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The two-dimensional (2D) Ising model is reviewed as a theory of free fermi
ons on a lattice. The discussion includes the fermionization procedure based on the 
mirror-ordered factorization of the density matrix, Gaussian fermionic integral 
representation for partition function, the momentum-space analysis and Onsager's 
result, the effective continuum-limit field theories and the critical-point singulari
ties. The emergence of long-range fermionic correlations in a nonzero magnetic 
field and the behaviour of the specific heat along the critical isotherm are com
mented. Attention is given to the choice of rational computational devices. 
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1 iritrocluctioii 
There are many remarkable,anaiogues between the coiiceptsand methoqtin statistid.l rne:
chanics and quantum field theory. ,The t~o-,diniensiohiil Isirt~ iii,odei (2D Ifd) ri!ay ~e ~iipd 
example of this kind. In its original formu.laiiori; the 21J Ising model is a discrete-spin lattice 
model for the second-order phase transitions in miigriets, tor wliich the anaiytic resuits fo~ the 
free energy and related functions ar(l .ivaiili.ble over, th~ _whole, terrip<iratui-e range .. ~t .the ~rst 
stages, this model was analyzed rather as a complid.ted rriathehiatical problem [i]-[8] .. The 
canonical approaches to 2DIM, are based .oh the tratisfer-mahix and combinatorial considera
tions [1]-[12]. The fermionic features in the,2DIM liave ~een firsi recognized in [2,6,7). ,Further 
developments in this direction' provid~d n~w insighi_iritct the physical nafoi:e of prob_lem and 
simplified the analysis i.n t~chnic~l a.sped [13]-[2d]. Th~ modern appro~ches to the 2DIM .are 
based on the interpretation of the problein' in terms of fermions [13]-[26]. ln thi,s artide 1

, 

we review some aspects of a simple ndncciriibiria.toriai fermionic approach.to the 2DIM.~ased 
on the application of the anticommuting G~assrria.iin-variable, integrai~ and the mirror-ordered 
factorization ideas for the density matrix [18)-(20]. The fuethod is simple, the transfer-matrices 
and combinatorics are not used. Thi: a.ppearaiice of fermions rather resembles the change of 
the basis in quantum mechanics [18]-(20]. The fei:ttiionization procedure is considered in Sect. 
4. Grassmann variables are first introduced by factorization of the local bond Boltzmann 
weights in (11). The mirror-ordered factorized representation for the whole density matrix is 
then obtained in (16). This is a mixed spin-fermion representation, in which spin variables can 
be eliminated. Eliminating the spin variables from (16), the partition function, Q, appears 
as a Gaussian fermionic integral in (l!i). Equivalently, the 2D Ising ~o.del is reformulated as 
a theory of free fermions on a lattjce. The above trarisformatiori of Q is performed for the 
most general inhomogeneous distribution of the bortd coupling parameters over i lattice. fo. 
Sect. 5, the 2D Ising model on the standard homogeneous rectangular lattice is, considered. By 
transformation to the momentum space for fermions, the partition function and free eriergy are 
obtained in a closed form (Onsager's result). In Sect. 6, coming back to previous discussion, 
we add few further remarks on the ordered products of Grassma.hnian factors, like those aris
ing by factorization of the density matrix in (16). The nonlocal fermionic sums which appear 
in this context might be of interest for the 2D Ising model in a nonzero magnetic field, as is 
commented in Sect. 9. A refined versiciri of the basic integral (19) for the partition function is 
obtained in Sect. 7. The resulting Gaussian integral for Q with two variables per site is given 
in (47). It is interesting to note that the Majorana-Dirac structures, somewhat mysteriously 
arising in the 2D Ising model, can. be recognized in the action of (47) already at the lattice 
level. The effective continuum-iimit field theories corresponding to the low-momentum sector 
of the exact lattice theory, which is responsible for the critical-point singularities near Tc, are 
then discussed in Sect. 8. The effective Majorana action of two-component massive fermions 
is obtained in (57) and (68). By doubling of the number of fermions in the Majoi-ana repre
sentation, one can pass as well to the Dirac theory of charged fermions (69). In Sect. 9, the 
effects produced by a nonzero magnetic field in the fermionic system of the 2DIM Ising model 
near Tc are considered. It is argued that switching on of a nonzero magnetic field (h -/, 0) 
causes the long-range nonlocal interactions of the 2D Ising fermions. Within adopted approx
imation conjectures, the singularity in the specific heat at the critical isotherm is expected to 
be logarithmic. Finally, few concluding remarks arngiven in Sect. 10. 

1 An extended version submitted to a speci,tl issue of J. Phys. Studies (Ukraine) dedicated to the 90s 
Anniversary of Professor N. N. Bogoliubov. 
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2 Grassmann variables 

Grassmann variables are the purely anticommuting fermionic symbols. Given a set of Grass
mann variables, a1, a2 , a3 , ••• , aN, we have: a,a; + a;a; = 0, aJ = 0. Th.e linear superpo
sitions of Grassmann variables are again purely anticommuting, their squares are zeros. The 
rules of the integration over Grassmann variables were first introduced by Berezin (27]. The 
elementary rules for one variable are: 

fda;•a;=l, fda;•l=O. (1) 

In multiple fermionic integrals, the differential symbols are again anticommuting with each 
other and with the variables [27]. Due to the ?ilpotent property of fermions, a; = 0, any 
natural (analytic) function definite a finite set of Grassmann variables can be represented, 
in principle, as a finite polynomial i~ these variables. The integration then reduces to the 
repeating use of the above elementary rules, keeping in mind that the fermionic symbols 
anticommute. The rules of change of variables under a linear substitution in the fermionic 
integrals readily follow from the basic rules of integration. As compared with the correspondent 
rules of commuting analysis, the only difference is that the Jacobian will now 'appear in the 
inverse power (27]. The Gaussian fermionic integral of the first kind is given as follows [27]: 

N (N N ) Jg daJda; exp ~;a;A;;aJ = detA, (2) 

• ·;g, ' 
where all variables in the total set are purely anticommuting, the matrix.A is arbitrary. By 
convention, the variables a; and a; can be considered as complex conjugated variables. In 
physical contexts this corresponds to charged fermions. Alternatively, one can consider a; and 
(l; simply as independent variables. The Gaussian fermionic integral of the second kind, for 
real fermionic fields, is related to the Pfaffian [27]: 

· (1 N N ) • 
f daN ... da2 da1 exp 2 ~; a,A;;a; = Pfaff A, (3) 

where matrix A is now assumed to be skew-symmetric: A+AT = 0, where AT is the transposed 
matrix: In components: A,; + A;; = 0, A;, = 0. This property is complimentary to fermionic 
anticommutativity. By formal definition, the Pfaffian is some combinatorial polynomial in 
elements A;; [28, 29]. In fact, the combinatorics of the Pfaffian is identical to that of the 
fermionic version of Wick's theorem [28, 29]. The equation (3) can itself be assumed for 
an effective definition of the Pfaffian, wherefrom its basic properties readily follow. For any 
skew-symmetric matrix, the following algebraic identity holds true [28, 29]: 

det A = ( Pfaff A ) 2 
• ( 4) 

The Pfaffian is thus the square root of the determinant of a skew-symmetric matrix. The 
above identity most easily can be proved just in terms of the integrals like (2) and (3). Let N 
be even. Assuming that the matrix in (2) is skew-symmetric, we make use of substitution: 

ak = ~(ek -1- i'l/k), a;= ~(ek - i'l/k), (5) 

where ek, 'f/k are the new variables of the integration. It is then easy to check that the integral 
(2) decouples into a product of two identical integrals like (3), which is equivalent to (4). For 
the normalized multifermionic averages associated with the Gaussian integrals like (2) and 
(3) one can apply fermionic Wick's theorem in a usual way. In the field 0 theoretical language, 
fermionic form in the exponentials like (2) and (3) is called action. In physical interpretations, 
the Gaussian fermionic integrals correspond to free-fermion field theories (21, 22]. 
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3 Two-dimensional Ising model 

In this section the 2D Ising model is formulated in terms of Ising spin variables. We start 
with a generalized formulation of the 2D Ising model, assuming arbitrary inhomogeneous 
distribution of the bond coupling parameters over a rectangular lattice net. The Ising spins, 
O"mn = ±1, are disposed at the lattice sites, mn, labeled by pairs of integers, m, n = l, ... , L, 
with m and n running in horizontal and vertical directions, respectively. L is the length of 
the lattice side. The total number of sites and spins on the lattice is N = L2

, at final stages 

we assume N = L2 ➔ oo. The hamiltonian is: 

L L . 
""' ""' [ (I) • b(2) ] -{3 H(a) = LJ LJ bm+ln O"mnO"m+ln -1- mn+l O"mnO"mn+I , (6) 
m=ln=l 

where bS,.0J = {JJJ,a,'/ are the dimensionless bond coupling parameters, JJ,a,'/ are the exchange 
energies, {3 = 1/kT is the inverse temperature in the energy units. For L finite, to be definite; 
let us assume free boundary conditions for spin variables: 0"£+1n = 0, O"mL+1 = O. The 
partition function and the free energy per site are: 

Z = L exp(-{JH(a)), -/3 f z = lim _!_In Z, /3 = 1/kT, 
' N➔ooN 

(7) 

(<7) 

where the sum in Z is taken over all possible spin configurations provided.by O"mn = ±1 at 
each site. The internal (average) energy and specific heat follow by differentiating the free 
energy with respect to the temperature. The specific heat per site is: 

C/k = /3 28 2 (-/3/z)/8/3 2
, /3 = 1/kT, (8) 

where C /k is the dimensionless spedfic heat, k is Boltzmann's constant. Now, for a typical 
bond Boltzmann weight from (7), we note an identity: exp(baa') '7' coshb+ aa'sinhb, which 
readily follows from aa' = ±1. The partition function then appears in the form:· Z =Rx Q, 
where R is a simple spin-independent prefactor and Q 1s the reduced partition function: 

L L 
Q = Sp { II II(l +t!n1nO"mnO"m+1n)(l +t.\?!+10"mnO"mn+1) }, 

(<7) m=ln=I 

(9) 

with tg,:,21 = tanh bg,:.2l, and now we assume a properly normalized spin averaging: 

Sp ( ... ) = II Sp ( ... ) , 
(<7) mn (<7mn) 

Sp ( ... ) = ½ E ( ... ) , 
(umn} O'mn= ± 1 

(10) 

so that at each site Sp (1) = 1, Sp (amn) = 0. The reduced partition function Q will be the 
main subject of our interest in what follows. 

4 Fermionization 
In this section we transform Q into a fermionic Gaussian integral. The method is. based on 
the mirror-ordered factorization procedure for the density matrix (18, 19, 20). Let us start 
with a factorization of the local bond Boltzmann weights from (9). For the whole lattice, we 
introduc~ a set ~f the purely anticommuting Grassmann variables, amn, a:,n, bmn, b:,n, a pair 
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per bond, and write: 

1 + t~LinUrnnUrn+ln = 
- f d • d arnna,:;.n (1 + ) (1 + t {I) • ) -- amn amn e amnO'mn m+ln amnCTm+ln -

= Sp { Arnn A,:;.+ln}, 
(amn) 

1 + t~l+I UrnnUrnn+I = 
= f db;;.ndbrnn ebrnnb,:;.n (1 + brnnUmn) (1 + t~l+J b;;.narnn+J) = 

= Sp {Brnn B;;.n+1}, 
(bmn) 

(11) 

and Sp( ... ) stand for the local Gaussian averaging like da*daeaa'( ... ) and J db*dbebb'( ... ). 
These averaging symbols are totally commuting with any element of the algebra and can be 
gathered in one place, forming the symbol of the global Gaussian averaging. The identities 
(11) can be checked making use of the elementary rules of integration like (1), taking into 
account that exp (aa*) = 1 + aa* and exp (bb*) = 1 + bb*. The mn indices in the above 
Grassmann factors are chosen to be equal to the indices of the spin variables involved in these 
factors. With this choice, it will be easy to control the position of any Grassmann factor with 
given spin variable among other such factors in their global products. The idea of the next 
step is to substitute (11) into (9) and to eliminate the spin variables in the resulting mixed 
representation for the density matrix. There are four Grassmann factors with the same spin 
variable, Arnn, Bmn, A,:;.n, B;;.n, which come by factorization ofth~ four different bonds attached 
to a given mn site. In the process of the spin averaging we have to keep these four factors 
nearby. Taking into account that the separable Grassmann factors are in general neither 
commuting nor anticommuting with each other, being the superpositions of commuting and 
anticommuting terms, we have to take care of a special ordering for the global products of 
such factors, in order the elimination of spin variables be really possible. In two dimensions, 
this problem is solvable [18, 19, 20]. What can really be used in the reordering arrangements 
of the products of Grassmann factors is the property that the doublets like AmnA;,+Jn and 
BmnB;,m+J, representing the local bond weights in (11 ), can be treated as totally commuting 
objects, if taken as a whole, under the sign of the Gaussian averaging arising by factorization. 

In the subsequent transformations we shall apply as well two ordering principles illustrated 
below by tutorial examples. The first illustration (linear rearrangement) is: 

( 'Po ¢1 ) ( 'P1 ¢2 ) ( 'P2 ¢3 ) ( 'P3 ¢4 ) = 'Po ( ¢1 </,1 ) ( ¢2 </,2 ) ( ¢3 <p3 ) ¢4 , (12) 

where we simply reread the product joining together the symbols with the same index. The 
second illustration (mirror rearrangement) is: 

( 'Pl ¢i) ( 'P2¢2) ( <p3¢3) = ( 'Pl ( 'P2 ( <p3<p3) ¢2) ¢i) = 'Pl 'P2 <p3 . ¢3 ¢2 ¢1 , (13) 

where we assume that the doublets like (</,;¢;) are totally commuting with any individual 
factor from the common set, while the individual factors themselves may be noncommuting. 
Then we decouple proper and bar factors into separable products. 

It is easy to guess that the linear ordering principle (12) is by itself enough to solve the 1D 
Ising chain via fermionization. This is not the case, however, in two dimensions, where there 
is a contradiction between preferable m-ordering for the horizontal weights and preferable 
n-or<lering for the vertical weights with respect to the linear-ordering rule (12). Therefore, we 
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shall apply first the mirror-ordering principle (13) to factorize a horizontal ladder of the vertical 
weights, BmnB::.n+J, in a horizontal-like fashion with respect to index m, with n fixed. This 
will provide us with an opportunity to introduce properly the remaining horizontal weights 
at the next stage, so that the spin 'variables can be finally completely eliminated from the 
density matrix. In transformations from (14) to (15) we omit, for brevity, the signs of the 
Gaussian averaging introduced by factorization of the local weights. The totally commuting 
bon_d Boltzmann weights arc now given by AmnA;;.+Jn and BmnB;;.n+J. 

For the first step, we multiply a subset of vertical weights over m, with n fixed. Making 
use of the mirror-ordering rule ( 13), we write: 

L L L m L m 

II (l + t~l+1Umnamn+1) = II BmnB::.n+J = II iC · II B::.I 
m=l m::::1 · m=l m=l 

(14) 

In the final expression, there are two m-ordcrcd products with m = 1, ... , L going in the 
opposite directions (mirror ordering). Already at this stage the ordering is favourable for 
introducing the horizontal weights, AmnA;;.+ln• which possibility will be used below. Multi
plying the above partial products (14) taken as a whole over n = 1, ... , L, with n increasing 
from left to right, and making u~c of the linear-ordering rule (12) with respect to index n, we 

write: 

L L 
II II (l + tmn+Jamnamn+d = 
n=lm=l 

n 
-+ 
L L m L m 

= II [II ~n II B;:_ I 
n=l m=l m=l 

n 
-+ 

l = 

L L~L~ 

= II [ II B;;.n · II Bmn ] • 
n=l m=l m=l 

(15) 

In the last line, it was taken into account that B,:;.L+J = 1, since amL+I = 0. Respectively, we 
have corrected the same expression at the left end introducing, formally, the lacking product 
of factors B,:;.

1 
= l + tm

1
am1b;;.0 with b;;.0 = 0, so that, actually, B,:;.1 = 1. In this way, the free 

boundary conditions for spins are now elaborated into the analogous conditions for fermions. 
All vertical weights are already involved in (15). It remains only to introduce properly the 
commuting horizontal weights. For the complete density matrix we thus find: 

Q(a) 
L L 
II II.(l + tmn+lamnamn+d (l + tm+lnamnam+ln) 
n::::lm=l 

n 
-+ 
L L ~ L ~ 

Sp II [ II B,;.nAmnA:.+ln · II Bmn ] 
(a,b) n=I m=I m=I 

n 
-+ L L m L m 

Sp II [ II A:,)2.Amn · II ~n], 
(a,b) ·n=I m=l m=I 

( 16) 

where use was made of the linear ordering rule (13) with respect tom. By analogy with the 
boundary transformations in (15), we eliminate in the final line the extra factors AL+Jn = I, 
with UL+ln = 0

1 
and insert, formally, the lacking factors Ain = 1, assuming a;n = 0. In (16) 
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we also restore the symbol of the diagonal Gaussian averaging arising by factorization of the 
local weights: 

I 
L L . -L L 

Sp { ... } = II II da;,ndamndb;,ndbmn exp L L( amna;.n + bmnb;.n) { •··}. 
(a,b) m=l n=l m=l n=l 

(I 7) 

The expression in the final line of (16) is what we call the mirror-ordered factorized repre
sentation for the density matrix. This representation is exact, assuming the free-boundary 
conditions for fermions: acin = 0, b;,-0 = 0. The density matrix is now completely prepared for 
the elimination of the spin variables. The partition function arises by summing over O'mn = ±1 
at each site in (16). 

The averaging over amn = ±1 is to be performed at the junction of the two m-ordered 
products in (16), with fixed n. This is a step by step.procedure. The local averaging at the 
junction is given by: 

Sp {A;,nB;,nAmnBmn} 
(umn) 

= ~ L (1 + t:;l O'mna;._ln) (1 + t,!;l O'mnb;.n_i) (1 +a,:,.namn) (1 + O'mnbmn) 
O"mn=±l 

= l + amnbmn + t:;lt,!;2 a;._lnb;.n-1 + (t:;2a;.._ln + t,!;2b;.n-l)(amn + bmn) + 

+ t~2t.!;2 a;._lnb;.n-1amnb"!n = 

= exp [ amnbmn + t~2t,!;2 a;._lnb;.n-1 + (t:;2a;._ln + t,!;2b;.n-l) (amn + bmn)]. (18) 

The result of the averaging is a purely fermionic polynomial, e.ven in the variables, which 
is equivalent to the Gaussian exponential factor given in the last line. This equivalence can 
be checked, for instance, by the series expansion of the exponential, taking into account the 
nilpotent property of fermions. Another way to see this equivalence is explained in Sect. 6. 
Let n be fixed, at the junction of the two m-ordered products in (16) we just find the four 
relevant Grassmann factors (18) with the same index mn placed nearby, with m = L, given 
n. The !~cal averaging (18) results the Gaussian exponential factor from the last line, which 
is even in fermions and is thus totally commuting with any element of the algebra. We then 
remove this commuting Gaussian factor from the junction somewhere to the ve~y left end of 
the remaining ordered product, and find again, at the junction, a new set of four neighboring 
factors like (18) with the same index mn and the same spin variable, m = L - 1, given n. 
We then repeat the same averaging procedure at the junction for m = L-1, and then for 
m = L-2, ... , 1, for given n, and all over again for other values of n = 1, ... , L. The spin 
variables being completely eliminated, over the whole lattice, the partition appears to be given 
by the product of partial Gaussian exponential factors from (18) taken under the sign of the 
global Gaussian averaging (17). Thus we come to the result: 

L L L L 
Q = J II II db:_ndbmnda;,ndamn exp { L L [ amna;.n + bmnb;.n + 

m=l n=l m=l n=l 

+ amnbmn + t~2t,!;2 a;._lnb;.n-1 + (t~2a;._ln + t,!;2b:.n-l) (amn + bmn)]} , (19) 

where a0n = 0, b;.0 = 0. The partition function is now presented as a fermionic Gaussian 
integral. This representation is exact. The fermionic integral (19) is completely equivalent to 
the original expression (9) assuming the free boundary conditions both for spins and fermions. 
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5 The momentum-space fermions 

In this section we consider the.2D Ising model settled on th'e s·tandard homogeneous lattice. 
The partition function Q' can be explicitly evaluated in this case by the transformation to the 
momentum space for fermions. This res~lts the Onsager expressions for partition function and 
free energy of the standard 2D Ising mode( For the homogeneous· (th~ugh yet anisotropic) 
lattice, in the hamiltonian (6) we put: b~j,b,\;j ➔ b1,b2, where b1,2 = f3J1,2 are the dimension
less coupling constants in the horizontal and vertical directions, respectively. The partition 
function becomes: Z = (2cosh.b1 coshb2)L' Q, with the reduced partition function: 

L L • 

Q = Sp { II II (1 + ft O'mnO'm+ln) (1 + f2 O'mnUmn+l)}, 
(u) m=ln=l 

(20) 

where t
1

,2 = tanh b
1

,
2

• From (19), the same partition function is given by the Gaussian integral: 

L L L L 
Q = J II II db:_ndbmnda;.ndamn exp { L L [ a;,.na;.n + bmnb;.n + 

m=l n=l m=l n=l 

+ amnbmn + f1f2 a;-lnb:.n-1 + (t1 a:,_ln + h b:_n-1) (amn + b,.,_.n)]} , (21) 

with a0n = b:_
0 

= 0. The integral (21) is equivalent to (20) for any finite lattice size L under 
the free boundary conditions. In what follows; however, it will be more suitable to impose 
in (21) the periodic boundary conditions for fermions, a0n ~ ai,n, b;,0 = b;,L. This change 
can be viewed as a boundary approximation inessential for infinite lattice, as N =· L

2 ➔ oo. 
Finally, we are interesting in the free energy per site for infinite lattice. Assuming now periodic 
boundary conditions for fermions, let us pass in (21) to the momentum space by means of the 

standard Fourier substitution: 

1 L-1 L-1 
amn =LL L· apqei"'fmp+i"'fnq 

p=Oq=O 

1 

1 L-1 L-1 . I: I: -2~ ·-amn = - a* e-1Lmp-i7"'nq 
L pq ' 

p=O q=O 

1 L-1 L-1 
bmn =LL L bpqe•¥-mp+i¥-nq 

p=O q=O 

1 

1 L-1 L-1 
b:,n = l, LL b;qe-•¥-mp-i¥-nq 

p=O q=O 

(22) 

In the momentum space, the integral (21) becomes: 

L-1 L-1 • L-1 L-1 j II II da;iapqdb;ibpq exp { L L [ apqa;q + bpqb;q + apqbL-pL-q + 
p=O q=O p=O q=O 

-~ -~ -~ ·!!.I ] } +t1t2
e' L -, L a;qbL-pL-q + (t 1 e' L a;q + t2 e' L b;q)(apq + bpq) . 

Q = 
(23) 

where apq, a;q, bpq, b;q are the new variables of the integration. In the above transformation, 
the orthogonality relations for the Fourier exponentials were also taken into account: 

;2 t t exp [ i 2; m(p±p') + i 2; (q±q')n] = 5(p±p' lq± q')modL, (24) 
m=ln=l 

where 5 (p I q) mod L is the Kronecker symbol modulo L in both directions. The fermionic 
measure in (23) transforms in a trivial way (Jacobian equals to unity) due to the unitarity of 
the combined Fourier substitution (22), which property follows from (24). Thus we have to 
evaluate explicitly the momentum-space integral (23). 

The fermionic action in the momentum space admits a block-diagonal structure and the 
integral decoupl~s into a product of low-dimensional integrals over the groups of.the variables 
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with momenta p, q and L - p, L - q. Since the variables with conjugated momenta pq and 
L - pL - q·are interacting, in order to single out explicitly the true independent subsets of 
the variables in 'the action, we have to combine together in the pq-sum in (23) the terms 
with conjugated momenta p, q and L-p, L-q. Equivalently, the pq-suin is to be symmetrized 
with resp·ect to conjugation p, q H L-p, L-q. After such a symmetrization, the integral {23) 
factorizes into a product of independent integral factors of the following kind: 

Q ;q = j da;iapqdb;~dbPiai-pL-qdaL-pL-ibL-pL-ibL-pL-q exp [ (apqa;q + 

+bpql>;q +'aL-pL-qaL-pL-q + bL-pL-qbL-pL-q) + (apqbL-pL-q + aL-pL-qbp9 ) + 

+ (iii; a;qbL-pL-q + i;i2 ai,_pL-i;q) + (i1 a;q + i2 b;q) (apq + bpq) + 

+ (i; ai,_pL-q + i; bi,_pL-q) (aL-pL-q + bL-pL-q)], 

where we assume abbreviations: 

i1 = t1e;2¥ i2 = tie;~ ... -i!!e. .... -i~ 
t 1 = t 1 e L , t2 = t 2 e L 

(25) 

(26) 

The elementary Gaussian integral (25) can be evaluated in different ways. The straightforward 
method is to expand the nondiagon.al part of the exponential into a series and to integrate 
step by step over the subsets of the conjugated variables by means of elementary rules like 
(1). In the advanced version of this method, one makes use of the selection rules for the 
diagonal Gaussian averages that can be observed in the relations like (11) and (46). Another 
method is to interpret (25) as determiriantal Gaussian integral like (2) with N = 4. In such 
representation, one assumes the Gaussian action in the form: S = a A a•. This is possible, 
for instance, with the following choice of the conjugated fields: 

a1 , a2 , a3 , a4 H apq, bpq, ai-pL-q, bi,_pL-q, 

a; , a;, a;, a; f-t a;q, b;q, aL-pL-q, bL-pL-q - (27) 

The integral factor (25) then equals to the determinant of matrix A given explicitly in (28). 
Thus, we find: 

l -i1 -i2 0 1 

-i1 I - i2 -1 0 
Q;9 = det I I - (28) 

0 iti2 -I+ it i· I 

-id; 0 i· 2 -] +i; 

By a straightforward though somewhat lengthy calculation of the above determinant, we arrive 
to the following expressions: 

Q;q = (l+li1l 2)(I+li2l 2)-(ii+i:)(l-li21 2)- (ii+i;)(I-li11 2
) 

( 2) ( 2) 2 21rp ( 2) 21rq l+t1 l+t2 -2t1(1-t2)cos---y:-212 1-t1 cosL. (29) 

To obtain the partition function, Q, we have to multiply the factors (29) over all distinct pairs 
of the conjugated momentum-lattice points (p, q I L-p, L-q). That is, if the factor Q;q with 
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I ... 

J 

',) 

r 

given pq is already included into the product, then th~ factor Q1-~L-·q is not to be included, 
and vice versa (notice by the way that Q;

9 
= Q1-pL-q). The above prescription can be seen 

also comparing fermionic measures in (23) and (25). Respectively, if we multiply the factors 
Q;

9 
over all the points of the momentum lattice with no restrictions, this will yield squared 

partition function, Q2. Thus, we find: 

L-1 L-1 ' 2 2 
Q 2 = II II [ (1 + tf) (1 + 1l) - 211(1 - 1;) cos ? - 212(1 - tf) cos_!!_.!!_]. 

~~ L 
(30) 

The trigonometric product (30) is the exact &,olution for Q2 in the limit £
2 ➔ oo. The 

correspondent free energy per site readily follows: 

-/3/Q = ~ InQI = L L➔oo 

1 2~ 2~ d d 
= 

2 
/ / 

2
:

2
: In [(I+ 1~)(1 + tD-211(1 -l~)cosp-212(1- l~)cosq]. (31) 

0 0 

This is the free energy for the reduced partition function, Q, while the true-free energy per 
site, for Z, is to be recalculated from Z = (2cosh b1 cash b2)L

2
Q, and we find: 

21r 211' 

-/3 J z = In 2 + i J j i: i: In [ cash 2b1 cash 2b2 - sinh 2b1 cos p - sinh 2b2 cos q] , (32) 
0 0 

which is Eq. (108) in [l]. It is not necessary to say that the method we have applied above 
to obtain (32) significantly differs from the original approach [l]. An interesting comment by 
Lars Onsager on the history .;f his remarkable solution can be seen in [30]. 

In conclusion to this section, let us add few remarks on the properties of the 2D Ising 
model that follow from the exact solution. In what follows, we assume ferromagnetic case, 
b1,2 > 0. As regards the critical behaviour near Tc, there is no essential difference between 
(31) and (32) since the factor between Q and Z is nonsingular at all temperatures. From (31 ), 
it can be then deduced that the point of phase transiti_on is given by the condition: 

1 - 11 - 12 - 11 12 = 0, (33) 

where 11 = tanh bi, 12 = tanh b2, with b1 = Ji/kT, b2 = Jif kT. Equivalently, this condition 
can be written in the form: sinh 2b1 • sinh 2b2 = 1, which rather corresponds to the free energy 
in the form (32). The specific heat exhibits the logarithmic singularity as T ➔ 1~: 

I

T-T. I C / k ~ Ac j log TI ➔ 00, T = ~ ➔ 0, (34) 

where C / k is the dimensionless specific heat, k is Boltzmann's constant. The parameter A, is 
called the specific-heat critical amplitude. The value of Ac is the same by approaching 7~ from 
above and from below even for the anisotropic lattice, this is a particular feature of the 2D Ising 

. model. In the isotropic case (11=12=tanhb) the specific-heat amplitude is a fixed number: 
Ac = ~ b; ~ 0.495, where be = ½ ln(l + v2) ~ 0.441 is the inverse critical temperature, 
be = J /kTc, The analytic expression is also known for the spontaneous magnetization in the 
ferromagnetic 2D Ising model [3, 5]. This expression is simple, though· its derivation by any 
known method is very complicated. This is a yet unsolved puzzle in the two-dimensional Ising 
model [3]. For related comments also see [20, 25]. The analysis of correlation functions in 
2DIM also have 

0

becn performed within different approaches [8, 11, 31]. 
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6 Ordered products of grassmann factors and 
gaussian exponentials 

In this section we add few more remarks about the ordered products of Grassmann factors 
typically arising, as we have seen, by the fermionic interpretation of the 2D Ising model within 
the factorization method. Let L1 and L2 be arbitrary linear forms in Grassmann variables. 
Then we have: 

(1 + Li) (1 + L2) = eL1L2 (l + L1 + L2), (35) 

where the nilpotent properties of fermions where taken into account. In the above equation the 
two Grassmann factors are combined into a one Grassmann factor accompanied by a Gaussian 
exponential. The resulting identity can be iterated further on, and we find: 

(1 + L1)(1 + L2}(1 + L3 ) ••• (1 + LN) = (1 + tL) exp C,J;:5N L;Lj) , (36) 

where Li, ... , LN are arbitrary linear forms in Grassmann variables. Let o-0 = ±1 be Ising 
spin, notice that ul = I. Making substitution L; ➔ L; do in (36), we obtain the identity: 

(1 + L1uo) (1 + L2uo) (1 + L3uo) ... (1 + LNuo} = (1 +dot L;) exp ( ,E L;L;) . (37) 
•=I 1$•<J$N 

The averaging over the spin states then results: 

Sp { (1 + Liuo) (1 + L2uo) ... (1 + LNuo)} = 
(uo) 

=exp ( L L;L;), 
1$i<j$N 

1 
Sp ( ... ) = 2 I: ( ... ) . 
(uo) uo=±l 

(38} 

We see that the averaging of a product of any nu.mber of the Grassmannian factors like (38} 
over spin states, u0 = ± 1, always results Gaussian fermionic exponential, assuming the Ising 
spin being the same in all the factors. This property have been used already in the analysis of 
the 2D Ising models on irregular (in the geometrical sense) planar lattices [24). The appearance 
of the Gaussian exponential when we average at the junction in (18} is also evident from (38). 
In the same manner, we can elaborate the products of Grassmann factors with different spins, 
like those appearing in (16): 

(1 + L1u1) (1 + L2d2) ... (1 + LNUN} = (1 + 'E L;u;) exp ( L u;u; L;L;) . (39} 
i=I 1$i<i$N . 

This identity is a generalization ( or a particular case) of (36). In Eqs. (35)-(39}, it is only 
important that L1, ... , LN are the purely anticommuting symbols, satisfying also the nilpotent 
property. In principle, in the most general case, we may assume in the above identities 
Li, ... , LN to be arbitrary odd polynomials in Grassmann variables. 

The identities like (36) and (39) and related may be of interest also with respect to the 
2D Ising model in a nonzero magnetic field. The inclusion of the nonzero magnetic field 
corresponds to the additional terms ... + /Jh Umn in the hamiltonian (6), which results in the 
appearance of the additional Boltzmann factors 1 + to Umn in the partition function (9) and 
(16), which are linear in spin variables. Here t0 = tanh(h), and his conventional magnetic field 
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in the energy units, h = /31i, for small field, to ~ h. The appearance of such factors prevents 
the exact solution since the spin variables can not be easily el!minated from the density matrix 
(16} in this case. Within approximations, however, it can be expected that h f O will make 
the spins in the ordered products of Grassmann factors like in (16) and (39) to be "frozen", 
which will induce the nonlocal terms in the action like in (36). With respect to the problem of 
a non-zero magnetic field in 2D Ising model, and in view of some other potential applications, 
it may be therefore of interest to consider the nonlocal fermionic action like the one arising in 
(36} in the momentum space representation. 

For visual convenience, let us change the index in the nonlocal fermionic sum of (36) from 
ij to mm', with m, m' = 0, l; ... , M - I. The arising' nonlocal Gaussian fermionic action is of 
the form: 

M-2 M-2 M-1 

So(L}=I:Lm(Lm+t+·•·+LM-i}=E L LmLm•• (40) 
m=O m=O ffi'=m+l 

It can be expanded over either periodic or aperiodic Fourier exponentials. Assuming the 
aperiodic Fourier substitution: 

l M-1 l M-i 
L ___ '°' L ei~m(p+l/2) ___ '°' L. e-i~m(p+l/2) 

m - '/J L, p - '/J L, M-1-p , 
v1n p=O v1n p=O 

we find a particularly simple expression: 

M-1 LL s (L) = " p M-1-p • 0 L.... iL!!m(p+l/2) _ l 
p=O e M 

Assuming the periodic Fourier decomposition: 

1 M-1 1 M-1 

L ___ '°' L iL!!mp ___ '°' L -iL!!mp 
m - . r.-; L,., pe M - Ill LJ M-pe M ' 

vM p=o vM p=O 

(41) 

(42) 

(43) 

we obtain a similar though somewhat more sophisticated representation with a special role of 
the p = 0 mode: 

M-1 [ So (L) = L -LoLp + (Lp - L~i~LM-p - Lo)] 
p=l e'M"P - 1 ' 

(44} 

where Lo= Lp=O• The sums in (42} and (44} can be symmetrized by means of the identity: 

1 1 [ 1 ] 
eiP - 1 = 2 i tan(p/2) -

1 
· (45) 

In the above identities it is essential that Lm are the purely anticommuting fermionic forms 
in Grassmann variables. There are two remarkable features that can be readily observed in 
the Fourier sums like (42) and (44). First, we may note that (i) though the action (40) is 
highly nonlocal in the real space, it becomes diagonal in the momentum space. The second 
interesting feature (ii) is the 1/ip singularity in the p-mode of the action near p = 0, as 
p ➔ 0. This 1/ip singularity is the essentially fermionic effect, related to the fact that fermions 
anticommute. The reason for (ii) is that under p f-+ -p symmetrization fermions just select 
the skew-symmetric part of the kernel ( 45), that is, l/2i tan(p/2), while the contribution of 
the symmetric part of that kernel vanishes. The situation will be the opposite for bosons. For 
the application of the above considerations to the 2DIM in a nonzero magnetic field see also 
the discussion in Sect. 9. 
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7 Two variables per sHe 

In this section we consider some further modifications for the lattice fermionic interpretation 
of the 2D Ising model. Eliminating part of the fermionic variables from the basic Gaussian 
integral (19) for Q, we obtain a·reduced Gaussian fermionic integral for the same partition 
function, Q, but now with only two fermionic variables per site, see (47). In order to eliminate 
extra fermionic variables in (19), we intend to apply the identity given below in ( 46). Let a, b 
be independent Grassmann variables, then: 

j dbdae•b+•L,HL, = j dbdae"b(l +aL1)(l + bL2) = exp L2L1, (46) 

where Li, L2 are arbitrary linear forms in some other Grassmann variables, not involved in 
the integration, but anticommuting with a, b. Integrating out from (19) the amn, bmn fields by 
means of identity ( 46), we obtain a reduced Gaussian integral for (19) expressed in terms of the 
r~maining variables a,;.n, b,;'.n· Let us change the notation for the fields: a,;'.n, b,;'.n ➔ Cmn, - c,;'.n, 
respectively; da,;'.ndb,;'.n ➔ -dc;,.~dc,;'.n ➔ dc,;'.ndCmn, the reduced integral for Q then appears 
in the form: · · 

L L L L 
Q = J II II dc,;'.ndCmn exp L L [ Cmnc,;-.n + (Cmn + c,;-.n) (t.\:lCm-ln - t,\;lc;.n-1) 

m=l n=l m=l n=l 

t {I) (2) • l 
- mntmnCm-tnCmn-1 , (47) 

where cmn> c;.n are Grassmann variables, Con= 0, c,;'.0 = 0. The integral (47) is equivalent to 
(9) and (19), assuming the free boundary conditions in all the cases. Since the inhomogeneous 
distribution of the bond coupling parameters is still preserved, all the information on the ther
modynamic functions as well the correlation functions of the 2D Ising model on a rectangular 
lattice net is still contained in (47). The integral (47) (as well as (19)) may be of interest with 
respect to the problem of quenched disorder in the 2D Ising model [32, 33, 26]. 

For the homogeneous lattice, t.\:J, t,\:J ➔ t1 , t2, the integral ( 4 7) becomes: 

L L L L , 
Q = f II II dc,;-.ndCmn exp L L [ Cmnc,;-.n - t1 Cm-1nc,;-.n - t2 CmnC:.n-1 

m=l n=l m=l n=l 

- t1 i2 Cm-lnc:.n-1 + t1 CmnCm:...1n + t2 c:.n-1 c,;-.n] . ( 48) 

This integral can be calculated by analogy with (21). We assume again the periodic closing 
conditions for fermions and pass to the momentum space by Fourier substitution: 

1 L-1 L-1 

Cmn = - '°' '°' 2 
m LJ LJ Cpqe-i'rm+i~n 

p=O q=O L ' 

c* _ I /,-1 L-t 

mn - - '°' '°' 2 
.,/['i LJ LJ c* e+i'rm-i~n 

~ p=O q=U pq L 
(49) 

The choice of the signs of pq is here adopted for future convenience in (50). The orthogonality 
relations (24) are to be taken into account. In the momentum space, the integral (48) becomes: 

L-1 L-1 L-1 L-1 

J II { " " [ ·= -~ ·= -~ Q = II dc;qdcpq exp LJ LJ cpqc;q (1 - t1 e' L - t2 e' L - t 1t2 e' L +• L ) 

p=O q=O p=O q=O 
·= . -~ ]} + t 1 e' L cL-pL-qcpq + t2 e' L c;qcL-pL-q . (50) 

Then we have to make the p, q H L - p, L - q symmetrization of the action in order to single 
out explicitly the independent subsets of the variables. The integral then decouples into a 
product of simplest Gaussian fermionic integral factors: 

Q 2 jd * d d • d [ • ( ;= ;~ ·=+·~ pq = cpq cpq CL-pL-q CL-pL-q exp cpqcpq 1 - t1 e L - t2 e L - t1t2 e' L • L ) + 
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·2.?!z. ·ill ·?.!!2, ·ill 
+cL-pL-qci-pL-q(I-t1e-• L -t2 e-• L -t1t2e-• L -, £,)+ 

. . 21rp 2 . . 21rq • • ] (51) + 21 t1 sm T cL-pL-qcpq + 1 t2 sm L cpqcL-pL-q . 

This integral factor can be evaluated making use of the elementary rules like (I) and/or (46). 
Alternatively, if we decide to interpret this integral as the determinant, then we have to 
present the action in the form: S = a A a•, where A is a two by two matrix. This is possible, 
for instance, assuming the correspondence: a1, a2, aj, a2 H cpq• cL-pL-q, c;q, -cL-pL-q• The 
calculation is very simple-in-any ·case, and we find: 

2 I .= .~ i=+i~ I 2 · • 21rp . 21rq Q = I - 11 e L - 12 e L - t 1 t2 e L L - 4t 1t2 sm - sm - = pq · · . L L 

2 2 2 21rp 2 21rq 
= (1 + ti) (I+ 12) - 211(1 - t2) cosy - 212(1 - 11) cos L. (52) 

The squared partition function follows as the product of factors (52) over the whole momentum
space lattice. The factor in the final line of (52) is the same as in (29). So, we come again 
to the same results for the partition function and the free energy of the standard 2D Ising 
model on a rectangular lattice th.at have been ·commented already in Sect. 5. An interesting 
new feature in (52) is the trigonometric expression in the first line, wherefrom it is easy to 
recognize the all possible critical modes (zeroes of Q;q) in the ferromagnetic as well as an
tiferromagnetic regimes. Assuming p, q to be normalized to the 21r interval, there are four 
such possible critical modes: (p,q) = (0,0), (0,1r), (1r,0), (1r,1r). In the ferromagnetic case, 
the only possible critical mode is that with p = q = 0, and the criticality condition is give'n by 
{33) (notice that 0 = 21r). The other three modes, being always positive in the ferromagnetic 
case (t 1,2 > 0), define the possible critical points in the antiferromagnetic cases. For a related 
discussion also see [20, 25]. 

8 Continuum Limit 

In this section we consider the continuum-space limit (low momenta sector) of the exact lattice 
theory near Tc. A suitable starting point is the integral (48) for Q. In what follows, we assume 
the homogenous case and ferromagnetic interactions. Let Xmn = Cmn, c,7.n, we define lattice 
derivatives in a natural_ way: 8mXmn = Xmn-Xm-ln' anXmn = Xmn-Xmn-1• Substituting 
Cm-In= Cmn- amCmn' c,;.n-1 = c,;.n-anc.7.n into (48), we find the action in the form: 

s = L [ filCmnC:.n -Ai c;.namCmn + A2 Cmn8nc:.n- ti Cmn8mCmn 
mn 

+ t2 c,7.n 8nc,;-.n - 1112(8mCmn)(8nc,;-.n)], 

with the following set of parameters: 

(53) 

m={l-t1-l2-l1l2), A1=l1(l+l2), A2=l2{l+l1). (54) 

The lattice action (53) is still the exact expression. In this action one can already distinguish 
· the typical field-theoretical like structures, with the mass term and kinetic part. Evidently, 

the parameter !I! plays the role of mass, while A1, A2 and 11, 12 arc the kinetic coefficients. 
The critical point can be readily guessed to be !I! = 0, in agreement with (33). Let us take' 
the formal limit to the continuum space: 

mn ➔ x (x1,x2), L ➔ j d2x = j d,r 1dx 2 , 
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am ➔ 81 = a I ax1 , an ➔ 82 = a I ax2, 

Cmn, c;.n ➔ tp(x) ', i/;(x) ➔ tp, ijJ. (55) 

The continuum-limit counterpart for the lattice action (53) then appears in the form: 

S = j d2x [ m.t/Jtf-.\1 tt,81 °iii+ .\2tl>82tf....:. t1tl>81 ti>+ t2tf82tf]. (56) 

This is the Majorana-like continuum action for two-component massive fermions. In the above 
continuum action we have dropped ari interesting second-order momentum term with 8182. 
The mass and other parameters are the same as in (54). In presenting the action in the final 
form, we have as well applied the rule J d2x(a8b) = J d2x(b8a), where 8 = 81, 82 and a, b 
are any fermionic fields. This simple rule can be checked by integration by parts, taking into 
account that fermions anticommute and neglecting the boundary effects. Alternatively, one 
can check the above rule in lattice interpretation. In (56) the momenta operators 81,82 in 
all cases act to the right. The continuum-space action (56) captures the basic features of 
the exact lattice theory with action (48) in the low-momentum sector near the critical point, 
which is responsible for the critical-point singularities in the thermodynamic functions· and 
the large-distance behaviour of correlations. In the momentum space, this corresponds to 
approximation like e;P - 1 ~ ip, eiq - 1 ~ iq, assuming also the ultraviolet cut-off in the 
momentum integrals, IPI $ ko, with ko of order 1 (or say 1r/4) or less. 

The Majorana like action (56), however, is not in the canonic-~! form. It can be brought into 
a canonical form by a suitable linear transformation of the field~, eliminating the undesirable 
kinetic terms like tt,181ij;, tt,82 ij;. In the canonical form, the 2D Majorana action (56) is given 
as follows: · · 

S = f d2
x [ m tl>1tl>2 + tl>1 ~(81 + i Bi) tl>1 + tl>2 ~(-81 + i 82) tl>2] , (57) 

with the new Majorana components, tt,1, tp2, and the rescaled mass: 

- 1 - t, - t2 - ti t2 

m = J2(t1t2)c 
(58) 

In order to pass from (56) to (57), we have to transform the fermionic fields and the momenta 
operators 81, 82 in a suitable way. Here we comment shortly on this transformation. For the 
first step, making use of the rescaling of the fermionic fields like tp ➔ ei tp, ijJ ➔ e-i ij;, with 
properly chosen µ, we write the action (56) in a more symmetric form: 

S = f d2x [ '!1!.'P1i/12 + tp (-.\181 + .\282) i/1 + wo('P (-.\181) tp + i/1 (.\282) i/;)], (59) 

with new kinetic parameter: 

ff![; 1 
Wo = = J(l + ti) (1 + t2) 

➔ 
1 

(wo)c = .,/2 · (60) 

Exactly at Tc, independently of the rate of the lattice anisotrnpy, we have (wo)c = 72, since 
(1-t1-t-t1 t2 )c = 0. Taking into account that the continuum-limit formulation by itself is 
reliable only near Tc, in what follows we put: Wo = 1/../2 = (wo)c-

Tlie action (59) is already in a suitable form to be transformed into the canonical Majorana 
action (57). The general idea is to introduce the new fields by a linear substitution like 

ti>= u(,a+ia), 1/J = u'(r,a + ija), 
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(61) 

where 1 , i, r,, ij are free parameters (four complex numbers) and a, a are the new anticom
muting components (we shall pass a, a ➔ tt,1, ip2 at next stages). Substituting (61) into (59), 
we then look for the uniformization condition that the undesirable terms like a81a, a82a do 
not appear in transformed action. In essence, the idea is similar to that of the Bogoliubov 
transformation in the theories of superfluidity (34] and superconductivity (35]. It appears that 
the uniformization requirement, in any case, implies ,i = r,ij (the rule a8b = boa is not to 
be forgotten at this stage). We then put ,i = r,ij = 1, assuming the remaining normalization 
parameter, u, to be fixed by the condition ipij; = aa, whence d{; dip = da da, which is. the 
condition that transformation (61) is canonical, that is, the fermionic measure is unchanged. 
In this way we come to the uniformization condi.tion in the form: 

- - [¼" (,r, + 'YT/) + 2 w0 = 0, Wo = V ~ , (62) 

while u is then fixed by the condition: 

u 2 (,ij- ir,) = 1. (63) 

The momenta 81, 82 also will be transformed, in general, under the transformation of the fields 
like (61). The correspondent relations are not shown, however, since in our particular case, 
with w0 = 1/../2, this momenta transformation appears to be identical. Assuming Wo = 1/../2, 
we find that a possible realization for (61)-(63) is the following substitution: 

ip= a+a 
J2isin(1r/4)' 

_ aei(,r/4) + e-i{.-/4)0 

'P = - J2isin(1r/4) ' 
(64) 

which corresponds to 1 = 1, T/ = -72(1 + i) in (62) and (63). Substituting (64) into (59), the 
action appears in the form: 

S = f d2x [ m.aa +½a (.\181+i.\282) a+½ a (-.\181+i.\282) a], (65) 

where a, a are the new Majorana fields, and ip{; ➔ aa, d{;dtp ➔ da da. A remarkable feature 
is that the momenta components 81 , 82 in ( 65) are not effected, they are the same as in the 
original action (56) and in (59), which is provided by a special value of the kinetic parameter, 
Wo ➔ (w)c = 1/../2. The axis in the d2x +-t d2p space will be rescaled and rotated, in 
general, by the uniformization transformation under substitution like (61) with wo fc 1/../2. 
The uniformization condition (62) by itself still provide some freedom corresponding to the 
gauge rotation of the fields: a -+ a eia, a -+ a e-ia in (65), or tp1 ➔ tp1 eia, tp2 ➔ tp2 e-ia in 
(57), accompanied by the covariant orthogonal rotation of the reference frame of momenta 
.\181,.\282. In (64) and (65) this freedom is fixed in such a way that the axis are not rotated. 

Now, let us rescale the momenta in (65) as follows: 81 ➔ (.\2/ .\i)1l 2 81 , 82 -+ (.\if .\2)112 82 , 

which is canonical transformation (d2x ➔ d2x, d2p ➔ d2p). The rescaled momenta are those 
that finally appear in the canonical action (57). By this rescaling, we gain a new overall kinetic 
factor, let us call it w1 , given by: 

W1 = {>:>:; = Jt1t2(l + i1)(l + i2) ➔ (wi)c = J2 {t1i2)c, (66) 

it is reasonable to fix w1 at T = Tc as is indicated above. For the last step, we remove w1 from 
the kinetic part by the rescaling of the fields (first changing notation for the components): 
a, a ➔ 'Pi, 'P2 ➔ ipif fo, tl>2/ Fi, and obtain the Majorana action in the canonical form (57). 
Respectively, the mass m. from (56) will get renormalized to give the rescaled mass m (58). 
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The canonical two-component Majorana action (57) can be written as well in matrix no
tation. Noting that m 1/,11/,2 = ½m( 1/,11/,2-1/,21/,1) and introducing the matrix structure at each 
space point in the cPx integral, we write: 

Smajor = ~ J d2x ( 1P1 )T'[·( 81 + j82 m . )] ( 1P1 ) , 
2 V,2 -m. -81 + 182 1P2 

(67) 

where ( f stands for transposition of spinor. In terms of the standard Pauli matrices, a1, a2, a3, 
the matrix kernel of this action (the 'inverse propagator', or 'equation of motion') can be 
written in the form: [ m (i a 2) +8i(a3)+i 82 (1)], or in the form: (i a 2)[m +81 (ai) +82 (a2)]. 
Thus, we find: 

1/ 2 - - • Smajor = 2 d X W [ m + 8] W, iii=WT(ia2), a= ,1 81+,2 82, (68) 

with the 2D ,-matrices 11=ai, , 2=a2. This is the 2D Majorana action in the relativistic field
theoretical form. The conjugated Majorana spinors ii, and W in (68) are built in fact from 
the same component fields, 1/,1, 1/,2, so they are not the truly independent fields in the path 
integral. By doubling the number. of fermions in the Majorana representation we can pass to 
the Dirac.action with four independent components: 

.sdirac = ½ / d
2x II>' (x)[m + 8] w (x)' (69) 

where W = (1/,1 ,1/,2) and Ill= (1/Jt,1/J;f are now charged Dirac spinors with four independent 
anticommuting components: 1/,1,1/,2,1/Ji",1/J;. By convention, one can assume t/!j,,t,; to be 
complex conjugates of 1/,1, 1/,2 • The propagator m + fJ in (69) is the same as in (68). To obtain 
the Dirac action (69), we take two identical copies S' and S" of the Majorana action (68) and 
write: Sdirac = (S' + S")maiorana• Introducing the new Dirac fields by means of substitution: 

w = 1 , v'2(w + i w"), 
- 1 w = \1'2(111' - i Ii,"), (70) 

we obtain the action (69). Mathematically, the transformation from (68) to (69) is in essence 
the same that we have considered in relation to identity (4) in Sect. 2, which establishes 
the connection between the fermionic Gaussian integrals of the first and second kind. The 
transformations from lattice to continuum in 2DIM are.also discussed in [21, 25]. 

9 Critical-point singularities 

The field-theoretical formulation for the 2D Ising model near Tc is a suitable representation 
to discuss the therm~dynamic singularities near the transition point. Assuming that we start 
with the Dirac interpretation (squared partition function) and noting that in the momentum 
space det(m + 8) = m.2 + p2 , the singular part of the free energy readily follows in the form: 

1 / d2p _ 2 2 1 _ 2 const ( ) 
-/3 Ising= 2 (27r)2 ln(m + p) = 871' m In m.2 + ... , (71) 

where the mass m is that given in (58). This is the exact expression for the most singular 
part of the free energy of the 2DIM in a zero magnetic field (h = 0). The same asymptotics 
follows from the exact solution. Noting that near the critical point m ~ r = IT - Tc I/Tc, let 
us assume m for conventional temperature. The internal (average) energy is then given by: 

8 f cflp m m const 
(E) m smg = 8m (-/3lsmg) = 471'2 m.2 + P2 - 411' In m.2 + ( ... ), (72) 
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and the dimensionless specific heat is: 

1 const 1 const 
(C/k) m sing= - In --=T + ( ... ) = -

2 
In _I ___ I + ( ... ), 

471' m 71' m 
(73) 

where· we put the subscript m to remember that the derivatives are taken with respect to 
the conventional temperature m. For the isotropic lattice, m ~ 4 (b - be) ~ 4bcT, with 
be= ½ ln(l + v'2), wherefrom one can recover, for instance, the specific-heat asymptotics (34) 
with the correct value of the amplitude: (C/k)sing = Ac I In lrll, Ac= (8/7r) b~. 

The asymptotics (71 )-(73) are to be compared with the hypothetical form of the critical
point singularities in the same functions in a nonzero magnetic field near:Tc, which subject we 
intend to discuss, in short, in the remaining part of this section. We are interesting merely in 
what may be the singular behavioui of the specific heat in a nonzero magnetic field along the 
critical isotherm, that is, when the temperature is fixed exactly at Tc and the deviation from 
the critical point is realized by a small nonzero magnetic field, h cf, 0. To start with, let us 
write the expected form for the singular part of the free energy near the critical isotherm, in 
the regime of the "strong" magnetic field, r 15/8 << h << 1: 

_ l •1 cflp (-2 2 )..2) -/3 Ising - 2 (27r)2 In m + p + P2 + ( ... ), (74) 

with>.. ex hM(r,h), where M(r,h) is magnetization, T ➔ 0. More precisely, both T and h 
are assumed to be small, but we are interesting in the situation near the. critical isotherm, 
r = 0, h cf, 0, and introduce infinitesimal deviation from Tc with respect to the temperature, 
r << h8l 15

, merely to perform the differentiation, then we put r ➔ 0. The same form of the 
free energy can be considered for "weak': field, h8115 << r. In this case, however, the choic~ of 
>.. as function of r, h may be more sophisticated. In particular, this choice may be nontrivial 
in the ordered phase, where the effects of the external field are superimposed on the effects of 
the inherent molecular field [36]. 

A somewhat unusual perturbation term )..2 /p2 which appears in the propagator in (74) is 
the result of an approximation in the mixed spin-fermion representation for Qh#O· The inser
tion of the h > 0 weights like 1 +ham• into the factorized density matrix in (16) prevents 
the exact solution, as it was already commented in Sect. 6. We then have elaborated the 
ordered products of factors from (16) into an exponential form, cf. the discussion in Sect. 6, 
and then applied the simplest approximation of the Hartree-Fock type for the spin subsystem. 
In particular, this kind of approximation implies>..~ hM(r,h). The nonlocal Gaussian expo
nentials, like those considered in Sect. 6, then appear in the action. This, roughly, corr<'sponds 
to the modification of the Majorana action of the following kind: 

S= ½ / d2xiii[m+fJ+>../8]w. (75) 

This form of the action is not be understood too literally, the less singular >..-corrections are 
ignored (or incorporated in>..). The main statement is that the free energy appears with the 
perturbed propagator as is given in (74). It may be noted that the parameter >.. in (74) and 

. (75) is rather charge then mass. The free energy in the form (74) might be of interest also at 
Dcj,2. Now, let us assume (74) to be true and consider what follows. 

In the strong-coupling regime(>.. >> ½m.2) the internal energy per site is given by: 

mf p2dp2 18>.. 
(E)msing= 471' ,\2+m2p2+p4+88,n +( ... ). (76) 
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Respectively, the specific heat at the critical isotherm (m ➔ 0) appears in the form: 

. 1 / p2 dp2 1 const 
(C,,.)sing = 4,r ,\2 + (p2)2 + ( ... ) .= Sir In )T" + ( ... ) 

=_!._llnvAI + ( ... ), .vArxh8115 ➔ O, m=0, 2,r . 
_(77) 

where .\(0,h) rx hM(O,h), or .\(O,h).rx h1Eiiis, and we.have passed in the final line to vA rx 
h8115 ➔ 0 in o~der to make the amplitude to be equal to that in (73). It is known from 
scaling and other considerations that M(O, h) rx h1115, wherefrom .\(0, h) rx h 16

1
15

• Comparing 
(77) with (73), ~e see that under given approximation the specific heat along the critical 
isotherm is logarithmic and can. be formally recovered from (73) by replacing the thermal 
mass m = m(r,0) ~ T by the "magnetic mass" vA(0,h) ~ h8115

• The amplitude in (77) 
. remains the same (with respect to the mass parameters) as in (73). The specific heat (77) is 

obtained by 82 /81112 , where m is given in (58). Formally, the asymptotics (77) includes the 
case of the .. anisotropic lattice as well. For the isotropic lattice, m ~ 4 (b- b0 ), b = J /kT, and 
we have to multiply the amplitude from (77) by factor 16b: to obtain the true specific heat 
along the critical isotherm: 

(C/k)sing=~b~llnh8115 I =Ecllnhl, ,r 
8 64 2 

Ee = 15 Ac = 15,r be ' (78) 

where Ac= (8/ir)b~ is the thermal critical amplitude along the critical isobar, T =/= 0,h = 0, 
A

0 
= o:494538589, whtle E0 = (8/15)Ac = 0.263753914 is the amplitude along the critical 

isotherm; r = 0, h =/= o; as it appears within given approximation. Here be = ½ ln(l + v'2) = 
0.440686793 is the inverse critical temperature, b~ = J/kT0 • It may be interesting to check 
(78) by the Monte-Carlo'experiments and other numerical methods. The' specific heat (77) is 
obtained, formally, by differentiating with respect to m placed in front of the integral in (76) 
and then taking the limit m ➔ 0. The other less singular corrections to the specific heat are 
ignored in (77) and (78). · 

Curiously, we could guess (77) from the most crude phenonienological ·considerations, sim~ 
ply replacing the "thermal" mass mT ~ T from (73) by the "magnetic" mass mh ~ h8115

. This 
replacement can not be done, however, at least in a simple form, in the free energy like (71), 
since this will yield the expressions with the logarithmic corrections in the functions related 
to the magnetization at the critical isotherm, which hardly is the case. The unusual form of 
the magnetic-field correction .\2 / p2 in .the propagator in. (74), versus a naive modification of 
mass term in m2 + p2, is in fact favorable with respect to the known. data about the Ising 
model. Merely, this concerns the abse~ce of th~ logarithms, observed or expected, 'in the field 
derivatives of the free energy. ' 

The 2D Ising model at Tc can also be considered in terms of the conformal field theory 
(CFT) axiomatics (37, 38, 39, 40]. Zamolodchikov (40] has conjectured the existence of the 
eight masses m; ~ h8115 (j = 1, 2, ... 8) in the perturbed CFT assumed to be in the same 
universality class as the 2DIM at the criticaf isotherm, r = 0, h =/= 0. A remarkable feature is 
that the ratios of these masses· are 'predicted from the syriimetries as the: exact, numbers up 
to the overall normalization constant: m2/m1 = 2cos ¼ir, m3/m1 = 2cos -Jo,r, etc (40]. The 
nature of these masses from the point of view of the original lattice formulation of .2D IM is yet 
not well understood. If these masses are thought out as the result of some kind of fine splitting 
of the.\ term in the propagator in (74), their ~ffect on the behaviour of the correlations might 
be different, as compared with the.thermal mass effect, since .\2 is not the same that m2 in (74). 
If so, the naive expectation that the asymptotics of the two-point correlation functions will be 
given, by analogy with thermal decay of correlations, by the sum of the terms like K0 (m; R), 
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where /{0 is modified Bessel function, may be not the case. It is difficult to make' definite 
predictions, however, at present stage, what may be the modifications. The approximations 
like (74) seem to be two crude in this respect. It might be conjectured, for instance, that some 
of the masses (probably all except the lightest or the heaviest one) might have imaginary parts 
and will then contribute only either more rapidly decaying additive corrections to the leading 
term (with extra factors 1/ R) or the corrections with the oscillating formfactors (with the 
same periods R; ~ m;-1 as the decay rates in the accompanying exponentials) to the term 
with 'normal' decay, like K0 (m 1R), which is what can also be expected from common scaling. 

In principle, taking the free energy in the form (74) as it is, one can try to analyze other 
thermodynamic functions. However, this will claim for further fine detailing of the meaning of 
.\ as a function of both T and h. In particular, the effects related to the possible spontaneous 
ordering are to be taken into account properly below Tc. An interesting feature is that at a 
special line.\= ½m2 the free energy (74) reproduces, in essence, the same results (71)-(73) as' 
at .\ = 0, that is, at h = 0. This might be an evidence for the possibility to incorporate the 
effects of the spontaneous ordering in this scheme. We are going to discuss these subjects in 
a more detail elsewhere. In fact, the line .\ = ½m2 distinguishes between the weak-field and 
strong-field regimes, with respect to T, in the integral (74). At this boundary, T ~ h8115, this 
is just what one can expect for this boundary from scaling and other considerations [36]. 

10 Conclusions 

In the above discussion, the two-dimensional Ising model (2D!M) has been treated as a theory 
of free fermions on a lattice. The use was made of the anticommuting (Grassmann) variables 
and integrals. The fermionization procedure is based on the mirror-ordered fermionic fac
torization of the density matrix. Following this method, the original spin-variable partition 
function Q with arbitrary inhomogeneous set of bond coupling parameters was transformed 
into a Gaussian fermionic integral. The subsequent discussion includes the momentum-space 
analysis and the exact solution for the standard (translationally invariant) rectangula.r 2D 
Ising lattice, the free fermion representation for Q with two variables per site, the Majorana
Dirac field theory interpretation of the 2DIM near Tc (continuum limit). The effects of the 
long-range fermionic correlations in a nonzero magnetic field and the behaviour of the spe
cific heat along the critical isotherm also have been discussed. Grassmann variables provide 
a powerful tool to analyze the 2DIM. In physical aspect, it seems to be important to under
stand better the mechanism of the spontaneous ordering in 2DIM in terms of fermions. The 
fcrmionic interpretation of the 2D Ising model provides grounds for this model to be treated 
in a common range with some other typical models in condensed matter physics and quantum 
field theory. 
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