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The two-dimensional (2D) Ising model is reviewed as a theory of free fermi-
ons on a lattice. The discussion includes the fermionization procedure based on the
mirror-ordered factorization of the density matrix, Gaussian fermionic integral
representation for partition function, the momentum-space analysis and Onsager’s
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1 Introduction

There are many remarkable, a.naiogues between the concepts and methods in sta.tlstlcdl mef
chanics and quantum ﬁeH theory The two—dnmensxona.l Ismg it del (2DI ) may be 4 good
example of this kind. In its original formulahon, the 2D Ismg model i§ & dlscrete-sprn lattice
model for the second-order phase transitions in magnets for which the ana.lytlc results for the
free energy and related furictions are ava.llable over the whole temperature range. At the first
stages, this model was a.na.lyzed ra.ther as a comphcated mathematical problem [1] [8] The
canonical approaches to 2DIM ‘are based on. the transfer-ma.trxx a.nd combmatorral consxdera—
tions [1]-(12]. The fermionic features in the 2DIM have been ﬁrst recogmzed in [2,6,7]. Further
developments in this direction provrded new 1n51ght into the physrca.l nature of problem and
simplified the analysis in technical aspect [13] [20]. The modern approaches to the 2DIM are
based on the mterpreta.t:on of the problem inl terms of fermions [13]-[26]. In this article !,
we review some aspects of a slmple noncomblnatona,l fermlonlc approa.ch to the sbiM based
on the application of the antlcommutmg Grassma.nn- iriable integrals and the mxrror-ordered
factorization ideas for the density matrix [18] [20] The thethod is simple, the transfer-matrices
and combinatorics are not used. The appearanice of fermions rathér fesembles the change of
the basis in quantum mechanics [18}-[20]. The fertiionization procedure is considered in Sect.
4. Grassmann variables are first mtroduced by factorlza.tlon of the local bond Boltzimann
weights in (11). The mirror-ordered factorized representation for the whole densnty matrix is
then obtairied in (16). Thisis a mixed spin-fermion representation; in which spin variables can
be eliminated. Eliminating the spifi variables from (16); the partition function, Q, appears
as a Gaussian fermionic mtegra.l in (19)., Equivalently, the 2D Ising model is reformuilated as
a theory of free fermions on a lattice. The above transformation of Qis performed for the
most general inhomogeneous distribution of the boiid coupling parameters over lattlce In
Sect. 5, the 2D Ising model on the sta.nda.rd homogeneous rectangula.r lattice is consrdered By
transformation to the momentum space for fermions, the partition functlon a.nd free energy are
obtained in a closed form (Onsager ] result) In Sect 6, commg back to prevrous dlscussxon,

mg by factorization of the density matrix in (16) The nonlocal fermionic sums which appear
in this context might be of mterest for the 2D Ising model in a nonzero magnetic field, as is
commented in Sect. 9. A refined version of the basic integral (19) for the partition functron is
obtained in Sect. 7. The resulting Gaussian integral for @ with two variables per site is given
in (47). It is interesting to note that the Ma_)ora.na.—Dlrac structures, sornewhat mysteriously
arising in the 2D Ising model, can be recognized in the action of (47) already at the lattice
level. The effective contmuum-hmlt field theories correspondmg to the low-momentum sector
of the exact lattice theory, which is resporsible for the critical-point singularities near Tc, are
then discussed in Sect. 8. The effective Majorana action of two-component massive fermions
is obtained in (57) and (68) By doubling of the number of fermions in the Majorana repre-
sentation, one can pass as well to the Dirac theory of charged fermions (69). In Sect. 9, the
effects produced by a nonzero magnetic field in the fermionic system of the 2DIM Ising model
near T, are considered. It is argued thab switching on of a nonzero magnetic field (h 7& 0)
causes the long-range nonlocal interactions of the 2D Ising fermions. Within adopted approx-
imation’ conjectures, the singularity in the specific heat at the critical isotherm is expected to
be logarithmic. Finally, few concluding remarks are given in Sect. 10.

! An extended version submitted to a special issue of J. Phys. Studies (Ukrame) dedicated to the 90s
Anniversary of Professor N. N. Bogoliubov.
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2 GGrassmann variables

Grassmann variables are the purely anticommuting fermionic symbols. Given a set of Grass-
mann variables, a;,a2,as,...,an, we have: aia; + aja; =0, a’j2 = 0. The linear superpo-
sitions of Grassmann variables are again purely anticommuting, their squares are zeros. The
rules of the integration over Grassmann variables were first introduced by Berezin {27). The
elementary rules for one variable are: : ) )

/daj-a,:l, /daj-1=0. A Q)
In multiple fermionic integrals, the differential symbols are again anticommuting with each
other and with the variables [27]. Due to the nilpotent property of fermions, a? = 0, any
natural (analytic) function definite a finite set ‘of Grassmann variables can be represented,
in principle, as a finite polynomial in these variables. The integration then reduces to the
repeating use of the above elementary rules, keeping in mind that the fermionic symbols
anticommute. The riles of change of variables under a linear substitution in the fermionic
integrals readily follow from the basic rules of integration. ‘As compared with the cofrespondent
rules of commuting analysis, the only difference is that the Jacobian will now ‘appear in the
inverse power [27]. The Gaussian fermionic integral of the first kind is given a5 follows [27}:

N N N o N
/H da;daj €xp (EZ a"A"J'aj‘) = detA, P (2)
1i=1 i=1 j=1 . CTen

where all variables in the total set are purely anticommuting, the matrix: A isgﬁajrblitrary. By
convention, the variables a; and a} can be considered as complex conjugated. variables. In
physical contexts this corresponds to charged fermions. Alternatively, one can consider a; and
a} simply as independent variables. The Gaussian fermionic integral of the second kind, for
real fermionic fields, is related to the Pfaffian [27):

: N N
/daN...dazdal exp (% EZa;A;ja,-) = PlaffA, (3)
i=1j=1
where matrix A is now assumed to be skew-symmetric: A+AT = 0, where A7 is the transposed
matrix. In components: A;; + Aj;i =0, A;; = 0. This property is complimentary to fermionic
anticommutativity. By formal definition, the Pfaffian is some combinatorial polynomial in
elements A;; [28, 29]. In fact, the combinatorics of the Pfaffian is identical to that of the
fermionic -version of Wick’s theorem (28, 29].. The equation (3) can itself be assumed for
an effective definition of the Pfaffian, wherefrom its basic properties readily follow. For any

skew-symmetric matrix, the following algebraic identity holds true [28, 29]:

det A= (Pfaff A)%. (4)
The Pfaffian is thus the square root of the determinant of a skew-symmetric matrix. The

above identity most easily can be proved just in terms of the integrals like (2) and (3). Let N
be even. Assuming that the matrix in (2) is skew-symmetric, we make use of substitution:

a = %Qk +im), o= %ﬁ(fk — i), - (5)

where £, 7: are the new variables of the integration. It is then easy to check that the integral
(2) decouples into a product of two identical integrals like (3), which is equivalent to (4). For
the normalized multifermionic averages associated with the Gaussian integrals like (2) and
(3) one can apply fermionic Wick’s theorem in a usual way. In the field-theoretical language,
fermionic form in the exponentials like (2) and (3) is called action. In physical interpretations,
the Gaussian fermionic integrals correspond to free-fermion field theories [21, 22].
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3 Two-dimensional Ising model

In this section the 2D Ising model is formulated in terms of Is‘ing spi.n varia.bles. We start
with a generalized formulation of the 2D Ising model, assuming a'rbltrary mhon}ogene.ous
distribution of the bond coupling parameters over a rectangula'r latt{ce net. The Ising spins,
Omn = £1, are disposed at the lattice sites, mn, labeled by pairs of .mtegers,'m,n =1,..,L,
with m and n running in horizontal and vertical directions, res.pec.tlvely. Lzls the length of
the lattice side. The total number of sites and spins on the lattice is N = L2, at final stages
we assume N = L? = co. The hamiltonian is: :

L L .
'—ﬁ H(O‘) = Z E [ b'(nllln o'mna'v:l-{-ln + b'(:r);.{-l o'mno'mn-{-l] , (6)
m=1n=1
where b{@) = BJ&) are the dimensionless bond coupling para,'meters, J,f,‘:)'a.re the ezc}flia{xgg
energies, § = 1/kT is the inverse temperature in the energy units. For L finite, to be definite,
let us assume free boundary conditions for spin variableés: or41n = 0, Omry1 = 0. Thev
partition function and the free energy per site are: - G

L1 _ o
Z=(z;exp(—ﬁH(a)), —ﬁfzj:l\l,grgo-ﬁlnz, g =1/kT, ‘ )
where the sum in- Z is taken over all possible spin configurations provi'ded»by' Tmn = +1 at
each site. The internal (average) energy and specific heat follow by differentiating the free
energy with respect to the temperature. The specific heat per site 1s: :

Ok = %0 (~Bf2)/6%, B=1/kT, (®)

where C/k is the ‘dimensionless specific heat, k is Boltzmann's constant. Now,l ft::r a typl.c;;l
bond Boltzmann weight from (7), we note an identity: exp (b ao’) = 'cosh b+o0o'sinh b, which
readily follows from oo’ = £1. The partition function then appears in the. f.orm: zZ = R xQ,
where R is a simple spin-independent prefactor and @ is the reduced partition function:

L L »
Q= ?f; { H H(l +tv(nl-}—ln°'mn°'m+ln) (1 +tv(r|2r)s+l°'mn°'mn+l) }’ . 9)
g N .

m=1n=1
witﬁ () = tanh bl ‘and now we assume a properly normalized spin averaging:

sp () =11 S8 () Sp ()=} % () (10)

mn (0mn omn=%1

so that at each site Sp (1) = 1, Sp (omn) = 0. The reduced partition function @ will be the
main subject of our interest in what follows. .

4 Fermionization

In this section we transform Q into a fermionic Gaussian integral. The method is based on
the mirror-ordered factorization procedure for the density matrix {18, 19, 20]. Let us start
with a factorization of the local bond Boltzmann weights from {9). For the whole lattice, we
introduce a set of the purely anticommuting Grassmann variables, @mn, Gmn) bmn, b » @ pair



per bond, and write:

1 + tr(n‘llnamna'm+ln -

[ 485t e¥mn8 (1 Ginn) (14 810 @ mtin) =

Sp) { Amn Af:l-}-ln} ]

amn

1 + tv(rl27)|+lamngmn+l =

[ b7t ePrmnbin (14 baninn) (14 8241 Binmns) =

Il

52 Ban B}, (1)

and Sp(...) stand for the local Gaussian averaging like da*dae®’(...) and fdb*dbe® (...).
These averaging symbols are totally commuting with any element of the algebra and can be
gathered in one place, forming the symbol of the global Gaussian averaging. The identities
(11) can be checked making use of the elementary rules of integration like (1), taking into
account that exp(aa*) = 1+ aa* and exp (bb*) = 1 + bb*. The mn indices in the above
Grassmann factors are chosen to be equal to the indices of the spin variables involved in these
factors. With this choice, it will be easy to control the position of any Grassmann factor with
given spin variable among other such factors in their global products. The idea of the next
step is to substitute (11) into (9) and to eliminate the spin variables in the resulting mixed
representation for the density matrix. There are four Grassmann factors with the same spin
variable, Amn, Bmn, Afp, By, which come by factorization of the four different bonds attached
to a given mn site. In the process of the spin averaging we have to keep these four factors
nearby. Taking into account that the separable Grassmann factors are in general neither
commuting nor anticommuting with each other, being the superpositions of commuting and
anticommuting terms, we have to take care of a special ordering for the global products of
such factors, in order the elimination of spin variables be really possible. In two dimensions,
this problem is solvable {18, 19, 20]. What can really be used in the reordering arrangements
of the products of Grassmann factors is the property that the doublets like A, A; ., = and
B, B..1, representing the local bond weights in (11), can be treated as totally commuting
objects, if taken as a whole, under the sign of the Gaussian averaging arising by factorization.

In the subsequent transformations we shall apply as well two ordering principles illustrated
below by tutorial examples. The first illustration (linear rearrangement) is:

(dod1)(102)(203)(dada) = do( b1 )(2h2) (bada) ba s (12)

where we simply reread the product joining together the symbols with the same index. The
second illustration (mirror rearrangement) is:

(¢’1&’1) (¢2<z’2) (¢3$3) = (¢1 (¢2 (dmf’s) &’2) J)l) =¢1¢2¢3 - J’g J’z J’l ’ (13)

where we assume that the doublets like (¢;¢;) are totally commuting with any individual
factor from the common set, while the individual factors themselves may be noncommuting.
Then we decouple proper and bar factors into separable products.

It is easy to guess that the linear ordering principle (12) is by itself enough to solve the 1D
Ising chain via fermionization. This is not the case, however, in two dimensions, where there
is a contradiction between preferable m-ordering for the horizontal weights and preferable
n-ordering for the vertical weights with respect to the linear-ordering rule (12). Therefore, we
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shall apply'ﬁrst the mirror-ordering principle (13) to factorize a ho.rizontal ladc.ier of the, yertic::ll
weights, B,,,Bn41, in a horizontal-like fashion with respect to mde?( m, w1t}3 n fixed. ‘Thls
will provide us with an opportunity to introduce properly the remaining ‘ho.rxzontal ngghts
at the next stage, so that the spin ‘variables can be finally completely G':llmlna.tEfi from the
density matrix. In transformations from (14) to (15) we omit, for brevity, the signs of t'he
Gaussian averaging introduced by factorization of the local weights. The totally commuting
bond Boltzinann weights are now given by A, A ., and BBy AP .

For the first step, we multiply a subset of vertical weights over m, with n fixed. Making
use of the mirror-ordering rule (13), we write: :

L L | _L,
H(l +t1(r|27)l+lomnamn+l) = H BpnBrny1 = H B, - H an,+1 < (14)
m=1 . m=1 ) m=1 m=1

In the final expression, there are two m-ordered products with m .= 1,..., L going in the
opposite directions (mirror ordering). Already at this stage the ordering is favourable fo.r
introducing the horizontal weights, A, A1, Which possibility will be used belorv. Mu}tl-
plying the above partial products (14) taken as a whole over n =1,...,L, with’ n increasing
from left to right, and ‘making use of the linear-ordering rule (12) with respect to index n, we
write: = :

L L

H H (1 + tmn+lamnam'n-};l) = .

n=1m=1

|

L L
= [H Bmﬂ . H Bv:m+1 =

=ILI[ILIB;n-ILIBm]. @)

In the last line, it was taken into account that B, .; =1, since 0,14y = 0. Respectively, we
have corrected the same expression at the left end introducing, formally, the lacking product
of factors B, = 1+t,,,0mib5o with b= 0,so that, actually, B, = 1. In this way, Lhe.‘free
boundary conditions for spins are now elaborated into the analogous conditions-for fermions.
All vertical weights are already involved in (15). It remains only to introduce prpperly the
commuting horizontal weights. For the complete density matrix we thus find: ’

L L. .
Q(U) ,= H H(l -l'_tmﬂ+1o‘mna'mﬂ+l)(1 +tm+lnamnam+ln) =
n=1m=1 .
_:,’ L i L
— —
= Sp [ H Br;mAmnA;l-Hn : H an ] =
(@) n=1  m=1 m:ll
_:,’ L i L .
-—
= Sp I1 [ 1T AnnBinAnn 11 Bn ] (16)
(a.b) "n=1 m=1 m=1

where use was made of the linear ordering rule (13) with respect to m. By analogy with the
boundary transformations in (15), we eliminate in the final line the extra factors Ay, ,, = 1,
with o741, = 0, and insert, formally, the lacking factors A}, =1, assuming ag, = 0. In (16)

[<54]



we also restore the symbol of the diagonal Gaussian averaging arising by factorization of the
local weights: o : .

L L. L ‘L . .
Sp () = [ I1 T dogndanndbisdbpn oxp 3 3 (omntin +bpabin) {3 07)
ab i m=1n=1 m=1 n=1 ’

The expression in the final line of (16) is what we call the mirror-ordered factorized repre-
sentation for the density matrix.” This representation is exact, assuming the free-boundary
conditions for fermions: ag, = 0, b}, = 0. The density matrix is now completely prepared for
the elimination of the spin variables. The partition function arises by summing over gy = £1
at each site in (16). ,

The averaging over o,,,, = %1 is to be performed at the junction of the two m-ordered

products in (16), with fixed n. This is a step by step procedure. The local averaging at the
junction is given by:

Sp) { A;mBr:mAmann } =

(omn

=3 > (1+t,(,.',’.57m..a;.-xn)(1+t,$,2,{a...,.b,';,,__,)(1+'a,-,.,,amn)(1‘+a,,,,,bm) =

Oma=41 - .

it

1+ Gnbon + 0t @ 0z bx 4 (tDak 1D ) (@mn + bun) +

+ $1(); @) o=

-
mn"mn m—lnbmn—lam'lbrrpn =

i

eXp [amnbmn + t,s.l,).t,g.zz a;n—lnb;m—l + (t‘lsll')la;l«ln + t,.("z)‘b;"‘_l) (amn + bm")] ) (18)

The result of the averaging is a purely fermionic polynomial, even in the variables, which
is equivalent to the Gaussian exponential factor given in the last line. This equivalence can
be checked, for instance, by the series expansion of the exponential, taking into account the
nilpotent property of fermions. Another way to see this equivalence is explained in Sect. 6.
Let n be fixed, at the junction of the two m-ordered products in (16) we just find the four
relevant Grassmann factors (18) with the same index mn placed nearby, with m = L, given
n. The local averaging (18) results the Gaussian exponential factor from the last line, which
is even in fermions and is thus totally commuting with any element of the algebra. We then
remove this commuting Gaussian factor from the junction somewhere to the very left end of
the remaining ordered product, and find again, at the junction, a new set of four neighboring
factors like (18) with the same index mn and.the same spin variable, m =L — 1, given n.
We then repeat the same averaging procedure at the junction for m = L—1, and then for
m = L-2,...,1, for given n, and all over again for other values of n = 1,..., L. The spin
variables being completely eliminated, over the whole lattice; the partition appears to be given
by the product of partial Gaussian exponential factors from (18) taken under the sign of the
global Gaussian averaging (17). Thus we come to the result:

L L L L
Q = [ I Il indbpnderadan, exp { 1% [0t + bnbiun +

m=1 n=1 m=]1n=1
+ amnbmn + tgrztg). a;l—lnb;l;l-l + (t;lr!a;.-.ln + trSIZV)lbr:m—l) (amn + brnn) ]} ) (19)

}Nherek ag, =0, bno = 0. The partition function is now presented as a fermionic Gaussian
integral. This representation is exact. The fermionic integral (19) is completely equivalent to
the original expression (9) assuming the free boundary conditions both for spins and fermions.
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5 The momentum-space fermions

In this section we consider the.2D Ising model sgttled °ﬂ.§h’e'svtan,da-fd homoggneths l:z_ttltt:}f.“
The partitioh function @ can be explicitly eva‘luated_ in this case by the trar{sf:qrmat{qxf to , ;
momentum space for fermions. This results the Onsager expressions for partltgon funFtlon and
free energy of the standard 2D Ising model. For the homogeneous (though‘ yet ‘an}sqtvroylc)
lattice, in the hamiltonian (6) we put: b1 b2 b,,bg,_whe_re bz = ﬂJl,'z are the dlmen§1f)n-
less coupling constants in the horizontal and vertical directions, respectively. The partition

function becomes: Z = (2cosh b, cosh bz) I 9, with the reduced partition function:

L L . g .
Q = Sp { H H(l + tl amnam+ln) (1 +1t2 amna"'"+l) } ? (20)
(a) : . ‘ i

m=1n=1

where £, 7 = tanh by ;. From (19), the same partition function is given by the Gaussian integral:

L L L L ‘ .
Q = f TI T dbndbmndasindans exp { 3 32 [matmn + bmabra +

m=1n=1 m=1 n=1

+ amnbrnn "' ity a:n—lnb:rm—l + (tl a;x—ln +12 bv:m—l) (amn + br:m)]} ) (21)

with a, = bno =0. The integra,l‘ (21) is equivalent to (20? for. any finite latt.ice size'L“ under
the free boundary conditions. In what follows, however, it Wlll‘be n:ore su:table t.o !r;llpose
in (21) the periodic boundary conditions for fermion‘s, ag, = Gins bm0_= bar. 'I_‘l}qs: ange
can be viewed as a boundary approximation inessential for mﬁmt.e lattice, as N=1L — 0.
Finally, we are interesting in the free energy per site for infinite lattice. Assuqug now penfod}ic
boundary’ conditions for fermions, let us pass in (21) to the momentum space by means o the
standard Fourier substitution: )

1 L-1L-1 1 L-1L-1 .

;3%
i3z ian - « —imp—iing
1Smp+i5ng - = a’e T T
— L L a s
amn—LZEame ' mn LZ_%ZO ]
p=0 ¢= p=0 ¢=
L-1L-1
L-1L-1 1 . 2m
1 iZmp 4480 C e v —ifmp—ifing (22)
- = ke AL b == b e .
bmn"‘LZprqe ? mn LPZ"%NZ:" g
p=0 ¢=0 ) =0 ¢= . .

In the momentum space, the integral (21) becomes:

L-1L-1 L-1L-1

Q = f H H da;qdawbdb;qdbpq exp { E E [apqa;q + bygbye + b _pr-q

p=0 ¢=0 p=0 ¢g=0
C2ep s 2 ; 2, j2mg .,
Ftytpe T =2 apebi pr—q + (1 et T as, +tre' L by ) (e + bpq)] } . (23)

where a,, a5, b, b, are the new variables of the integration. In the above transformation,
Pq 03 - . .
the ortht:gonality relations for the Fourier exponentials were also taken into account:

L L . 2 , ,

L3 e [imes) + i Tk ] =S o D (2
where §(p|q)modr 15 the Kronecker symbol modulo L in both fiirections. The.f.em{iom(;
measure in (23) transforms in a trivial way (Jacobian equals to unity) due to the unitarity o
the combined Fourier substitution (22), which property follows from (24). Thus we have to
evaluate explicitly the momentum-space integral (23).

The fermionic action in the momentum space admits a block-diagonal structure an.d the
integral decoupfes into a product of low-dimensional integrals over the groups of the variables
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with momenta p,q and L — p, L — q. Since the variables with conjugated momenta pg and
L — pL — q-are interacting, in order to single out explicitly the true independent subsets of
the variables in the action, we have to combine together in the pg-sum in (23) the terms
with conjugated momenta p,q and L—p, L—q. Equivalently, the pg-sum'is to be symmetrized
with respect to conjugation p,q ¢+ L—p, L—q. After such a symmetrization, the integral (23)
factorizes into a product of independent integral factors of the following kind:

2 _ A » - - . - -
o= [ dagdogdbydbydo;_yyday_yp by gdbypimg exp (a5 +
' +‘bqu;q +:aL—pL-qal‘«-PL-q + bL—pL—qu:-pL—q) + (aquL—pL-q + GL—PL—ébpq) +

(kg bl pr o+ fffz af«-? L-qb:q) + (& ap + z bp0) (3pq + by ) +

+ (t; dz—p L-q + t; bE—pL;q) (aL—pL—q + bL—pL—q)] ’ ‘ ) (25)
where we assume abbreviations:
~ c2np ~ C o N . 2 N ;2%
tl:tle' L, t2=t2€'_’-!, t;:tle_izT-z, t;Stze_'L"J. (26)

The elementary Gaussian integral (25) can be evaluated in different ways. The straightforward
methed is to expand the nondiagonal part of the exponential into a series and to integrate
step by step over the subsets of the conjugated variables by means of elementary rules like
(1). In the advanced version of this method, one makes use of the selection' rules for the
diagonal Gaussian averages that can be observed in the relations like (11) and (46). Another
method is to interpret (25) as determinantal Gaussian integral like (2) with N = 4. In such
representation, one assumes the Gaussian action in the form: § = a Aa*. This is possible,
for instance, with the following choice of the conjugated fields:

. * . *
ay, az,as, a4 « Qpq s bpq ) aL«pL—q’ bL—pL—q s

- - - * * *
ar,8;,83;8; © ap, by apprg,brpr—g- (27)

The integral factor (25) then equals to the determinant of matrix A given explicitly in (28).
Thus, we find:

. :
pg = det N . . - (28)
0 i, -14iy i
—hi; 0 iy —14i;
By a straightforward though somewhat lengthy calculation of the above determinant, we arrive
to the following expressions: ’

2

o = U+ A+ - G -G - GBI -G =

27q
I

To obtain ‘the partition function, @, we have to multiply the factors (29) over all distinct pairs

of the conjugated momentum-lattice points (p,q| L—p, L—¢q). That is, if the factor qu with

I

2
L+t (1+3) — 20, (1 - 1) cos—ze ~ 25 (1 —t2) cos (29)
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given pq is already included into the prodtict, then the factor Q% _, 1, is not to be included,
and vice versa (notice by the way that Q= Q% -,1-)- The above prescription: can.be seen
also comparing fermionic measures in (23) and (25). Respectively, if we multiply the factors
Q2 over all the points of the momentum lattice with no restrictions, this will yield squared
partition function, Q*. Thus, we find: S

i

L-1L-1 2np 2nq
The trigonometric product (30) is the exact golution for Q? in the limit L? — oco. The
correspondent free energy per site readily follows: '

1

~Bfo= 1 1n@Q =
1 2121rd d

- 5//—:2—1111 [0+ +8)—260 — ) cosp—23(1 — ) cosg]. ~ (31)
o0

This is the free energy for the reduced partition function, @, while the true-free energy per
site, for Z, is to be recalculated from Z = (2cosh b, cosh b'z)LzQ, and we find:

2r 2
~Bfz=In2+ —12- //g%—g% In [cosh 2b, cosh 26, ~ sinh 2b; cos p — sinh 2b; cosq] , o (32)
00

which is Eq. (108) in [1]. It is not necessary to say that the method we have applied above
to obtain (32) significantly differs from the original approach [1]. An interesting comment by
Lars Onsager on the history ‘of his remarkable solution can be seen in [30].

In conclusion to this section, let us add few remarks on the properties of the 2D Ising
model.that follow from. the exact solution. In what follows, we assume ferromagnetic case,
b1,z > 0. As regards the critical behaviour near T, there is no essential difference between
(31) and (32) since the factor between @ and Z is nonsingular at all temperatures. From (31),
it can be then dediced that the point of phase transition is given by the condition:

l—tl“-tz—iltz:[), ) (33)

where t, = tanh by, t; = tanhb,, with b = Ji/kT, b, = J,/kT. Equivalently, this condition
can be written in the form: sinh 2b; - sinh 2b, = 1, which rather corresponds to the frec energy
in the form (32). The specific heat exhibits the logarithmic singularity as T — T:

T-T.

c

-0, (34)

Clk =~ AflogT| = 00, 'r=\

where C/k is the dimensionless specific heat, k is Boltzmann’s constant. The pafdmctcp Acis
called the specific-heat critical amplitude. The value of A, is the same by approaching 7 from
above and from below even for the anisotropic lattice, this is a particular feature of the 2D Ising

model. In the isotropic case ({;=t;=tanhb) the specific-heat amplitude is a fixed number:

Ac = 8b2 =~ 0.495, where b, = Lin(1 + V2) =~ 0:441 is the inverse critical temperature,
be = J/kT.. The analytic expression is also known for the spontaneous_magnetization in the
ferromagnetic 2D Ising model {3, 5]. This expression is simple, though its derivation by any
known method is very complicated. This is a yet unsolved puzzle in the two-dimensional Ising
model [3]. For related comments also see [20, 25]. The analysis of correlation functions in

2DIM also have been performed within different approaches [8, 11, 31}.
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6 Ordered products of grassmann factors and
gaussmn exponentials

In this section we add few more remarks about the ordered products of Grassmann factors
typically arising, as we have seen, by the fermionic interpretation of the 2D Ising model within
the factorization method. Let Ll and L, be arbitrary linear forms in Grassmann variables.
Then we have:

(l+Ll)(1+Lz)—'eL‘L’(l+L1+Lz), . - (39)

where the mlpotent propertxes of fermions where taken into account. In the above equation the
two Grassmann factors are combined into a one Grassmann factor accompanied by a Gaussian
exponential. The resulting identity can be iterated further on, and we find:

(T+L)A+ L)1+ L) ... (1 +Ly) = (1 + iL,) exp ( i Z L,'LJ') , (36)
=1 <N

where Ly, ..., Ly are arbitrary linear forms in.Grassmann variables. Let 0p = +1 be Ising
spin, notice that o = 1. Making substitution L; — L; oy in (36), we obtain the identity:

N
(14 Lyoo) (1 + Lyoo) (1 + Laoo) ... (1 + Lnag) =. (1 + UoZL.‘) exp ( 3 L(Lj) . (37)
i=1 1<i<GEN
The averaging over the spin states then results:
(sp) {(1+ Lioo) (1 + Ly00) ...
0

= exp ( > LiL,.) ,

1Si<iSN

1+ kLNUo) } =

S ()=5 T (. (38)

oq=%1

We see that the averaging of a product of any number of the Grassmannian factors like (38)
over spin states, dp = % 1, always results Gaussian fermionic exponential, assuming the Ising
spin being the same in all the factors. This property have been used already in the analysis of
the 2D Ising models on irregular (in the geometrical sense) planar lattices [24]. The appearance
of the Gaussian exponential when we average at the junction in (18) is also evident from (38)

In the same manner, we can elaborate the products of Grassmann factors with different spins,

like those appearing in (16):-

i=1 ISI<EN

(1 + Llal)(l + Lzo'z) F. (1 + LNUN) = (l + ﬁ,: L,‘O’,‘) exp ( 2 0i0; L,'LJ') . (39)

This identity is a generalization (or a particular case) of (36). In Eqs. (35)-(39), it is only
important that Ly, ..., Ly are the purely anticommuting symbols, satisfying also the nilpotent
property. In- principle, in the most general case, we may assume in the above identities
Ly, ..., Ly to be arbitrary odd polynomials in Grassmann variables.

The identities like (36) and (39) and related may be of interest also with respect to the
2D Ising model in a nonzero magnetic field. The inclusion of the nonzero magnetic field
corresponds to the additional terms ... + Bh oy, in the hamiltonian (6), which results in the
appearance of the additional Boltzmann factors 1 + to 0y in the partition function (9) and
(16), which are linear in spin variables. Here t; = tanh(k), and A is conventional magnetic field

10
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in the energy units, A = BH, for small field, ¢o ~« k. The appearance of such factors prevents
the exact solution since the spin variables can not be easily eliminated from the density matrix
(16) in this case. Within approximations, however, it can be expected that h # 0.will make
the spins in the ordered products of Grassmann factors like in (16) and (39) to be “frozen”,
which will induce the nonlocal terms in the action like in {36). With respect to the problem of
a non-zero magnetic field in 2D Ising model, and in view of some other potential applications,
it may be therefore of interest to consider the nonlocal fermionic action like the one arising in
(36) in the momentum space representation. :

For visual convenience, let us change the index in the nonlocal fermionic sum of (36) from
tj to mm' with m,;m' =0,1;. M — 1. The drising nonlocal Gaussian fermionic action is of
the form: ‘

M-2 M-1
So(L) = Z L (Lm+l +oot Lya)=3Y, E LpLp,. . (40)

m=0 m=m+l »
It can be expanded over either periodic or aperiodlc Fourier exponentials. Assuming the
aperiodic Fourier substitution:
L= 1 Mz:lL Zmp1/2) L 2 Li-i-pe -l—m(p+1/7) (41)
= \/174 =
we find a particularly simple expression:

M-1
Lp[/M—l—p

So (L) = Pgo e Empt/2) _ 1" v (42)
Assuming the periodic Fourier decomposition:
1 M- . ] M 1
L, S Leldmr = — % LM_,e"F"'” (43)

R = VM 5

we obtain a similar though somewhat more sophisticated representation with a special role of
the p = 0 mode:

So(t)= 3 |~ toty + Lem Lol = Lol | (s4)

where Lo = Ly=0. The sums in (42) and (44) can be symmetrized by means of the identity:

: =1[. L -1]. (45)

et?—1 2| itan(p/2)

In the above identities it is essential that L,, are the purely anticommuting fermionic forms
in Grassmann variables. There are two remarkable features that can be readily observed in
the Fourier sums like (42) and (44). First, we may note that (i) though the action (40) is
highly nonlocal in the real space, it becomes diagonal in the momentum space. The second
interesting feature (ji) is the 1/ip singularity in the p-mode of the action near p = 0, as
p — 0. This 1/ip singularity is the essentially fermionic effect, related to the fact that fermions
anticommute. The reason for (ii) is that under p ¢+ —p symmetrization fermions just select
the skew-symmetric part of the kernel (45), that is, 1/2itan(p/2), while the contribution of
the symmetric part of that kernel vanishes. The situation will be the opposite for bosons. For
the application of the above considerations to the 2DIM in a nonzero magnetic field see also
the discussion in Sect. 9.
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7 Two variables per site

In this section we consider some further modifications for the lattice fermionic in%erpreta.t.ion
of the 2D Ising model. Eliminating part of the fermionic variables from the basic Gaus'sn'an
integral (19) for Q, we obtain a'reduced Gaussian fermionic integral for the same p'art'ltlon
function, @, but now with only two fermionic variables per site, see (47). In orfier to eliminate
extra fermionic variables in (19), we intend to apply the identity given below in (46). Let a,b
be independent Grassmann variables, then: : : ’ : :

/dbdae““""“*”" = /dbdae“”(l +al)(1+bLy) =exp L;Li, . (46)

where L, Ly are arbitrary linear forms in some other Grassmann variables, not involved in
‘the integration, but anticommuting with @,b. Integrating out from (19) the @mny bmn fields by
means of identity (46), we obtain a reduced Gaussian integral for (19) expressed in terms of Ehe
remaining variables @, b5 . Let us change the notation for the fields: @, by, = Cmny — Cmn s
réspeétively‘, daz dbr = —dc,.dcn, — dc, demn, the reduced intggral for @ then appears
in the form: :

L L L L - - . . . W’ (2) ..
Q =/ H H dcf:\ﬂdcf'"‘ €xp EZ [c’""cmn'+ (C""' +Cmn) (tmnCY"fl" - tmncmn—l)

m=1n=1 m=1n=1

—t DD i ], (47)

where c,,,, ¢4, are Grassmann variables, ¢g, = 0, ¢yg = 0. The integral (47 i.s equivalent to
“(9) and (19), assuming the free boundary conditions in all the cases. Since the .mhomogeneous
distribution of the bond coupling parameters is still preserved, all the information on the ther-
modynamic functions as well the correlation functions of the 2D Ising model on a recta.ngu!a.r
Jattice net is still contained in (47). The integral (47) (as well as (19)) may be of interest with
respect to the problem of quenched disorder in the 2D Ising model [32, 33, 26].

For the homogeneous lattice, t{1), {2} — ¢,,1,, the integral (47) becomes:

1 "mn?
. L L L L . . .
Q ‘:/ H H dc; deny exp Z Z [c,,,,.c;m — 11 Cn-1nCon — t2CmnCopny
m=1 n=1 m=1n=1
~— 1182 Cm—1nCmn—1 T 1 CanCmtn + 12 C,:.,._lc;.,.] . (48)

This integral can be calculated by analogy with (21). We assume again the ;.)eriodic closing
conditions for fermions and pass to the momentum space by Fourier substitution:

1 L-1L-t _,'7_22,,-,.',,'2.;’7‘1" * — 1 llz:_l Lz—:l(_- e+i?—22m—i1%'1n (49)
Cmn = 75 Z Z Cpq € s Lmn = 1.2 “Pq :
L p=0 ¢=0 1< p=0g=0

The choice of the signs of pq is here adopted for future convenience in (50). The orthogonality
relations (24) are to be taken into account: In'the momentum space, the integral (48) becomes:

L-1L-1

L-1L-1 . .2 s camp | .2%
Q =/ H H dc},dc,, exp { Z Z [cpqc;q(l — tle'z_l-2 —tge'Tﬂ —titzet L +'Tﬂ)
p=0 ¢g=0 p=0 ¢=0 2 . e
+t et L CL_pL—qCpg T12€" L cp'qc,:_pL_q] } . (50)

Then we have to make the p,q <+ L — p, L — g symmetrization of the action in order to single
out explicitly the independent subsets of the variables. The integral then decouples into a
product of simplest Gaussian fermionic integral factors:

i 3 sl §2mp g 2vg
2 - b - _ et’l —t T tit, et L T
o= /dcpqdcpqch_pL_qch_pL_q exp [cpqcpq(l t) 2€ 1ts )+
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PETH —i2m _2me_j2m
+cL—PL-—qu-.—pL—q(1_tle T e TV —fitget L))_+

. . 2m . . 2mq . .
+ 23 sin Tp CL_pL-qCpe + 2113 sin —Lq cpch—pL—q] . : (51)

This integral factor can be evaluated making use of the elementary rules like (1) and/or (46).
Alternatively, if we decide to interpret this integral as the determinant, then we have to
present the action in the form: S = a Aa*; where A is a two by two matrix. This is possible,
for insta.nce, assumi-ng the correspondence: @1, G2, G, Qg 4% Cpgy Cf_p1—gs Cpgs ~ CL—pL—g+ ThE
calculation is very simple-in-any case, and we find:

. . P . omp . 2
Q;q: Il—t,c'%—t;e‘_z_l—ﬂ ~ 1) tge'll'-a“z'l-'!l T~ Ayt sm—:—psm—rZ =

orp 2
=(1+82)(1+)—24,(1-8) cos—% —2t,(1 — t7) cos—”L—q. A (52)

The squared partition function follows as the product of factors (52) over the whole momentum-
space lattice. The factor in the final line of (52) is the same as in (29). So, we come again
to the same results for the partition function and the free energy of the standard 2D Ising
model on a rectangular lattice that have been commented already in Sect. 5. ‘An interesting
new feature in (52) is the trigonometric expression in the first line, wherefrom it is easy to
recognize the all possible critical modes (zeroes of Q2 ) in the ferromagnetic as well as an-"
tiferromagnetic regimes. ‘Assuming p, q to be normalized to the 2 interval, there are four
such possible critical modes: (p,q) = (0,0), (0,7), (r,0), (w,7). In the ferromagnetic case,
the only possible critical mode is that with p = ¢ = 0, and the criticality condition is given by
(33) (notice that 0 = 2r). The other three modes, being always positive in the ferromagnetic
case (£1,2 > 0), define the possible critical points in the antiferromagnetic cases. For a related
discussion also see [20, 25).

8 Continuum Limit

In this section we consider the continuum-space limit (low momenta sector) of the exact lattice
theory near 7. A suitable starting point is the integral (48) for Q. In what follows, we assume
the homogenous case and ferromagnetic interactions. Let zpn = ¢, e,y we define lattice
derivatives in a natural way: OnZmn = Tmn—Zmotn, OaTmn = ZTrin~Zmn-1. Substituting
Cm—1n = Cmn— OmCmn s Cmp_y = Cpmp— OnChn into (48), we find the action in the form:

S= Z [mcmnc;m "'/\l Cr:lﬂa"'c""l + /\2 cm,.a,.c;m— ty cm,.a,,.c,,m
mn

+12.C OnConn = 1182 (BrnCmn) (Bninn) | (53)

with the following set of parameters:
m=(1-t—ta—tity), M=t (1+t), d=t(1+1). (54)

The lattice action (53) is still the exact expression. In this action one can already distinguish

" the typical field-theoretical like structures, with the mass term and kinetic part. Evidently,

the paramcter m plays the role of mass, while A, ), and t;,t; are the kinetic coefficients.
The critical point can be readily guessed to be m = 0, in agreement with (33). Let us take
the formal limit to the continuum space:

mn = x = (T1,25), I - /d21=/d;l‘ld172,
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3,,. -—)31::6/311, 3,.v—)32=a‘/31:2,

Cony Con = $(2)) B(2) = ¥, B © o (55)

The continuum-limit counterpart for the lattice action (53) then appears in the form:

= [ [myF-rpaT+ hyaPuvav+aTay]. ()

This is the Majorana-like continuum ‘action for two-component massive fermions. ln the above
continuum action we have dropped an interesting second-order momentum term with 8,0;.
The mass and other parameters are the same as in (54). In presenting the action in the final
form, we have as well applied the rule [ d*z(adb) = [d*z(bda), where 0 = 8,,0; and a,b
are any fermionic fields. This simple rule can be checked by integration by parts, taking into
account that fermions anticommute and neglecting the boundary effects. Alternatively, one
can check the above rule in lattice interpretation. In (56) the momenta operators 8;,d; in
all cases act to the right. The continuum-space action (56) captures the basic features of
the exact lattice theory with action (48) in the low-momentum sector near the critical point,
which is responsible for the crmca.l-pomt singularities in the thermodynamic functions and
the large-distance behaviour of correlatlons In the momentum space, this corresponds to
approximation like e — 1 =~ ip, e — 1 =~ iq, assuming also the ultraviolet cut-off in the
momentum integrals, |p] < ko, with ko of order 1 (or say 7/4) or less.

The Majorana like action (56), however, is not in the ca.nomca.l form. It can be brought into
a canonical form by a suitable linear transformation of the ﬁelds eliminating the undesirable
kinetic terms like 0,09, 1/)32#) In the ca.nomca.l form, the 2D’ Ma]ora.na actlon (56) is given
as follows

5= [ds [m¢1¢2+¢1—(al+1az)¢l+¢z—( al+zaz)¢z] (57)

with the new Majorana components, 11,2, and the rescaled mass:
1t —ty—1t ¢,
‘/ 2 (tltg)

In order to pass from (56) to (57), we have to-transform the fermionic fields and the momenta
operators 9;,; in a suitable way. Here we comment shortly on’ this tra.nsformatlon For the
first step, making use of the rescaling of the fermionic fields like ¥ — e% 1, e 5, with
properly chosen p, we write the action (56) in a more symmetric form:

S= [ da[miida + % (~00 + 42) P+ ol (~MB) P+ S NN D)], (59

with new kinetic parameter: -

(58)

m =

4t 1 - 1
“=\an T Jirmarn T w (60)
Exactly at Tc, independently of the rate of the lattlce a.rusotropy, we have (wp). = W’ since
(1—tj=t—tit3). = 0. Ta.klng into account that the continuum-limit formulation by itself is
reliable only near Tc, in what follows we put wo =1/v/2 V2= (wo

The dction (59) is already in a suitable form to be tra.nsformed into the canonical Ma.]ora.na.
action (57). The general idea is to introduce the new fields by a linear substitution like

v=u(1a+3a), $=u(na+7a), ’ (61)
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where 7, %, 17, 7 are free parameters (four complex numbers) and a,a are the new anticom-
muting components (we shall pass a,a — t;,%2 at next stages). Substituting (61) into (59),
we then look for the uniformization condition that the undesirable terms like a 8ya, a 8;@ do
not appear in transformed action. In essence, the idea is similar to that of the Bogoliubov
transformation in the theories of superfluidity {34] and superconductivity [35]. It appears that
the uniformization requirement, in any case, implies ¥4 = nij (the rule adb = b3a is not to
be forgotten at this stage). We then put 47 = 77} = 1, assuming the remaining normalization
parameter, u, to be fixed by the condition ¥¢) = aa, whence di) dyy. = di da, which is. the
condition tha.t transformation (61) is canonical, that is, the fermionic measure is unchanged.
In this way we come to the uniformization condi.tion in the form:

3123
Atrg’

(i+3) +2w =0, wo= (62)

while u is then fixed by the condition:
u?(yii—Am) =1. (63)

The momenta 91, 8, also will be transformed, in general, under the transformation of the fields
like (61). The correspondent relations are not shown, however, since in our particular case,
with wy = 1/+/2, this momenta transformation appears to be identical. Assuming wg = 1/+/2,
we find that a possible realization for (61)-(63) is the following substitution:

_ a+a J= ae' /) 4 e=ilr/4g
\/2isin(m/4)’ \/2isin(w/4) '

which corresponds to v = 1,7 = —7-(1 +1) in (62) and (63). Substituting (64) into (59), the
action appears in the form:

(64)

S= /dzz [maa+3a(hdy+idad)a+ta(-Md; +idB)al, (65)

where a,a are the new Majorana fields, and ¢¢ — aa, dpdy) — dada. A remarkable feature
is that the momenta components 8y, 3; in (65) are not eflected, they are the same as in the
original action (56) and in (59), which is provided by a special value of the kinetic parameter,
wo = (w). = 1/v/2. The axis in the d®z ¢ d®p space will be rescaled and rotated, in
general, by the uniformization transformation under substitution like (61) with wo # 1/+/2.
The uniformization condition (62) by itself still provide some freedom corresponding to the
gauge rotation of the flelds: a & ae®, a —+ @e™™ in (65), or ¥, = 1™, ¥, = o€~ in
(57), accompanied by the covariant orthogonal rotation of the reference frame of momenta
A101, A20:. In (64) and (65) this freedom is fixed in such a way that the axis are not rotated.

Now, let us rescale the momenta in (65) as follows: 8, — (A2/A1)Y28y, 8, = (Mi/A2)Y/? 0,
which is canonical transformation (dz — dz, d’p — d?p). The rescaled momenta are those
that finally appear in the canonical action (57). By this rescaling, we gain a new overall kinetic
factor, let us call it wy, given by:

w] = m= tltz(l +tl)(1 +t2) — (wl)c = \/i(t—lh-):v (66)

it is reasonable to fix w) at T = T. as is indicated above. For the last step, we remove w, from
the kinetic part by the rescaling of the fields (first changing notation for the components):
a,a = Py, ¥2 = ¥/ /w1, ¥2//w1, and obtain the Majorana action in the canonical form (57).
Respectwely, the rhass m from (56) will get- renormalized to give the rescaled mass 7 (58).
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The canonical two-component Majorana action (57) can be written as well in matrix no-
tation. Noting that m 19, = %ﬁl(‘l/))‘l/)z‘-‘l/)g‘l/)]) and introducing the matrix structure at each
space point in the d*z integral, we write: . . L

1 w \T[(a+ie, ~ m ¥
Sma§°r=§/d21 (¢;) [( l—ﬁlz_z ~o, +i8, )](1/);)’ , (6?)

where ()T stands for transposition of spinor. In terms of the standard Pauli matricc:as, 01,02,03,
the matrix kernel of this action (the ‘inverse propagator’, or ‘equation of motion’) can be
written in the form: [ (i02) +8; (03) +i8;(1)], or in the form: (i d2) [ + 61 (o1) + 02 (02)]-
Thus, we find: :

smajo,=§/d’zﬁ/[m +91¥, ¥=9T(ic;), O=m+102, (68)

with the 2D 7-matrices 11=01, ¥2=03. This is the 2D Majorana action in the relativistic field-
theoretical form. The conjugated Majorana spinors ¥-and ¥ in (68) are built in fact from
the same component fields, ¥, 12, so they are not the truly independent fields in the path
integral. By doubling the number of fermions in the Majorana representation we can pass to
the Dirac action with four independent components:

Sairne = / d%z ¥ (z)[m + 8] ¥ (2) o (69)

where ¥ = (y1,%2) and U = (¢, ¥5)T are now charged Dirac spinors with four independent
anticommuting components: ¥1,%2,¥{,%;. By convention, one can assume Yo, s to l?e
complex conjugates of 1, 2. The propagator m + 0 in (69) is the same as in (68?. To obtain
the Dirac action (69), we take two identical copies §! and 5" of the Majorana action (68) .and
write: Sqirme = (S + 5") majorana- Intréducing the new Dirac fields by means of substitution:

1 1 " = 1 b~ -
=— ] U=-—rn(¥ -1V _ (70)
v ﬁ(‘l’ +iv), \/i( )y
we obtain the action (69). Mathematically, the transformation from (68) to (69) is in essence
the same that we have considered in relation to identity (4) in Sect. 2, which e§tabllshes
the connection between the fermionic Gaussian integrals of the first and second kind. The
transformations from lattice to continuum in 2DIM are also discussed in (21, 25].

9 Critical-point singularities

The field-theoretical formulation for the 2D Ising model near ’1‘“C is a suitable representation
to discuss the thermbdynamic singularities near the transition point. Assuming that we start
with the Dirac interpretation (squared partition function) and noting that in the‘ momentum
space det(ﬁl + 5) = m? + p?, the singular part of the free energy readily follows in the form:

1 d’p _, gy L _g const
=8 fng = 3 W In(m? + p’) = & In peve +(...), (71)

where the mass 7 is that given in (58). This is the exact expression for the most singular
part of the free energy of the 2DIM in a zero magnetic field (h = 0). The same asymptotics
follows from the exact solution. Noting that near the critical point i ~ 7 =T — '1'"C |/Te, let
us assume 71 for conventional temperature. The internal (average) energy is then given by:
d? Q0 . const

P_m T 2R, (72)

M mitp? Ar m?

(E) m sing = —a% (_ﬂfsing) =

16

and the dimensionless specific heat is:

1 const 1 const
(C/k)ﬁ, sing = 4—‘” In — + () = 5; In W + () , - (73)

m?
where we put the subscript m to remember that the derivatives are taken with respect to
the conventional temperature /2. For the isotropic lattice, m ~ 4 (b — b,) ~ 4b.r, with
be=1In(1+ v/2), wherefrom one can recover, for instance, the specific-heat asymptotics (34)
with the correct value of the amplitude: (C/k)gng = Ac|Inir||, A = (8/7) 2.

The asymptotics (71)-(73) are to be compared with the hypothetical form of the critical-
point singularities in the same functions in a nonzero magnetic field near T,, which subject we
intend to discuss, in short, in the remaining part of this section. We are interesting merely in
what may be the singular behaviour of the specific heat in a nonzero magnetic field along the
critical isotherm, that is, when the temperature is fixed exactly at T. and the deviation from
the critical point is realized by a small nonzero magnetic field, o # 0. To start with, let us
write the expected form for the singular part of the free energy near the critical isotherm, in
the regime of the “strong” magnetic field, 7138 «< h << 11 '

1.r d% A?

~Bf,. = In (r?z2 +p*+ p—z) + (), (74)

sing — 5 (2,",)2
with A o h M(7,h), where M{7,h) is magnetization, 7 — 0. More precisely, both 7 and &
are assumed to be small, but we are interesting in the situation near the critical isotherm,
7 = 0,h # 0, and introduce infinitesimal deviation from 7T, with respect to the temperature,
T << 815 merely to perform the differentiation, then we put 7 — 0. The same form of the
free energy can be considered for “weak” field, h8/!5 « 7. In this case, however, the choice of
X as function of 7,h may be more sophisticated. In particular, this choice may be nontrivial
in the ordered phase, where the effects of the external field are superimposed on the cffects of
the inherent molecular field [36). ,

A somewhat unusual perturbation term A?/p? which appears in the propagator in (74) is
the result of an approximation in the mixed spin-fermion representation for @hzo- The inser-
tion of the A > 0 weights like 1 + ko, , into the factorized density matrix in (16) prevents
the exact solution, as it was already commented in Sect. 6. We then have elaborated the
ordered products of factors from (16) into an exponential form, cf. the discussion in Sect. 6,
and then applied the simplest approximation of the Hartree-Fock type for the spin subsystem.
In particular, this kind of approximation implies A ~ hM (7, k). The nonlocal Gaussian expo-
nentials, like those considered in Sect. 6, then appear in the action. This, roughly, corresponds
to the modification of the Majorana action of the following kind:

S:%/dzz\il[ﬁz+3+/\/5]‘ll. (75)
This form of the action is not be understood too literally, the less singular A-corrections are

ignored (or incorporated in A). The main statement is that the free energy appears with the
perturbed propagator as is given in (74). It may be noted that the parameter A in (74) and

. (75) is rather charge then mass. The free energy in the form (74) might be of interest also at

D#2. Now, let us assume (74) to be true and consider what follows.
In the strong-coupling regime (A >> 1m?) the internal encrgy per sitc is given by:

2 2
oo _mof  pidpt 10X -
(E)m,.ng—4"//\2+ﬁ12pz+p4 S + () (76)
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Respectively, the specific heat at the critical isotherm (7 — 0) appears in the form:

L p? dp? _ 1. const
(Cﬁn)sing = '4_7‘_ mj; + (-)— 87 In —_—AZ + (...)

=lmﬁuc%,ﬁ«WWw,m=m , (1)

where (0, h) o h M(0, k), or M0, h) o< h16/15 and we have pa.ssed in the final line to \/— A<
E3/15 3 0 in order to make the amplitude to be equal to that in (73). It is known from
scaling and other considerations that M(O h) o< kY15 wherefrom A0, h) o h'%/!*. Comparing
(77) with (73), we see that under given approximation the specific heat along the critical
isotherm is logarithmic and can:be formally recovered from (73) by. replacing the thermal
mass = m(r,0) ~ 7 by the “magnetic mass” VA0, k) ~ h*/'S. The amplitude in (77)
_remains the same (with respect to the mass parameters) as in (73). The specific heat (77) is
obtained by 8?/8m?, where i is given in (58). Formally, the asymptotics (77) includes the
case of the anisotropic lattice as well. For the isotropic lattice, m ~ 4 (b~ b,), b= J/kT, and
we have to multiply the amplitude from (77) by factor 1652 to obtain the true specific heat

along the critical isotherm:
8 64

(C/K)ing = S| 0¥/ = E|Inh|, E.= A=

15 Hﬂ? c (78)

where A, = (8/m)b? is the thermal critical amplitude along the critical isobar, 7 # 0,h = 0
A, = 0.494538589, whxle E. = (8/15)A. = 0.263753914 is the amplitude along the critical
isotherm, 7 = 0, h # 0, as it appears within given approx1mat10n Here b, = 1 In(1 + V2) =
0.440686793 is the inverse critical temperature, b, = J/kT.. It may be mterestmg to check
(78) by the Monte-Carlo'experiments and other numerical methods. The specific heat (77) is
obtained, formally, by differentiating with respect to m placed in front of the integral in (76)
and then taking the limit 72 — 0. The other less singular correctlons to the specific heat are
ignored in (77) and (78). :

Curiously, we could guess (77) from the most crude phenomenologlcal ‘considerations, sim-
ply replacing the “thermal” mass m, ~ T from (73) by the “magnetic” mass i, ~ R8/15. This
replacement can not be done, however, at least in a simple form, in the free energy like (M),
since this will yield the expressions with the’ logarlthmlc correctlons in the functions related
to the magnetization at the critical isotherm, which hardly is the case. The unusual form of
the magnetlc-ﬁeld correctlon A?/p? in the propagator in (74), versus a naive modification of
mass term in m? + p?, is in fact favorable with respect to the’ known data about the Ising
model. Merely, this concerns the absence of the logarlthms, observed or expected in the field
derivatives of the free energy.

The 2D Ising model at T; can also be considered in terms of the conformal field theory
(CFT) axiomatics [37, 38, 39, 40]. Zamolodchikov [40] has conjectured the existence of the
eight masses m; ~ A%/'% (j = 1,2,...8) in the perturbed CFT assumed to be in the same
universality cla.ss as the 2DIM at the critical 1sotherm T=0,h#0. A remarkable feature is
that the ratios of these masses are predlcted from the symmetrles as the’ exact numbers up
to the overall normalization constant: m7]m1 = 2cos imw, mafm; = 2cos L, etc [40]. The
nature of these masses from the point of view of the orlglna.l lattice formulation of 2DIM is yet
not well understood. If these masses are thought out as the result of some kind of fine splitting
of the A term in the propagator in (74), their effect on'the behaviour of the correlatlons might
be different, as compared with the thermal mass effect, since A? is not the same that /m? in (74).
If so, the naive expectation that the asymptotics of the two-point correlation functions will be
given, by analogy with thermal decay of correlations, by the sum of the terms like Ko(m; R),
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where Ky is modified Bessel function, may be not the case.” It is difficult to make’ definite
predictions, however, at present stage, what may be the modifications. The approximations
like (74) seem to be two crude in this respect. It might be conjectured, for instance, that some
of the masses (probably all except the lightest or the heaviest one) might have imaginary parts
and will then contribute only either more rapidly decaying additive corrections to the leading
term (with extra factors 1/R) or the corrections with the oscillating formfactors (with the
same periods R; ~ m; ' as the decay rates in the accompanying exponentials) to the term
with ‘normal’ decay, like Ko(m R), which is what can also be expected from common scaling.

In principle, taking the free energy in the form (74) as it is, one can try to analyze other
thermodynamic functions. However, this will claim for further fine detailing of the meaning of
A as a function of both 7 and h. In particular, the effects related to the possible spontaneous
ordering are to be taken into account properly below T.. An interesting feature is that at a
special line A = 1/m? the free energy (74) reproduces, in essence, the same results (71)- (73) as’
at A = 0, that is, at A = 0. This might be an evidence for the possibility to incorporate the
effects of the spontaneous ordering in this scheme. We are going to discuss these subjects in
a more detail elsewhere. In fact, the line A = %ﬁz’ distinguishes between the weak-field and
strong-field regimes, with respect to T, in the integral (74). At this boundary, r ~ A®/13, this
is just what one can expect for this boundary from scaling and other considerations [36].

10 Conclusions

In the above discussion, the two-dimensional Ising model (2DIM) has been treated as a theory
of free fermions on a lattice. The use was made of the anticommuting (Grassmann) variables
and integrals. The fermionization procedure is based on the mirror-ordered fermionic fac-
torization of the density matrix. Following this method, the original spin-variable partition
function @ with arbitrary inhomogeneous set of bond coupling parameters was transformed
into a Gaussian fermionic integral. The subsequent discussion includes the momentum-space
analysis and the exact solution for the standard (translationally invariant) rectangular 2D
Ising lattice, the free fermion representation for ) with two variables per site, the Majorana-
Dirac field theory interpretation of the 2DIM near T, (continuum limit). The eflects of the
long-range fermionic correlations in a nonzero magnetic field and the behaviour of the spe-
cific heat along the critical isotherm also have been discussed. Grassmann variables provide
a powerful tool to analyze the 2DIM. In physical aspect, it seems to be important to under-
stand better the mechanism of the spontaneous ordering in 2DIM in terms of fermions. The
fermionic interpretation of the 2D Ising model provides grounds for this model to be treated
in a common range with some other typxcal models in condensed matter physics and quantum
ﬁeld theory.
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