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Among the fundamental physical phenomena planned by NASA for re­
searching in space [l], the possibility of influence a gravity field on the crit­
ical BEC temperature of 4He was discussed [2]. The experiments on BEC in 
trapped atomic gases in space are unlikely in nearest future, but it is interest­
ing to consider theoretically the contribution of gravity field constant g to the 
critical BEC temperature in the trap. 

Let us consider a three dimensional isotropic harmonic trap with the fre­
quency w and the height h in direction of the gravity field z. The potential of 

the trap may be written as 

Uo +mgz, 
mw2 

-
2
-(r - ro)2 + mgz = U(r) + mgz, z ~ 0, 

where m is the mass of an atom. The first expression describes the field out of 
the trap with the potential barrier U0 , and the second one describes the field 
inside of the trap with the center in point r0 • The new variable Z = z - z0 gives 
the shifts of the field mgz0 , so that the potential of the trap U(z) in z-direction 

takes the form ( see Fig. 1) 

{ 
Uo + mgZ, Z < -h/2, Z > h/2, . 

U(z) = U
9 
+ (mw2/2)(Z + L~.)2, -h/2 < Z < h/2, A= g/w2

• 
(1) 

The gravity field shifts the minimum of potential to the right from its center 
Z = 0 by the value A and down by the value U9 = -mg2 /2w2

• The difference 
between new (shifted) potential barriers U+ (on the right) and U_ (on the left) 

mw
2 

( h) 2 
1 U± = -

2
- A± 2 + U9 , Uo - U_ = U+ - U0 = 2mgh 

is equal mgh ( difference in energy of atom between two potential barriers in z­
direction). The full numbers of atoms Nin volume of the trap will be conserved 
if we neglect its loss owing to laser cooling. The diminishing value of potential 
barrier U_ leads to decreasing of the number of trapped atoms and trapping 
volume and increasing of the number of atoms out of the potential. For any 
w and h the corresponding one-dimensional "volumes" are equal -h/2 < Z < 
h

9 
< h and h

9 
< Z < h/2. The numerical values on Fig. 1 for the atom 

number~ 50 

h = 4mm, A~ 1mm, U0 ~ mgh ~ 10-8 eV, U9 ~ 10-9 eV, nw ~ 10-
13

eV 

correspond approximately to the experimental results on the whole [3,4],but 
takes the difference from latter ones with a purpose of reconciliations the upper 
and lower part of the trap in scale of presented figure. It should be kept in 
mind that the parabolic trap approximation is rough near the walls of the trap. 
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It follows from our estimations that the condition of macroscopic stability 
of the trap in gravity field g < w 2 h is valid for the experiments (3,4] (and 
analogous) and this inequality will be satisfied for the frequencies more than 
100 Hz. For all that the quantum dynamics of atoms undergoes nonpertur­
bate disturbance because of the great shift of the trap potential (U9 ~ liw) in 
comparison with its frequency. Note, that this disturbance appears in view 
of a finite size of the trap (mesoscopic phenomena). It wouldn't lead to any 
observing phenomena if the potential of the trap was defined on the whole axis 
-00 < Z < 00. 

The critical temperature Tc is connected with the condensate density p(T). 
To calculate the density we use the Hartree-Fock-Bogoliubov's method has 
been developed in [5] for the path integral. In according to [5] the condensate 
density and quasiclassical chemical potential v are defined from the variational 
equations 

bSeJ(P, v) = 0 (2) 

for the effective action of condensate. These equations are obtained after the 
integration over the trajectories µ of noncondensate bosons in forn:rnla for the 
partition function Q 

Q = Sp exp(-/3H) = J dpdv J DµexpS(0,/3) = J dpdv expSei(0,/3). 

The equation (2) describes a semiclassical dynamics of atoms due to the condi­
tion liw/3 «: 1, that is valid for the critical BEC temperature~ 10-6 /( in (2,3). 
The effective action Sef is evaluated for Bogoliubov's Hamiltonian generalized 
in (6,7] for the case of the system with broken translation symmetry (1) in 
volume V 

Se1(P, v) = -j3p2,o V + f3v(p - R)V - f3pwoo+ 

1 " [ ( ) /3Enn' ] 
2 6 /3 Wnn' - VOnn' - 4/n sh-

4 
- + /3Ann' , Ann' = 

nn';,!O 

V </>~Mnn1 m</>n1 

E~n' 

P = lbol2, ( -1 0) 
m = 0 1 ' 

M _ ( Wnn1 
- VOnn' 2,nn' p ) 

- -2,nn'P -Wnn' + V0nn1 ' 

Wnn' =-Wnn' /V + 2P,nn', E~n' = (Ml11)2 - (Mh2)2, 

</>~ = (b~, bo)(P,on + Won/V). 

One-particle matrix elements 

Wnn' = 2~ J Vun Vun,dr + J U(r)unun,dr 

2 

for the potential (1) satisfy the condition Wnn' = Onn'Wnn• Matrix elements 
of pair interaction G(r, r') between the atoms in b-approximation G(r, r') -t 

G-b(r-r') 

GJ 4 
10 = 

2 
dru0, GJ 3 -"lon = 

2 
dru0un, GJ 2 "Inn' = 2 dr u0 Un Un' 

are calculated in basis Un ( n = nx, ny, nz) for the functions of harmonic oscilla­
tor in :r, y direction with the potential.barrier U0 at the endpoints of segment 
(-h/2,h/2) and in Z direction with the potential barrier (U_ - U9 ) < U0 at the 
left endpoint of the trap. Equations (2) for the chemical potential v and con­
densate derisity p(T) for the trap with the constant density of atoms R = N /V 
may be evaluated approximately by dividing the sum over full number of trap 
levels into two terms with n «: n0 and n ~ n0. Parameter n0 '.::::'. 100 is defined 
under the condition 

noliw '.::::'. P"lnono '.::::'. GNo, No~ N, 

following from the inequality 

. 41rli 2 a 
10-13eV '.::::'. liw «: GNo '.::::'. 10-11 eV, G = --, 

m 

where the energy of interaction between atoms is defined from the estimation 
(3] for the scattering length a = 4.9nm with density of atoms R ~ 1013cm-3

, 

N0 - is the number of condensed particles. 
Full number of the trap levels n 111ax = U0/liw ~ 104

• Thus, the density of 
condensate is written in the form p = p< + p>, where p< = Pln<no, p> = Pln:>no • 
Then, taking into account the diagonal form of Wnn, we get the corresponding 
solutions of (2) in the form 

P< = R + [Wio - f= (r 2~::n + D~ )] (2,oo + f 2,nn•)-
1

, 

n;,!O n,n1 ;,!0 

fl< = 3,on
2
Wnn 

nn 2V,~n 
(3) 

p> =R(,oo+ r ,,.,.,) ['f (1,m+TD;n)]-

1

, 

n,n'=no n=no 

n> 4V,2 
nn = nn 

(w,.,. -Woo/ 
(4) 
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for the chemical potential v< = 2p1oo and v> = w00(Vt 1 correspondingly. 
The solution (3) is valid for repulsive interaction G > 0 between atoms, as 
the solution (4) is valid for any sign of G. The densities of condensate (3,4) 
decrease as far as the temperature increases. Note, that the density p< is turn to 
0 at finite temperature, while p> decreases uniformly to zero with unrestricted 
increasing of the temperature. The latter kind of the density behavior occurs for 
the metastable condition of condensate in the trap, which has been considered 
theoretically in (8]. 

The solution (3,4) of equations (2) will be estimated below for the tempera­
ture interval 0, lTc < T < 0, 6Tc, where the upper boundary is the temperature 
limit for application of HFB's method [9] and under this condition we may 
neglect the term D";n, while under the lower boundary of this condition we 
may neglect the terms w00(Vt 1 and Dnn in formulae (3,4). Solutions of the 
equations (2) for the ideal Bose-gas have the form 

II = Woo(Vr 
1

, 
1 nmar 1 = R, 

P + V L exp [,B(wnn - Woo)(V) 1] - 1 n;eO 
(5) 

The latter formula specifies the approximation for p> in absence of inter­
action and gives the trivial result for the system with translation invariance 
(woo= 0). 

The broken translation symmetry and the gravity field manifest themselves 
both in diminishing of a potential barrier U0 - (U_ - Ug) < U0 and in the 
appearance of matrix elements w00 , 'Yn;en' in (3,4). We neglect the contribution 
of w00 and Dnn at given temperature interval, but the cut off the upper sum 
limit in (3,4 )are taken into consideration. 

Due to the degeneracy of states of the three-dimensional oscillator the ma­
trix elements of boson interaction 'Ynn' are the sums of the matrix elements 
I 1: e-2Z2 HnHn,dZ = (-1)(n-n')/22(n+n'-I)/2r ( n + ~' + 1) . (6) 

Here H - Hermite polinoms; the use of the whole axes Z instead of the segment 
(-h/2, 1,/2) in (6) differs the calculation in the order of tunneling effects con­
tribution that are negligible: the out-of-trap amplitude decreases as exp( -aZ), 
a = 103 for the most shallow trap with potential barrier U0 = nw. 

1The power of the first term in a right hand side of (6) on the page 503 of [10], shown as 
(n + n')/2, is incorrect. The correct formula (6) follows from the more general formula page 
502 of the same book. 
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Peculiarity of summation over n and n, n' in (3,4) 

no ( no )-1 
p< ~R-rs<, s< = L 'Ynn L 'Ynn' ' 

n;eO Wnn n,n';eO 

p> ~ R t 'Ynn'. (t /nn)-l 
n,n'=no n=no 

consist in the fact that the sum of diagonal (positive) matrix elements 'Ynn 
increases as increasing of sum limit, while the sum of the off-diagonal elements 
'Ynn' with ± signs changes slowly. Therefore, the densities p< p> increase when 
the level number diminishes, so that p< ~ p>. We can estimate the ratio Y 
of Bose-condensate densities in a trap with Pig and without gravity Pio for the 
given temperature interval 

y _ Pig _ (p< + p>)lg ~ p<lg ( 1 _ p>lo + p>lg) 
- Pio - (p< + p>)lo - p<lo p<lo p<lg ' p< lo,g ~ p> lo,g• 

In the case of a "strong" gravity field ( U _ -Ug) ~ U0 the inequality p< lg > p< lo 
follows after the evaluation of ratios S<lg(S<l 0 )-

1 for the three numbers of the 
upper limit of a sums 75, 50, 25 (g -1- 0) and for a limit n0 = 100 (g = 0) 

Sis ~ 1 03, ---- - ' 
Si'i,o 

S;o ~ 1 08, - - ' Si'i,o 
Sir, ~ 1, 11. 
Sj';,o 

Then, as p> lg = 0 and p> lo(p< lo)-1 ~ 10-3 , sufficiently small w and h leads to 

y = p<jg ( 1 _ p>lo) > 1. 
p<lo p<lo 

In the case of a "weak" gravity field (U_ - Ug) ~ U0 the equations p<jg = p<lo 
and p> lg > p> lo are valid, so that 

Y= (1- p>lo-p>lg) > 1. 
p<lo 

The three-dimensional structure of a trap - the contribution of the overlap 
integrals over the x and y axes into 'Ynn' - changes the above estimates on 
2% - 3%. One can predict the most accuracy of the given estimates for the 
"weak" gravity (compared with "strong" one), as the defect via the deviation 
of atoms from Bose-statistics is inversely proportional to a cut-off number of 
levels. 
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Taking into account, that the large Bose-condensate density corresponds 
the large critical temperature, we note, that the gravity field increases the 
critical temperature Tc of Bose-condensation in a trap. It means, that if the 
experiments [3,4] were done in Space and on the Earth, the smaller temperature 
Tc would be found in the first case. The obvious interpretation of this effect 
is as follows: for the fixed atom and condensate densities the decreasing of 
an atom level number increases their number at each of the rest levels and 
therefore the temperature of the system. The value of potential barrier turns 
to zero at the point Z = -h/2 under condition g = w 2 h/ 4 ( destruction of the 
trap). The described phenomena is 

a) mesoscopic phenomena because of its dependence of the geometry of the 

system 
b) nonperturbative phenomena, as the parameters of perturbation theory 

by gravity field 

mg ( n )1/2 
hw mw ~ 100, 

mg (~)1/2 
GR mw . ~ 1. 

are so big that its presence leads to the radical reconstruction of the system 

(3,4). 

U(Z) 

z 

Fig.1 The dashed and solid lines for a trap potential 
in a free Space (Uo) and in a gravity field (U_, U+) 
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Note, that the shift of the critical temperature Tc caused by the gravity 
field is opposite to one has been found experimentally (11] (and considered 
theoretically [12]) in the form of ratio 

Tc( 4Heinporousglasses) '.::::'. 0,
998

_ 
Tclo( 4 He in volume) 

As the influence of the gravity field on the critical temperature of superfluid 
Helium is concerned, we should say that the essential effect may be expected 
for Helium in porous media, where diameter of pores should be chosen in the 
scale of gravitational perturbation. 
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