


.-The purpose of the . present work is the elaboratlon of a mathemat1ca1

“concrete data,

i The problem is compllcated by two c1rcumstances.,«'

\fkl/ the’ mechanlsm of radon anomalles 1s not sufflcxently clear,

Physlcal methods of measurements of the radon concentratlon 1n 5011,
water. and ground air in some parts of Ashkhabad seismic area are
descrlbed in [Ashlrov T.A. et .al.,1986].
sc1entlsts are certain that there is a temporal connection between radon
concentratlon anomalles ‘and' selsmlc events.

«“

method for the analysls of recorded radon emlsslon ‘data and the detec—

tion of 1ts 1nformat10n 1ndlcatlons ‘whlch could be correlated with
'51gn1f1cant selsmlcoevents,

and the appllcatlon of. thlS method to some
in particular, to radon concentratlon in® the ground a1r

‘hiof an area. in Kopetdag Peredowoy Razlom (Central A51a).

since some years ago -a number of papers ‘has appeared covering ques=:

ktlons of earthquake predlctlon by such precursory effects:as radon,
furanlum etc,

[Ashlrov T.A. et al.,1986 Borrodall S.’and Enriekson

‘s.,1980 1980, Varshal G M.,1985], however, a problem of creatlon of an’
. eff1c1ent method for such pred1ctlon st111 rema1ns at the beg1nn1ng of

1ts solutlon. e BRI

.refore, the causal connectlon between them and

say,‘earthquakes is
not clear e1ther,\/ :

P

'2/ the system isa nany factor one, and extractlon of 1nformat10n 1nd1-: S
:;v T

‘catlons from thls dlstrlbutlon, i.e., “its parts and detalls,‘
whlch could be matched w1th strong earthquakes by, at least 'correlaf

is 1tse1f a complex mathematlcal problem.vl

tlon connectlons,

ThlS paper is 1ntended to’ overcome somehow the d1ff1cult1es p01nted out

Slnce bu1ld1ng an adequate physlcal model 1is- not p0551b1e now, it seem"
that: the most” approprlate way to tackle w1th such problems is. the deve-

' lopment of: formal nethods for decodlng 1nformat10n structure of dlstrl—
butlons..n' SR

,‘(‘

CItis clear from the general con51derat10ns, that 1nformat10n 1nd1ca—’
‘Ttlons are’ e1ther characterlstlc detalls, concentrated w1th1n some,

"1ntervals of argunent values,'or characterlstlc detalls of analogous or

gomologous form, repeated along the whole dlstrlbutlon,,‘

. . . = [ .‘ . e Sl Lo {. N
T 1.‘The'decomposition’of distributlons R

. A mathematlcal basis of the formal analysls of. the slmplest 1nforma-1p

tlon structure of dlstrlbutlons 1s the add1t1ve decomp051tlon o LT
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[Zlokazov V.B.,1985], or the extraction of components from them.

Shortly,
Problems of the function decomposition can be systematized in a

it can be described as follows.

framework of a following formalism. Let us consider an expression

k . .
f(t) = s £ (t) + e(t), (1)
i=1 i
where f. and e are functions, mutually linear-independent. The function
i

e(t) is singled out, called the error of the function f, and the maximum
of its amplitude at each point is t assumed to be known. i
The semantic interpretation of the functions fi is as follows: they are
factors, determining the structure of the summary distribution f and

part of them is linked with events of interest by a causal connection.

Under qualitative decomposition a mapping

£ -> (n,M1], i=1,2,...,n

is meant, where Mi are disjoint function classes such, that fi € Mi for
some indices 1i.
A function class Mi is called the model of component fi.

Under quantitative decomposition a mapping

£f -> i=1,...,n,

(nlg (X)),
i
is meant, where g. € M. .

J J
Classes M describe possible types of  formal factors, which can deter-
mlne the structure of a distribution, and items g; are concrete values
of these factors. . ‘
One can point out the following modifications, which exhaust the concept
of decomposition: a factor decomposition and classification ones (dis-
criminant and clusterization).
All this is the operation which allows us to solve our problem: automa-

tically recognize the additive structure of functions and distributions

" and extraction components from them, which are important to us in infor-

mational or classificational sense.
The next step is the formalization of a concept of a
can be done on the basis of the practice of the analysis of real

component. This

experimental data.




Generalizing a concept of a function.component, extracted by a visual
analysis of function graphs, one can formalize the following types of
components: ’ ) ’

1/ almost-concentrated ones, i.e. functions, integrable at a given de-
gree over all the axis, i.e. such that for any € and a given positive

n there exists a region A, A € R, such, that

r n n
L 5 | £(t) | d&t - h | £(t) | dat | < €;
A R

2/ almost-periodical ones, i.e. such that for any € > 0 there exists - a
positive number L such that any interval of length L contains at
least one T such that for any t

| £(t+T) - £(t) | < e

holds:

3/ distributed components, i.e. functions non-integrable over the total
axis. ‘

‘REMARK 1. For almost-concentrated components the region A is called
integral (§,n)-support of the function, and for almost-periodical ones
the number T is called the almost-period.

REMARK 2. Finite functions are typicél instances of almost-concentrated
functions. Their supports for any 8§ and n are the regions of their defi-
nition; as instances of almost-periodical functions one can take linear
conbinations of continuous periodical functions with incommensurate
periods, or simply a linear combination of continuous periodical func-
tions.

An arbitrary function can contain any combination of above-mentioned
components. )

These fundamental components represent the most universal typification
of elements of functions of an additive structure, by which distribu-
tions, containing experimental information, are usually described.

A multiplicative structure of functions can be reduced to the additive
~one with the help of logarithmic transformation.

Since for almost-concentrated components moments are defined:

i

mi = (t-ti) f(r)at,

r

1

J
A N

this gives us a possibility to describe such functions using the follow-

ing characteristics:

1/ m,, Or, function area, at i = 0;

2/ tc, or a center of a function; this is a root of equation m, = 0 at

at i=1;
3/ m,/mgy, or width of a function; at i = 2 and t, = t,.

Let us denote these characteristics by letters
s, P, W.
Almost-periodical functions are characterized by the following quanti-
ties: i
1/ amplitude, or the maximum value of a function;
2/‘Almost-period (or simply period).
We denote them by letters:

A, T.

Now we can formulate our problem as follows. Let be given:

f(t) = a distribution of recorded radon yields along a time interval
(tgity)i
z(t) = function of strong seismic events, not equal to zero at some

points ti (t0 < ti < tl), ?nd ?qual to zero elsewhere;
u(t) = a continuous function of distributed type;
It is required:
1/ extract almost-periodical components from the distribution f(t):
2/ extract almost-concentrated componer.s pk(t) from f(t):;
3/ determine correlations between z(ti) and components pk(t). '
4/ determine correlations between z(t) and function y(t) or their parts

without extracting these parts.



It can be that a structure of f(t) is not explicit. In such a case one
needs to find a transformation Q such that the function d(t) = Q*f(t)
will have a more pronounced structure and then operations 1/-3/ should
be performed over d(t). '
The structure-enhancing transformations are.
1/ First of all one can use such simple function transformations as
convolution or linear filters of smoothing type

g(x) = f' K(x,t)f(t)dt

with corresponding weight function K(x,t):

or nonlinear filters, such as, e.g., autocorrelation:

g(x) = f £(t) f(t+x) dt.

However, it should be noted that smoothing, based on principles of
a frequency filtration, is not relevant for our case, because in
physical curves information has, as a rule, an amplitude—ffequency
coding.

In this case we can recommend filters of variational types, which
possess important peak-preserving properties, described in
[Z2lokazov V.B.,1985].

A smoothed function g(t) is obtained from f(t) by minimizing

2 2
= w(t)g’’(t) +  Z (£(t) - g(t)),
t t ,

where t is a discrete variable, g’’ is the 2 derivative (difference)
of the function g(t), and Ww(t) is weight function, equal to

(1+ g4°(t) )

Here 94’ is the 1st derivative (difference) of some a priori esti-
mate of g(t).

This filter efficiently suppresses the noise component, but pre-

serves peaks, both weak and strong ones.

2/ The iﬁformation can be contained in the dynamics of changes of f(t)
and then the derivative f’(t) or its modulus should be analyzed.

g(t) = R~ £(t),

where R is a discrete analog of the differentiation operator.
The discrete derivatives can be computed by one of the following

formulae
a/ g’ = MAX(-£f’,0)
b/ g’ = MAX(f’,0)
c/ g’ =1f" 1;

Every formula produces its own patterns.

3/ The following transformation is peak-amplifying

g’’(t)

and, in addition, it suppresses a continuous component, which, as a

rule, does not contain information.

Method, used for search for periodicities, both harmonic and anharmonic

ones, is described in [Zlokazov V.B.,1990] in detail.

An ideal instance of a concentrated function is a peak - non-negative
function with one maximum, not equal to zero within a bounded interval
[tl,tz].

Surely, an arbitrary distribution can have concentrated components of
the most different types. However, for an automatic search and analy-
sis of them it is expedient to apply some transformation to the distri-
bution, which transfer these components into peaks. These are various
combinations of smoothing and differentiating filters, mentioned above.



Method, used for the search of peaks, is described in [Serebryannikov
M.G. & Pervozvansky A.A.,1965]. The work of its algorithm gives us
estimates of peak characteristics, which in our case are above-mentioned
function moments. \ ' A

Let a seismic event of interest be characterized by a pair of num-
bers: amplitude A and time t, and let be given a set of pairs [Ai,ti],
i=1,2,...,L and the function f(t), whose information structure having
been analyzed, the results were: the function contains: .
1/ a set of periodical components [wj(t)'Bj’Tj]' j=1,2,..,m; i
2 a set of concentrated components - peaks [pk(t),sk,Pk,Wk], k=1,..,n;
and a distributed component b(t), which is of no interest to us.
Here T. are periods of components wj, and Sk,Pk,Wk are areas, positions
and halfwidths of peaks. ’

our final problems then are formulated as follows:

1/ test for common periodicities of A(t) and f(t);

2/ test for dependences between pairs [Ai,ti] and threes [Sk,Pk,wk],
in particular, for presence of a common time shift between [ti] and
(P.1
that for any ti there is a Pi, satisfying the relation

i.e. determine whether there exists T with a small error & such

- +
lPi til < T £ 8,

3/ test whether there exist dependences between parts of z(t) and y(t)

without extracting these parts.

The first two problems can be solved by such techniques as those of
cluster-analysis.

The third problem is a complex problem. To solve it an approach_was used
called a generalized fitting. It consists in the following. '

We have a problem: functions

Y(X) =y (x) + y,(x) + e (x),

f(x) = fl(x) + f2(x) + ez(x) .
s 0

being given, where yl,yz,fl,f2 are components and el,e2 are errors, one
needs to find out whether component, say, f., is connected with the com-

1
ponent, say, y by a simply recognizable dependence.

A method for constructing such dependences can be formed using the
method of approximation described in [Zlokazov V.B.,Comp.Phys.Comm.,1989.
,V.54]. Namely, if fl(x) is a result of some continuous transformation
of a function yl(x), then we can define fl(x) as the rough model of the
function yl(x), and approximate the latter by the former as follows:

y =1[Q (x)f (P (x)) ], where
1 k 1 n ’

Qk and Pn are polynomials of degrees k and n, respectively, or other
simple approximators. '
In the simplex case we can write:

y = a- f (-—--- ) (2)

or Q0 = a, and P, is ratio of linear polynomials. The parameters a,p,w,cC

1
have a clear physical meaning: amplitude, shift, and broadening.
The next step is: how one can make the approximation (2) without having

explicitly extracted components of f, and y1:

1
The approach used was as follows.

We use f and y instead fl and MoK

y=a'_f( ————— )

But then our goal is: find metrics p such that the approximation y by £
in this metrics is given by an element which in fact is y; as function
of f1 of the type (2). One can suggest such a metrics.

Let P denote the parameter vector and be given a vector Po, which is a

priori estimates of Pp. Let’s take a quadratic expression

2

Z w(x,P)[ y(x) - £(x,P) ], (8)

X 0
where

2 .

1/1le(x) 11, if thx)!l < c (9)

w(x,P ) = 2 2
0 (1+8)/[lle(x)I] ((h(x)/c) +B)1, otherwise.



Here h(x) = y(x) - f(x,Po), c and B are given constants.

One can point out some practically important particular cases of filtra-

tion, when approximation in such a metrics indeed provides fitting of

only y,(x) by fl(x):

a/ a distributed function from its sum with almost-concentrated, if the
union of the integral supports of the latter does not cover the
total region, at which the former is defined;

b/ almost-concentrated from its sum with other almost-concentrated, if
the union of the integral supports of the latter does not cover

the support of the former.

Minimization of (6) and (7) is implemented with the help of an iterati-
onal procedure. Using it one can either fix the initial w(x,Po) or
change it at every step, counting values of parameters at the previous
step for their a priori estimates.

The coefficient c characterizes a priori estimate of the region of
possible values of quantities h(x), and if | h | = c holds for all
the x, the estimates (2) and (3) are usual L.S.-estimates; for those

x for which | h | > ¢ holds norms of e(x) are recalculated approxi-
mately by h(x)/c times.

The coefficient B is for the control: it regulates the extent of the
effect of the norm recalculation: at B=0 its effect is'maximum,

whereas at B = o recalculation vanishes at all, and the minimum

of (2) and (3) is given by the conventional L.S.-estimates, irrespec-
tively of the values of h{x).

One can show that a number of conditions being satisfied the procedure
will give the required solption with an admissible accuracy ([Zlokazov

V.B.,Comp.Phys.Comm.,1989,v.54].

2. Application of the method

The described method was applied to the analysis of radon emission
and atmospheric data from Ashkhabad region within a radius of 600 km.
Earthquakes of the class above 10.5 were taken as seismic events.
Such amounted to 21. Let E denote the set of their ti

11 145 192 259 306 497 744 760 761 762 768 775 786 802
822 824 837 908 912 981 1054.

The following distributions were analyzed for the possible connection

10

of their structure with given event:

1/ R(t) = time distribution of daily records of soil air radon concent-
ration;
2/ A{t) = time distribution of daily records of atmospheric pressure;

3/ S5(t) = simulated data, which were. sum of components.

a/ anharmonlc per10d1c1t1es
4

(f(t)=A-max(51n(kt),0) )
with periods 365, 29, 7; » .
b/ ‘harmonic periodicity with ﬁhé period 90;
c/ peak-like functions, a constant one, énd random nolse.i
Peaks were distant from events tested by 6-7 days (with a certalg
dispersion); 4 peaks had no relations to the events.

The length of the distribution was approximately equal to 1500

!
0 < t < 1509. The data was incomplete, the information for some inter-
vals being missing. These were constructed artificially by interpolation

method; while peak search and correlation analysis hypotheses were
tested for their significance.

The results were as follows.

Details of the periodicity analysis method are glven in [2lokazov Vv, B
7

Comp.Phys.Comm.,1989,v. 54]. Here we adduce only final conclusions.
Periodicities

1/ Radon data

a/ The annual periodicity (378 : 347) is seen, though not very dis-
tinctly, and all its anharmonic "tails" are matched by the corres-
ponding periods in the table. This proves that this

periodicity
has a distinct anharmonlc character.

b/ The periodicity (30 * 1) is very plausible and its anharmonic
"tails" have the corresponding matches in the table;
proves its anharmonic character.

this also

¢/ Rather plausible is a hypothesis about the periodicity (23 * 1)

2/ Atmospheric pressure
a/ The annual periodicity 365 * 104 is seen very well;
b/ Very plausible are hypotheses about the anharmonic periodicities

98 + 20, 29 + 2.



3/ Simulated data.
All periodicities are seen very well.

Peak-like components

Then the distributions, their 1st derivatives and quasicurvatures
were analyzed fdr concentrated (peak-like) components with amplitudes,
superior to some given level. This level was chosen each time so,
that some almost equal number of peaks was found, and, thus, the proba-
bility that a peak is informational was équal for all the cases.

Minimél characteristic time shifts between seismic events and peaks were

sought for. The following peaks were detected.

1/ In R(t):

31lpeak, Sens = 1.00 Res = 1.00
87 110 118- 145 184 202 226 235 265 289
331 349 357 384 410 422 518 523 534 567
579 593 674 769 789 804 818 864 880 895
936 944 996 1090

The comparison with the set E showed:

a/VPositive time shift is in the interval (0 - 94), and the most
probable value is equal to 49;
clusters detected are: 30 ¢+ 16 and 91 * 10.

b/ Negative time shift is in the interval (1 - 76), and the most
probable value is equal to 38;
cluster detected is: 39 * 12.

In R(t)’ there were detected following peaks:

36 peaks Sens = 3.25 Res = 1.00
38 67 82 114 145 166 182 196 202 224
237 299 318 348 355 379 390 470 521 566
577 591 623 635 724 747 763 787 802 8lé6
834 848 876 895 979 995 1022 1050 1095

One can see:

12
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a/ Positive.time shift is in the interval (0 - 31), and the most
probable value is equalbto ;5;
cluster detected is: 27 * 9.

b/ Neéative time shift is in the interval (1 - 71), and the most
probable value is equal to 39;
cluster detected is: 31 * 18.

In the quasicurvatures R(t) there were following peaks detected:

37 peaks Sens = 5.25 Res = 1.00
37 47 132 145 202 217 230 238 316 349
376 394 413 418 429 452 468 489 502 509
520 544 621 651 677 731 755 762 . 776 784

798 823 832 895 927 932 977 992 1000 - 1042

One can see:
a/ Positive time shift is in the interval (0 - 68), and the most
probable value is equal to 29;
clusters detected are: 9 *+ 4 and 28 *+ 3.
b/ Negative time shift is in the interval (0 - 58), and the most
probable value is equal to 26;
cluster detected is: 21 * 13.

2/ A(t) was analyzed to detect components (continuous or discrete), con-
nected with R(t) by a shift relation.

a/ A filtration regression [Zlokazov V.B.,1985] of R(t) on A(t) was
carried out; the quality of filtration fitting, characterized by
the ratio of chi-square and number of degrees of freedom, being
equal approximately to 4, the time shift of R(t) to A(t) was
approximately equal to 3 (delay).

b/ The set of peaks of A(t)’ was compared with the set of peaks of
R(t)’: The shift interval was equal to 0 - 170; only 9 out of.55
belong to a range (0 - 5 ), which is comparable with estimates 3,
obtained from the continuous analysis.

3/ The purpose of the simulated data analysis was intended to test the

method, and it showed a good gquality of the results. All the

peaks with amplitude, superior to the 0.5 of the background level,

13



were found, and the distances between them and seismie events did not

exceed the confidence interval.

7. Conclusion
The results of the ERTQU ana1y51s of daily record of the radon con-
centration for the period of 1984 - 1986 allowed us to make the follow-
ing conclusions:

1/ In the oscillation of this concentration annual and monthly periodi-
cities can be observed with a significant amplitude, and. these perio-
dicities are obviously anharmonic.

2/ The 1st derivative and quasi-curvature are richer than initial data
of local events,. which can be correlated with strong seismic events:;
the 1st derivative is more informative for prediction purposes.

3/ Results of the analysis confirmed that the method is efficient

enough.
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An approach IS descrlbed for the. detectlon of lnformatlon mdlcatlons inex:
perlmental distributions and’ estimation- of their correlatlon wrth events of inte-
“rest. The basis of the analys|s of. such distributions is the|r decomposmon into
lnformatlonal components Three types of components are’ postulated 1). con-
centrated 2): pernodlcal 3) d|str|buted The mathematical method is descnbed
for.the detection of these components estlmatlon of their characterxstrcs and clus-
“ter methods of determmatton ‘of a correlation between them and the events ofin- =

. ‘terest. The method and a correspondmg program called ERTQU was apphed to
the analysls of soal radon concentratlon and atmospherlc data
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