3: Simulated concentration of ssDNA in wild-type (solid line) and uvr

( dashtd line) cells. UV dose is ,5 J/m2
. 

of ssDNA production is the same in both wild-type and uvr- cells, implying 
that excision repair in a wild-type cell does not remove PDs fast enough to 
modify the rate of the SOS signal production, and consequently RecA acti

vation and LexA cleavage, during the first few minutes of the SOS response. 
This is consistent with the finding of Sassanfar and Roberts [5] that initial 

LexA cleavage rates are the same in wild-type and uvrA mutant strains. 
We conclude that the SOS response is more pronounced and lasts longer 

iu uvr- mutant than in a wild-type cell because of the lack of excision repair 

system functionality. Excision repair modulates the SOS response by directly 
affecting the SOS signal kinetics. It removes PDs in front of the proceeding 
replication fork, lowering the amount of ssDNA produced and speeding up 

the SOS response turn-off. 
Fitting of LexA kinetic curve to experimental data produced the following 

values of parameters A and B: 

A= 150 ± 40, B = 10 ± 2. 

Calculating dimensional equivalent of A we obtain 

bR.=4±1min-1
, 
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which corresponds to the half-life of RecA* reversing its activity equal to 

t 1;2 = 0.17 ± 0.04 min. 

The value of t 1; 2 calculated this way does not reflect an intrinsic stability 
of RecA • protein, but rather is the characteristic of the turn-over of RecA • 
under specific conditions of SOS induction. At equilibrium RecA unbinds 
from ssDNA with a half-life of about 30 min [10]. However, in a SOS-induced 
cell t1; 2 appears to be much shorter because RecA molecules are displaced 

from ssDNA when gaps are repaired. 
Calculating dimensional equivalent of B we obtain 

VR = 0.25 ± 0.05 min-1
, 

which is the rate of repair of gaps. This parameter is the characteristic of 
repair capability of a cell. Interestingly, this value is similar to the rate of 

PDs removal by excision repair (Table l ). 
Concluding, we see that the core of the model [eqns (1-3)] possesses the 

considerable generality in that the model can be used to describe the SOS re
sponse kinetics after any DNA-damaging treatment, provided the SOS signal 
kinetics (function C5 (t)) is known. Furthermore, one can add equation(s), 
similar to eqns ( 1-2), to describe the kinetics of induction of any SOS gene 
whose transcription is controlled by LexA. This would allow broader quanti
tative investigation of expression of various SOS functions. Different mutant 
strains can in principle be investigated, by simply varying values of appro
priate parameters and/or modifying the equations. An example of such an 
approach is given in our previous work [2], in which we analyzed uv,- and 
dnaC28 mutants. The latter one is a temperature sensitive replication initia

tion mutant. Analysis of the LexA protein and the SOS signal kinetics in this 
mutant strain provided insights into the role of DNA replication in the SOS 
response regulation. One of the SOS functions is the enhanced mutability 
of the bacteria.I chromosome. Kinetic analysis of this particular important 
subset of the SOS response, mediated by products of recA and umuDC SOS 

genes, may also be performed with our model. 

Appendix: Kinetics of Excision Repair 

The mathematical formulation of the problem is as follows. We search for a 
function N pD( t) describing the kinetics of PDs' removal from a UV-irradiated 

12 

bacterial chromosome by excision repair, provided that at the moment t = 0 

there are Npv(0) = N0 dimers induced by a given dose of UV radiation. 
Consider stochastic process Z(t) with a denumerable set of states indexed 
from O to CXJ. Let us put the number of PDs, (Npv), into correspondence 
with the state number. The change of the state of the process Z(t) occurs 
at random times T 1 , T 2 , ••. as a result of PDs' excision. Assume moments 
T1, T2, ... comprise a Poisson fluence with density µ. Let variable c(t) be 
the number of moments Tk from the interval (0, t). Hence, the probability 
of transition from a state number n to a state number k is C!an-k(l - a)k, 
and the probability to remain in the state number n is (1 - at, where C! 
is the binomial coefficient and O < a < l. Let pn(t) be the probability 
for the process Z(t) be in the state number n at a given moment t. The 
required variable Npv(t) will then be the mathematical expectation of the 

, state number of the process Z(t). 
It can be shown that pn(t) satisfies the following denumerable set of 

differential equations: 

d:," ~ µ [ t { r+' (t)C;+,a'(l - a)") - P"( t)] , n = 0, l,... (30) 

with initial conditions 

Pn(0) = an 2: 0, 
00 

Lan= l, 
n=D 

(31) 

where an are constants. The problem (30-31) complies with the theorems 
formulated in [11] from which it follows that there exists the unique, bounded, 
equicontinual solution of (30-31) determinal at t E [O, CXJ ). 

In order to find this solution let us introduce the generating function 

according to the formula 

00 

<P(t,x) = LPn(t)xn, 
n=O 

where x E (0, 1]. Rewriting (30-31) in terms of <I>(t,x) we obtain the differ
ential equation 

8<I>(t, x) = µ [<P(t, (l _ a)x + a) - <I>(t, x)] 
8t 
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with the initial condition 

00 

<l>(O, X) = L anxn (33) 
n=O 

and boundary condition 
<l>(t, 1) = l. (34) 

The solution of eqn (32) with initial and boundary conditions (33) and (34) 

follows in the form of a series of functions: 

oo oo tk k 
<l>(t,x)=eµtLLan :i [1+(1-ol(x-l)r. (35) 

k=0 n=0 

The mathematical expectation for the problem (30-31) is defined as M(t) = 
8<l>/8xlx=I· Differentiating (35) with respect to x according to this definition 

and letting x = 1, we obtain ' 

M(t) = M(O)e-aµt_ 

Coming back to the number of PDs we see that it decreases with time fol

lowing the exponential: 
Npn(t) = N0e-kt, (36) 

where k = aµ is the rate of pyrimidine dimers excision. 
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AKceiioe CB. E19-9.7-192 · 
, MaTeMarnqecKrui MO)leJJh pel)'illlU~ii SOS:OTBeTa 6aKTepi1ii Escherichia CYili )lllKOro rnna : . . . . . . _,·, - . . . . ,/• . . . . .. : . 

Perymium, SOS-oTBeTa 6aKTejJ11ii Escherichfo coli, 11pe11crnemuomero co6oii 11a6op 111111yu116eJJ1,111,1x 
· KJJeTO'lllh!X peaKIU-lii,. 11p0llllJllll011lllXCll: nOCJJe: IIOBpelK)lelll!lf JlHK, npm!CXO/llfT _ B: pe3Y.%Ta.Te oco6oro 

mam,1011eiiCTBllll 6en'KOB LexA II RecA. LexA-6e.~oK lfB.HSICTCll OOlllllM penpoccopoM re110B sos:cllCTCMhl, 
) RecA-6eJJO_K,, Oy'/ly'!H aKT11B11pona11 _ B peaK.UIIH c: SOS-111111yur1py10llllfM CllrnaJJOM,. yci.op~eT peaKiuilO, 
cnof!Tmrnoro pacme1me1111ll·.LexA-6enKa. Pa11ee ·M1,1 01111c.aJJ11 pel)'JJlfllfllO_SOS-c11cTcMhl npu 110Mom11 
m1¢rpepem111aJJ1,11Mx ,ypaime·1111ii ornocHTe.~1,1rn':·'.K<i11ue1rrpai111ii · 6c.,1KoB ,LexA II RecA. ·. Bxo1111oii 

. <p)'IIKUl!eii K ypasiieHllllM MO)leJJII lfBJJlleTClf 3aBHCIIMOCTh ypoBliH SOS-cimia;;a OT epeMeHII. 8 '11acTOlll1leii 
pa6oi-i: npi:)lJlaraeTCll, MO)leJII, /lilll_ pac'leTa KOIIUCl!Tpaum_,, 0/lllOHliTeBoij_ JlHK' (SOS-c11n1a.ria);-KaK 
cjiyilKllllli Bpei:tt:'1111 ~ KneTKax )llfKOfO Tl! na ~OCJJ; ym,Tpa<ji110JieTOBOro 06nyqe1Ulll. Hcno,%3}'ll ypae11e1111l1 

. ~io11eJJ1i, ~fO)KIIO paCC'IIIThIBaTh KHHeTH'!eCKIIC Kpl!Bhle 'iiel)'JJllTOpHhlX. SOS-6c'7iKOB ~OCJJe_' noepelKJleHHll 

. "JlHK C UC.~1,Kl 113}"1el!lill KIIHeT!IKII SOS-ornern.'Pacq;T KimernqeCKoii. KpllBOii L~xA~6eJJKa cornacyeTCJI 
C 3KCnep,;Me11ian1,i1mm /13.IIHLIMII. B pa6oTC 11pose11eiio' cpae11e1111e pac•1ern1,1X: Kllllern'leCKIIX. Kpiinux . 

LexA~6eJJ;a--y 6a~Tep;,ii /llf_Koro THfla II uvr~-MYTaI;;~. ~io npeil~Ta~llCTCll IIOJJi:JHhlM"iipH IICCJJe)lOBaJl;i~ 
pom{ uvrABC-3aBIICIIMOii 3KC[lll31101111011 penapau1m B rp~p~mposa1111l, KHHernirn SOS-ornern: 06cYlK
:uaercsi'Bl)~MOlKIIOe 11p11Me11e1111e Mo.fle.in.1 K IICCJJC/lOBaHHIO paJHH'IHhlX npo»BJJCHHiiHH!lYKUIIH-SOS-orneTa .. 

, : '. Pa6orn e~111i:m11~11a B OT11ene1111·11 pa,u11au11om11,1x 11.pa;;,;06irnn~ri1'!~crnx 11cCJ1;ll~~~11ii,OH5iH:, 
, -- . . . . ' . / ' ' , ,_ . . . '.. . - ~ 

A~senov S.V. 2. , . . . . . , 
.Mathematical Model ofthe SOS Response Regulation in Wild-Type Escheric/1/11.co/i 

.·• ReJ~ulation ~fthe sps ies~<Yn;e in Es~J,;;i~hit; ~:oli: whic~ is a set ofi~ducibl~- c~ilul; re~ctions . 
C introduced after DNA damage, is due to specific interaction 'of LexA and Rec A proteins. Lex A protein. 
is a ~01nmon repressor of the geiiesofthe SQS system,,and .RecA pr~tcin~ once transiently activated' 

. by the so-called SOS-inducing signal; prom~tes.LcxA protein destruction, we·~ave described the sos 
regu]ati.on by means of differentjal cquations·wilh regard to· LexA and,RecA concentrations elsewhere. 
The <<input;, function for model equations is 'the level of the SOS,inducing signal against li1i1e. Here We. 
present. a means tor calculating Jhe concentration cir-;ingk-strandcd DNA (SOS-inducing signal) 
as a function of time in wild-type cells after ultravioletirradiati'on. Wi\h model equations o~e-~ai_1simulate 
kinciic curves of sos regulatory 'proteins after, DNA damage I~ survey th~ sos response kinetics.' 
Simulation of LexA p~oiein kinetics agrees with experiniental data. We COlnpa(~ simulated LexA kinetic·,' 

-, ~ . . . . . . - _,. ~-. . . ' . - \_ . ..: . , ~ . --
curves, in wild-type and ·uvr-:- mutani bacteria, 'which is' usefol in investigating-the way u1·rABC0dcpendcrit 

·excisiou'rep.air,moduiat~s ihe sos response kinetic~. Possible applications of the model to investigating 
various aspects ·or the sos induction arc discussed. ' l • • •• ,' -- • 
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