








term VJI determinates the energy level of the

state[ni>.Vlnll describes the hopping between
the bonds i and j at the atom n and V;' in-
volves the transfer from the atom n along

the bond i to the neighbouring atom n,

Caused by little variations of the bond lengths

and angles the potential parameters may vary
considerably. The influence of this guantita-
tive disorder on the density of states and
especially on the gap was considered in/610-12/
In this paper the dependence of the mobility
edges E_, which separate regions of localized
states from those of extended states, upon
the strength of disorder is investigated in
relation to the shape of the density of
states (cf.’/'2/ )., In Sect. 2 it is demonstra-
ted that for the two-band Weaire model the
localization function L(E) of the Economou

and Cohen theory/9/ may be reduced to corres-
ponding one-band formulas’/! with energy—-de-—
pendent diagonal and off-diagonal disorder.
Two approximations for L(E) are given analy-
tically where for the sake of simplicity the

potential parameters are taken to be statisti-

cal independent variables with a Lorentzian
distribution. For the one-band approximation
of the Weaire model (see/”/
In Sect. 3 the results are discussed. It is
found that for physically reasonable fluctua-
tions the mobility gap for this model is en-
larged as compared with the ordered case.
Furthermore, because of the delocalization
effect of ODR, there is, in general, no rela-
tion between the smearing out effect of the
density of states and the localization ten-
dency of states.

JL(E) is also given.

2. LOCALIZATION CRITERIONS FOR THE
WEAIRE MODEL

Economou and Cohen (E/C)/W have shown
that an eigenstate of a tight binding Ha-
miltonian with eigenenergy E is localized
if and only if the self-energy of the diago-
nal Green’s function is analytic at E. The
investigation of this property analogous
t0/9/ requires a perturbation series solution
for the self-energy. In principle such an
approach to the electron localization 1is also
possible for the Weaire model. Considering
diagonal Green?®s function G;l=<ﬂi|(E—HYJ|m>,
a perturbation series solution is, however,
too complicated for further discussions. The
application of the localization theory of
E/C becomes, on the other hand, easy if we
consider the behaviour of the s—and p -part
of Green’s function G. Introducing zero
Green’s function G° which belongs to the case

V;”==O,6 obeys the operator equation
G=G°+ G°V, G =G°+G°- G°,

where
7= Vi + VY G°r . (2)

o -
G and V, have the following matrix ele-
ments

<ni|G°|mj>=G°'s 5. +G°ls 5.,
nn nm 1] nni mni 1]
ni “'2

ol 2 2 o i ni 2 i
Gon = E/(E°=Vy' ), GOl =V, /(B -V, ), (3

L . nij
<ni |V mj>=V_ "5

1 nm °



As the bond angle variation in the tetrahed-
rally bonded semiconductors is supposed to
be small, the V?” may be assumed indepen-
dent of the bondsti,) and different only for
atoms of various kinds. Therefore V|, becomes
diagonal for s-states |ns>=1/2 £| ni>.Be~-

1]

cause of that the 7 -matrix is entirely

s —ll$e, i.e., only <ns!|7|ms>#£0. pc G°
describes completely localized states, it
follows from (2) that only the existence of
s -states can cause delocalized states for
t@e whole system. Consequently, for detec-
ting localized states it is sufficient to

c?nsider merely the s-part of G which is
glven by

s _ i
Gnm_ zcsm(bn

i y" s
! " +5n““)+ % G:;'“VIGnm +

vz Golylig®
i nnl. 1 n.m

After some manipulations the searched diagonal
element of G®° may be written in the form

S

=0 "
Gnn =Ynn * E gnmvmn/vl - (5)

’ . Gl
Green’s function §,, obeys an equation which

is similar to that in the one-band
nil cas .
(11) in- ') ° (B

g’nm=8n8nm+ gnE’Vnm'gm'm' (6)
Here we have used the abbrevation
n ~1 - :
g“—(mn—vl ) o, wn=EG:; , (7)

i

and
.o,

Vi =mnG‘l""’liVl’8mni
Using analogous arguments as in /Y it can bve
shown that the analyticity of the self-ener-
gy for G, follows from the analytic beha-
viour of the self-energy for Gan+ This quantity
has a perturbation series solution which 1is
formally equivalent to that solution in the
one band case. Because of the clear analytic
behaviour of g§an the analyticity of this self-
energy can be obtalined by the convergence
of the perturbation series - as demonstrated
by E/C. Hence a localization function L(E)
for the two-band Weaire model can be got by
corresponding formulas of the one-band case.
Here we want to consider the same approxima-
tions for L(E)as discussed in /Y  Numerical
estimations are performed for the simplified
case where the potential parameters V' and V;i
fluctuate statistical independently accor-
¢‘ing to a Lorentzian distribution. Further-
more we assume that deviations of local energy
levels Vy are strong coupled to the varia-
tions of the distances between the atoms
along the bond i, i.e., 1in the first approxi-
mation we express V;i by V3' (cf. / )

viiavg +b. (8)

The averaging over the Lorentzian distribu-
tion for the potentials may be carried out
by contour integration in the same way as
ir1/9’12’13/-

In detail we cite the two criteria Ly and
Ly which are defined in/Y and have the fol-
lowing form



L(E) =~ Lo(E) = |[4V,V,/(E* —=V; —4E"V))| (9)

and

/

LE)~L(E)~| EZ F(EZ%-3)"" | (ReEZ Z0), (10)

where .2 2
=(E’" —V3 —4EV )2V} V, .

The quantities V| ,Vy, and E" are defined by
VvV, =V¢ -il} , V,=Vy —il; sign(a),

(11)
E'=E-Vy +il

where V§ ,VP and Vs are the mean values
andIB=|aH’ ,r], and Iy the half-width of the
Lorentzian distributed V" Vl, and V . The

Ly ~criterion is valid only for [al>1 (cf/IT ).

One can get an approximated expression for
L(E) neglecting the interaction between
bonding and antibonding states, so that the
Hamiltonian (1) is reduced to two separated
one-~band Hamiltonians (cf./!V ), V0 and V
are diagonal for bonding|a>_1/¢51hﬂ>+|n 1>)
and antibonding states |B8>= 1/¢2Hn1>-|n.1>)
Cancelling the transfer element of V,; for
this states the equation of motion for
Green’s function becomes

,

° BB BB’ ni n;i ni B ‘
(E-VP)Gogr =8, + (¥, +V 1 )22V, )Gaf'
,’r ’ l
fEVP /26, f : (12)
a/;

For the sake of simplicity we have chosen
V"—V°' the sum in (12) runs over all
nearest neighbour bonds a”(B8”) of the a(B) -
bond. The corresponding L- criterion is then
given by (cf. Eq. (19) in /1/ )

B 1
LG(EY=2VP/((E~2V] —Vg+ V;)2 Hapl) Ty % (13)

3. RESULTS AND DISCUSSIONS

At the beginning, -we remind of several
exact results for the density of states (DS)
in that case where V§' , Vi, ana Vg
do not fluctuate. In Fig. 1 the DS for a Bethe
lattice is shown. There are a valence band
and a conduction one separated by a gap. It
is seen that the valence band persists mostly
bonding and s-stdates. The s-character of
the states becomes smaller for increasing
energy of both the bands. The delta func-
tions at the top of both the bands are enti-
rely p-like. All these features are structure
1ndependent/36/ i.e., hold also for topologl—
cal disorder,

Now let us consider the influence of gquan-
titative disorder on the mobility edges E.
which are defined by L(Eg)=1. A11 numerical
examples refer to a Bethe lattice structure
w1th potential parameters V°_0 ’ Vf:—l,and

= —4

In Figs. 2 and 3 only the Vo—fluctuations
are taken into. account(F =0, I, -0, I’y #£0) .
Since Vo acts as:diagonal dlsorder for all
states, it 1s well to understand that the
positions of the mobility edges with respect
to the band centre are the same for the
valence and the conduction band (Fig. 2).
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Fig. 1. The total density of states p(E)(—),the s ~part of p(E)(---),
and p(E) of the bonding states (....) for a Bethe lattice.
Vo=0 , Vi=-1 , Vy=-4 , =D, =T, =0
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Fig. 2. Mobility
edges E, in de-
pendence on Iy =
=|a|ly(I"y»0, [} =0).
Dashed lines, E_
for Ly—crite-
rion; solid lines,
E. for Ly —crite-
rion.
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Ls-criterion yields only localized states; E

Density of states p(E)
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Fig.

LO—criterion.

are the mobility edges of the

In contrast to that, the DS is not symmet-
rically changed by Vg -fluctuations (Fig.3)
This is caused by a superposition of the
smeared out & -peaks - symmetric to E=0-—
and the broad bands - symmetric to E=-2.

We note yet that the critical value
I3/ B( bandwidth B =4V} ), at which an An-
derson transition takes place, is smaller
than the corresponding value in the cne
band case -1/2 for Ly—and 1/4 for the Lg -
criterion (cf.’V ), -

The fluctuations of V; influence the
diagonal and the off-diagonal randomness for
Green’s function §,, (Eq. (6)). However,
in regions, where the s-states dominate, the
effect of off-diagonal disorder is small
since for pure s-states Vl is diagonal. On
the other hand, the diagonal disorder can
be neglected in the vicinity of E ~0 (see
Eq. (6) and (7)). Regarding these proper-
ties and the qualitative different influence
of diagonal and off-diagonal disorder
(c£.”/Y ), we can in principle understand the
behaviour shown in Fig. 4 and 5. As for the
derivation of the Ljy-criterion the self-
energy 1is neglected, this criterion cannot
be responsible to the percentage of S-sta-
tes. Therefore the delocalization effect can
dominate all over in the region |E|< | V& |.

In contrast to that the Lsy-criterion
takes into consideration that for small I’
almost only s -states occur at the lower
band edge of the conduction band. Hence
states at E20 may become 1localized in this
case. If I'} increases, the relative per-
centage of s -—states decreases (Fig. 5),
consequently, the delocalization effect
due to V,,~fluctuations increases and in

1
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Fig. 4. Depen-
dence of the
mobility edges
Ecupon I

(Q =0,Ib=0)
Regions of ex-
tended states
for the L,-
criterion

are single
hatched, and
those for the
Lsg-criterion
are cross
hatched.

|
15 L
\
\
10
\g
N
N
7
05 7
E.

Sl

-

Fig. 5. The
total density
of states ofE)
( ),
the s-part of
p(E)(--~-),
and o(B) of the
bonding states
(--)for

a)l'[ =05,

b) I}=17 and
c) I} =99(, =0,
[p=0).The mgbi—
lity edges E,
belongs to
the L3g -cri-
terion.
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the regionlEIS{Vglonly delocalized states
remain for sufficiently large I'y - values.
Then also the DS changes their shape
characteristically. The s-states become
damped out throughout the whole energy
range, but for I} »=~ it remains an undamped
band of p -states - symmetrical to E=0
(Fig. 5).

The results for coupled fluctuations of
Vo and V5 are shown in Figs. 6 and T.
Here the valence and the conduction band
are oppositely influenced by disorder and in
the physically relevant case a<0 , Vo =—4
and V°=-1 the off-diagonal disorder (Vo -
fluctuations) yields an additional delocali-
zation of states in the valence band and
a localization in the conduction band.
In this case we compare the results for the
full two band model (Eq. (9)) with these
for the one band approximation of the Weaire
model (Eg. (13)). The relatively good agree-
ment of the corresponding mobility edges
(Fig.6) is sufficient, since the DS results
imply that the error in the approximated
one band model must be small (see’ll/ ).

Regarding the change of DS and the change
of the mobility edges, we can make the
following conclusion. If the effect of dia-
gonal disorder is predominating, localized
states first appear in such energy regions
where the DS is strong smeared out (Figs.2,3
and 6,7). In contrast to that off-diagonal
disorder causes a marked change of the DS,
but lead in these regions to a delocaliza-
tion of states (Figs. 4,5). As the relative
influence of diagonal and off-diagonal dis-
order is energy dependent (cf. Egs. (b4),(6)
and (7) ), it is therefore, in general, im-
possible to detect anything about locali-
Gzation from the DS results.
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Fig. 6. Dependence of the mobility edges E,
upon I, for constant [ (T} =0). 4 ) Full
line, Ec for Lg -criterion (Eq.(9)); dotted
line, E, for Lg-criterion of the one-band
approximation of the Weaire model (Eq.(13)).
b)E,_, for the Lz-criterion ( I,=0.5,
-~--Ty,=10.
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Comparing DS results of our theory with
those of experiments (cf. 6.7/ ) we may
suppose that the fluctuations of Vo , V; ,
and V2 are not very large in amorphous
semiconductors. Therefore the obtained re-
sults for localization of electrons in the
Weaire model suggest that the mobility
gap in amorphous semiconductors is probably
greater than in the corresponding ordered
systems.

Recently, there have been found experimen-
tal confirmations of the "Mott-Anderson
localization" in two-dimensional St inver-
sion layers/1% Choosing an adequate set of
parameters V,° , Vp , V3 ,Ib . ﬂ, andly it
is, maybe, possible to explain more quanti-
tatively some experimental results. However,
one must keep in mind that, first, the used
Lorentzian distribution is rather fictive
and, second, the Weaire model has only a gua-
litative significance. Because of that here
we have discussed only the gqualitative cha-
racteristics of electron localization in the

Wealire model.
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