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The paper presents the investigations of kinetic equations introduced 
as generalization of Landau-Halatnikov equation near the phase transition. Tem­
perature and frequency dependencies of dynamical susceptibility have been deter­
mined. The problem of central peak of the crystals with the order-disorder mecha­
nism of phase transition has been discussed. 
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1. INTRODUCTION 

The phenomenological kinetic theory of the phase transitions with mechanism 
of an order- disorder has been developed in the present research. 

In the terms of Landau's inverse proble~ [1), the phenomenological theory of 
the phase transitions in the crystals with transition mechanism of an order- dis­
order may be formulated by the following way. Suppose that the space groups of 
symmetry of high symmetry Go and low symmetry G1 phases are known and G1 is 
the subgroup of Go group. Then the matrix group L, defining the transformational 
properties of the order parameter, may be determined. The basic confirmation is 
that in the crystals with the order-disorder mechanism of the phase transition the 
major order parameter is transformed by L matrix group and has the meaning of 
probability [2). The connection of the major order parameter with the secondary one 
in accordance with their physical meanings may be determined from the symmetri­
cal arguments. Such symmetrical consideration provides the consistent composition 
of the thermodynamical potential, which knowledge allows to describe the static and 
kinetic properties of the system near the critical point [1, 2, 3). 

In the theoretical description of the phase transition in the crystals with the 
order-disorder mechanism the physical parameters as polarization, displacement and 
so on are always the secondary order parameters. It is the essential difference from 
the crystals with the transitions of displacement type. The possible changes of the 
symmetry in the system are definitively determined by the evident form of the matrix 
group L. However, besides this, L group also determines the transformational prop­
erties of the order parameter. The situation when the major and secondary order 
parameters have the same transformational properties is possible. In an investiga­
tion of the kinetic properties. of the system the roles of major and secondary order 
parameters are marked. At the theoretical consideration of the dynamical processes 
in the crystals with the order-disorder transition mechanism it is necessary to take 
into account that the space description of the equalprobable atoms' states may have 
a complex structure. Obviously at that, considering the symmetry of the structure 
we always have in mind the average states of the atoms and it is not essential the 
averaging has been made over the discrete or continuous aggregations of the states. 
Besides, as the average value of the order parameter over the crystal volume rep­
resents a linear combination of the coordinates of the system particles in any real 
system the movements corresponding one freedom degree are connected with the 
movements corresponding all others [3). 

When the defects are presented in the system we may expect that in the sys­
tems with the order-disorder mechanism of the phase transitions an evolution of 
the disorder parameter will take place with the losses, meaning that not all states 
of th~ system are realized. Besides, when the system is relaxed to the equilibrium 
state the presence of the structure inhomogeneities produces the change of the order 
parameter by means the smoothing or the acquiring of the additional states. In such 
situation for the transitions with order-disorder mechanism it seems characteristic 
that th~ evolution process of the order parameter is accompanied by the nonlocal 
processes. So a generalization of the dynamical equation for the order parameter by 
means introduction of the nonlocal function is seemed to be necessary. 



2. DYNAMICAL EQUATIONS FOR THE ORDER PARAMETER 
IN LANDAU-HALATNIKOV FORMALISM 

Since in the phase transition of the crystals with the order-disorder mechanism 
the ·order parameter defines the change of symmetry and has the meaning of proba­
bility, so in such approach the total number of equalprobable states in the structure 
is arbitrary in principle. However for the reduction of symmetry it is necessary that 
a narrowing of the set of the equalprobable states would take place as a result of 
the phase transition. During the relaxation of the order parameter an indefinitivity 
of the equilibrium state option coniiecting with the presence of a set of the station­

. ary states may induce the nonlocal processes due to the structure inhomogeneities. 
Introduce the generalized Landau-Halatnikov equation in the foJlowing form : 

I 

-y77(t) = - j K(t -T/9[71,P]dT 
0 01) ' 

o = 09(77,P] 
oP . (1) 

If the order parameter 77 and the polarization P have the same transformational 
properties in the thermodynamical potential 9(77, P], the term describing the inter­
action of the lowest order will be the linear function of both the order parameter 77 
and the polarization P. In this case (2] in accordance with the symmetrical argu7 
ments, the thermodynamical potential is presented by the expression: 

1 /3 w2 
9 = 20:772 + 4774 + 20 p2 -(71P- PE, (2) 

where a: = o:o(T - T0), E - the external electric field. At K(t - T) = 1 by means 
the simple differentiation it may be shown that the equation (1) coincides with 
Landau-Halatnikov equation (2). If K(t - T) = o(t - T) the equation (1) takes the 
form: · 

'Y11 = -0:71 + /3713 
- (P, 

w~P - (71 - E = 0. (3) 

It is foJlowed that due the renormalization of the coefficient of a square invariant the 
shift of the critical temperature Tc = To+ 'Y / o:0 takes place. In this case the equation 
(3) determines the equilibrium state of the system with the critical temperature Tc. 

Therefore tne introduction of K(T) function characterizes the influence of dis­
order causing the change of the generalized force 09[71, P, ... ]/077, which action pro­
duces the dynamics of the order parameter. Physically, the nonlocal function K(T) 
describes the influence of the nonhomogeneities of the potential energy caused by 
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the presence of the structure defects, on the relaxation of the order parameter to the 
equilibrium state. At the definite distributions of the structure defects the potential 
energy can contain a set of the shallow minimums corresponding the metastable 
phases. So if the system initially is in the definite state then before the coming to 
the final state, it accomplishes the series of the transitions betw1,en the neighboring 
minimums. The set of the shallow minimums of the potential energy is induced by 

· the geometry of the fractal distribution of the defects what is closely connected with 
the presence of the complex interaction in the structure. 

The classification of K ( T) curves may be made by Hausdorf-Bezikovich dimension 
of de (4]. Further consider the influence K(T) with de< 1, de= 1 and de> 1 on the 
process of relaxation of the order parameter to the equilibrium state near the phase 
transition in the crystals with the order- disorder mechanism. 

Consider the intergro-differential equation (1) describing an evolution of the 
structure transferred ·by leap to the nonequilibrium state and define the nonlocal 
function K(T) in Cantor's fractal set (4]. 

1 2N 
K(t - T) = -- ~ 0(t(N) < t < t(N) ) · t(2e}N !;-:

1 
m m+l • 

(4) 

Here ((e < 1/2) is the parameter of selfsimilarity, t~> are the points' coordinates, 
l/(t.(2e)N) is the density of the remained states at N-stage of the construction of 
Cantor's set, l/(t(2e)N) is the step function. 

Using substitution f(t) = ai'P/oip one can get 

I 

J(t) = f K(t -T)f(T)dT 
0 

and applying Laplas transform we obtain: 

J(t). =• 4>(p) = ;JP) (1 - exp(-pt(N)]QN(z), 
.. pt 

where the following designations have been introduced: 

1 N-1 
QN(z) = 

2
N IT (1 + exp(-z(N)), z = pt(l -(). 

n=O 

(5) 

(6) 

(7) 

The last expression allows to obtain for QN(z) the following recurrent relation­
ship 

z 1 z 
QN( e) = 2(1 + exp(-e})QN-1(z). (8) 

In the stationary point: 

ct>•( i) = ½ct>•(z), (9) 

which solution has the form: 
ct>•(z) = A.,z-11 (10) 
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where v = ln2/ln(1/e) is the dimension of Cantor's fractal set. Consequently, 

<li(p) = A.,(pt)-"(1 - et" F(p). 

The representation of K(p) function has the form: 

K(p) = A.,(pt)-"(1-er". 

With a help of Mellin's transformation we it is found 

K(t - r) = r1~/1...:. et"t-", 

(11) 

(12) 

(13) 

where f(v) is Eiler's gamma function. Therefore, J(t) function is defined in the 
following form 

1 t 

J(t) = A.,(1 - e)-"C" f(v) j(t - T)"-1 f(T)dT = A.,(1 - e)-"C" n-v f. (14) 
0 

Introducing the nondimensional variable u = T /t with the help of the commuta-
tive properties of the fractional derivative, eq. (1) may be presented as 

1 8ul' V 011 ) 
{ 

:r_8"71(t) = -B Sg[11,P) 

Sg~';tl = 0 

The solution of the equations' system (15) will be found in the following form: 

17(t~ = 770 + 77eiwtu, 

P(t) =Po+ Peiwtu, 

E = Eoeiwtu. 

The static solutions of the system (15) are determined from the equations: 

l<1~Po - e110 = 0, 

-0770 - /377g + ePo = O. 

(15) 

(16) 

(17) 

After the linearization of the eqs. (15) close to the solutions (17) it is obtained for 
77 and P fields, correspondingly: 

- 1( 2 77 - - w0P- E) . e 
B.,Pe 

77 = -y(iwt)" /t + B.,o + 3B.,/377f 
(18) 

The dynamical susceptibility x = lims➔o {)P/{)E defining the system's response 
on the external electric field is presented by expression 

e2B 
x(w, T) = ( w~ - -y( iwt)" /t + B.,: + 3B.,/3772 )

-1 

(19) 
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f 

At w ➔ 0 x(0, T), coincides with the result (2) for the static dielectric constant. 
In the paraphase 77~ = 0 and consequently 

( T) ..:_ 1 -y( iwt)" /t + B.,o0 (T - To) 
Xpara w, - w5 -y(iwt)" /t + B.,oo(T -Tc) (20) 

In the ferroelectric phase 

( 
T) _ _!__ -y(iwt)" /(B.,O + ao(T- To) - 3ao(T-Tc) 

XJer w, - w5 -y(iwt)" /(B.,t) - 2ao(T - Tc) ' 
(21) 

where Tc= To+ e2 /w~. 
Consider the case de= 1, when a smearing of K(t) = o(t) function to a bell-like 

dependence defined by the exponential function with the width being specified by 
the time interval To, occurs. Therefore K(t-T) = exp(-b(t-T)/To) and suppose that 
the characteristic time interval To = 1. In' this case the kinetic equation is written 
in the form: . t 

I og[77,P] 
-y77(t) = - exp(-b(t- T))-

0
-dT 

0 77 

0 
_ og[77, P) 
- oP . (22) 

Using the definition of the fractional derivative 

D" f(t) = r(~v) i(t- T)1-"f(T)dT, 
0 

(23) 

where ~oo < v < 0, and 
Tailor's series, we may write 

the expansion of the exponential function into 

{) 
-y(b + {)t )'7(t) = - og[77, P] 

077 

0 = og[77, P) 
oP 

(24) 

As g[77, P] involves the square invariant on g[77, P] with coefficient a = ao(T - To), 
so the system of eqs. (24) may be written in the form: 

'Y_i
77

(t) = _ og[77, P] 
{)t 077 

O = og[77,P] 
oP 

where the critical temperature is defined as 

:' ~: ~,;;-·,,;~ 
~=To- b-y 

ao· 
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(25) 



. The solution of eqs'. system (25) will be sought in the form (16). The static solutions 
of the system (25) are defined from eqs. 

ao(T - ~)'10 + /3'1~ - {Po = 0 

wiPo - {110 = 0. {26) · 

After the linearization of the eqs. (25) near the static solutions for '1 and P fields, 
it is obtained, consequently: 

1c 2 '1 = ( w0P- E) 

{P 

'. = i-yw + ao(T - T~) + 3/3'15 · 
(27) 

The dynamical susceptibility x = x(w) for the system with an exponential memory 
is presented by expression 

( ) 
1 i7w + ao(T - T~) + 3f311i 

xw = 2 2• w0 i7w + ao(T - TD + 3/3110 
(28) 

where e2 b7, e 
T'=T0+- =To--+-. 

e ew5 aoW5 

At w ➔ 0 and b ➔ 0, x(0, T) coincides with the result [2) for the static dynamical 
perm~ability. 

In the paraelectric phase 11i = 0 and hence the dynamical susceptibility takes 
the form 

Xpara(w) = l i-yw + ao(T - To) 
2 • e 

Wo i7w + ao(T - TD . 
(29) 

In the ferroelectric phase 11i = ( ao/ {J)(T - T:) and hence the dynamical suscep­
tibility is defined as: 

( ) 1 i7w + a0(T - T~) + 3ao(T - T:) 
XJer w = w5 i-yw - 2ao(T - TD (30) 

Consider integro-differential equation (1) where the nonlocal function K( T) has been 
specified as the fractal curve with dimension 1 < de < 2. An example of the contin­
uous but nowhere differentiable curve of de > 1 dimension is Weershtrasse function. 
However, consider further the curve llf(t) closely connecting with Weershtrasse func­
tion in the form 

I -a 00 

K(t-r) = llf(t-r) = - :~:::Onbnexp(-bn(t-r)), (31) 
a n=0 

where a< I, b > a. 
It is not difficult to show that llf(t) function at high temperatures is the homo­

geneous function. Indeed, 

abllf(bt) = llf(t) - (I·- a)bexp(-bt), 
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~ _ij ·~ I 

I 

~ 
if 
I 
( 

and it follows, that 
llf(t) = abllf(bt) 

Using the definition of the fractional derivative (2), it may be shown that in the 
case K(r) = llf(r) eq. {I) is put down in the form 

. 1 - a 00 an og[11, P, I 
"Y'1(t) = --a-E 1 + D/bn O'] 

09(11,PJ 
0= ---w-· (32) 

In this case the shift of the critical temperature T:' = T0 - a7/(a0 (1 - a)) takes 
place. The eq. (32) may be presented in the form: 

B" a3 a2 a2 og[11, PJ ... + 1'4at411(t) + ")'3 at3 11(t) + ")'2 at211(t) + "Y2 at2 11(t) = ----w-
·, 

O- og[11,PJ 
- oP ' (33) 

where "Yi coefficients are I/bi order infinitesimal. 
The solution of the eqs. system (33) will be sought in the form (16). The static 

eqs. of the system (33) are determined from eq. (26), where T~ = T:', After the 
linearization of eqs. (33) near the static solutions for '1 and P fields it is obtained 

1( 2 '1 = - w0P-E) e 
00 

L "Yn(iwt11 = -a11 - 3/3'1~'1 + (P. (34) 
n=l 

In this case, using (34) and the definition of the dynamical susceptibility it is found 

( 
2 e )-1 

x(w) = Wo - a+ 3/3'15 + E~=l "Yn(iw)n 
(35) 

Taking account of 'lo = Po = 0 for in the paraelectric phase x = x(w), it is 
obtained 

( e )-1 
Xpara(w) = W~ - + Eoo (' )n (36} 

a n=l "Yn iw 
In the ferroelectric phase 

2 = ao(T-T") 'lo {3 c• 

where 
a e 

T Iii T, -·+-= o - (l ) I 2• c ao -a Wo 
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For the dynamical ~usceptibility it is obtained: 

( ) = 1 ao(T- 1;'.) + 3ao(T- Tt) + L::°-11n(iwt (37) 
XJ•r w wi -2ao(T -T~") +L::°=1 ")'n(iw)n · 

Consider the intrinsic ferroelectrics describing by the thermodynamical potential 
in the form: 

g= '!.p2 + g__P4 - PE (38) 
2 4 

In this case it may be shown that the kinetic eq. with the nonlocal function of 
de < 1 dimension in Landau- Halatnikov formalism is written in the form: 

1!::_p = -B c5g[IJ, P) 
t OU" V c5P . 

(39) 

An equilibrium value of the spontaneous polarization Po is determined by the 

expression 
aPo + fJPl = 0. (40) 

Correspondingly, for the polarization P it is obtained 

p = a+ 3{JPJ + m;(iwt)v" 
E (41) 

Using the definition of the dynamical susceptibility it is found 

x(w) = (a+ 3[3P; +t;., (iwt)")-
1 

(42) 

Taking account of the equilibrium value P0 in the high- and low- symmetrical 
phases for the dynamical susceptibility, it is obtained 

( 
1 )-

1 

Xpara(w) = a+ tB., ( iwt)" , ( 43) 

( 
1 )-

1 

Xpara(w) = -2a + tB., (iwt)" (44) 

At 11 -+ 1 (B., -+ 1) the derived result coincides with the conclusion of Landau 
theory for the intrinsic ferroelectrics. 

3. THE CENTRAL PEAK IN THE DYNAMICAL FORM-FACTOR 
IN THE CRYSTALS WITH THE ORDER-DISORDER MECHANISM 

OF TRANSITION 

Within the scope of Landau theory the change of symmetry is defined by the 
major order parameter. At the dynamical consideration the presence of the remain­
ing freedom degrees composes the medium characterized by the kinetic coefficient 
,, where the relaxation of the major order parameter takes place. 
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Physically the dynamical form-factor is proportional to the spectral density of 
· the fluctuations of the major and secondary order parameters, the latter takes part 
in the scattering process, i.e. interact with the radiation falling on the crystal. In 
the quantitative aspect the dynamical form-factor defines the frequency dependence 
of the intensity and the energy spectrum of neutrons scattered by the crystal [8, 9]. 

The relation between the dynamical form-factor and the dynamical susceptibility 
is determined by the fluctuation- dissipative theorem . 

T 
S(w) ~ -Imx(w) . 

w 
(45) 

The analysis shows that the dynamical form-factor involves the sharply increasing 
maximum at w -+ 0 and T -+ Tc in S(w -+ 0) ~ (T - T.)-1 form named as the 
central peak. 

Hence the appearance of the central peak is connected with the appearance of 
the order parameter distinguished from zero. Besides, the analysis of (19) and (37) 
shows that at the finite frequencies the dynamical form-factor involves the additional 
maximums connected with the presence of the soft and nonlinear modes accompany­
ing the phase transition. The appearance of the nonlinear modes is connected with 
the presence of the slight order in the structure and characterizes the particular 
features of the order parameters' relaxation in the structure with the defects. 

4. DISCUSSION 

Unlike the displacement transitions in the transitions with the order-disorder 
mechanism the major order parameter has the meaning of probability and the phys­
ical values as polarization, displacement and so on are the secondary order para­
meters. In this sense if even the transformational properties of the secondary order 
parameters coincide with the same for the major order parameter the transition has 
the pseudointrinsic nature. The features of the dynamics of the order parameter are 
connected with the presence of the set of the equalprobable states to which the or­
der parameter may relax. In such systems the influence of the different distributions 
of the defects on the relaxation of the order parameter may induce the nonlocal 
processes. The generalization of Landau-Halatnikov eq. by means the introduction 
of the nonlocal function K(T), allows to take into account an influence of the in­
homogeneities of the potential energy caused by the presence of the defects in the 
structure. In such approach if not all of the states are realized during the relaxation 
of the order parameter, the nonlocal function may be determined in Cantor's fractal 
set. In this case the dynamical equation is the equation of the fractional derivatives. 
The response of the system on the external disturbance is defined by formula (19) 
and the system has the property of a glass. If the system displays the exponential 
memory, the dynamical equations have Markov's form. However, it is necessary to 
take into account that in this case the presence of the defects shifts the critical tem­
perature to the low temperature side. If the system during the relaxation process 
acquires the additional states the dynamical equations involve the time derivatives 
of the arbitrary high order. In this case the dynamical susceptibility involves the 
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additional maximums depending on the temperature what indicates on the presence 
of the nonlocal modes accompanying the phase transition. In the case of the intrinsic 
ferroelectrical transitions where the principle parameter is the polarization, the dy­
namical susceptibility is determined by expression (42). The difference between the 
relaxation processes in the intrinsic and pseudointrinsic transitions is expressed by 
the corresponding response functions defined by eqs. ( 42) and (19), correspondingly. 

So the account of the influence of the slight disorder ( the latter means that due 
the presence of such disorder the time independent solutions coincide with the solu­
tions corresponding the ideal crystal) changes the relief of the potential energy of the 
system and essentially alters the physical properties of the system. The knowledge of 
the imaginary part allows to determine the frequency dependence of the dynamical 
form-factor. Depending on the nature of the defects' distribution in the structure 
the dynamical form-factor of the crystal apart from the central peak involves the 
additional maximums depending on the temperature what indicates the presence of 
the soft nonlinear modes accompanying the phase transition. 

The authors are grateful to Prof. V. L. Aksenov, R. Bline and A.P.Levanyuk 
for the discussion. 
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