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1. INTRODUCTION 

In recent years enormous efforts have been 
made to study the properties of disordered 
or amorphous systems (see /1-3/ ) . Using 
v a r i o u s k i n d s o f CPA I 4- 1 21 and c 1 us t e r 
methodsi 1 ~ 1 V a substantial progress in under­
standing the density of states (DS) in such 
systems could be reached. Especially it was 
demonstrated that the DS in disordered sys­
tems will be determined essentially by the 

( /14-16/) . short range order cf. wh1le the long 
rarge effect becomes damped out. 

Much more difficulties have arisen when 
considering the conductivity (or resistivity) 
in disordered systems. Long ago Mott 
(see/1,17/) has proposed the concept of mobi­
lity edges which truncate the extended states 
from the localized one. The latter states may 
occur due to potential fluctuations(cf/ 2·18 ·190. 
Then one distinguishes between hopping and band 
conductivity according to ci~cumstances 
whether or not the Fermi level lies in the 
pseudogap, built by localized states. The 
nature and the conditions for appearance of 
localized states have been investigated by 
several authors within different approaches 
(cf. 13· 18- 23/ ) . Although a qualitative under­
standing of electron localization in disor-
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dered systems seems to be found (cf. I 31 ) , 
this subject is yet under current discussion 
concerning special applied methods and quan­
titative re9ults for the critical condi-
t i on s ( c f • 1 2• 

3
' 

24 I ) . 
The basis of localization theories is 

mostly the Anderson model /18/ with disorder 
only in the diagonal matrix elements of 
the potential. This kind of disorder causes 
localized states beginning at the extreme 
edges of the DS. Under critical disorder 
conditions an Anderson transition appears 
where all states become localized (cf .1 1 - 31). 
For the application of localization theo­
ries to amorphous, especially, to one-com­
ponent systems it is, however, important to 
include off-diagonal randomness (ODR), be­
cause the fluctuations of the atomic dis­
tances cause varying hopping and overlap 
integrals. In general, the existing locali­
zation theories are formulated in such a way 
that ODR can be included in the considera­
tion without principal difficulties. Econo­
moui2W has formulated a localization theory 
which formally involves also random hopping 
integrals. The first numerical estimations 
on the basis of this theory were made by 
Herscovici/~/ using the simplest approxi­
mations. The obtained results have indicated 
that statistical independent ODR yields an 
effect of delocalization. Herbert and Jo­
nes/22/have tried to treat random hopping 
potentials in the Anderson model analyzing 
the residues of the off-diagonal propagator. 
This treatment was much more difficult than 
the consideration of diagonal disorder,howe­
ver,calculations indicate that in three di­
mensions there is probably a mobility edge 
in the tail of the DS. 
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In the present paper the localization 
theory of Economou and Cohen (E/C )1191 was 
applied to a generalized tight binding model 
of amorphous one-component systems involving 
fluctuations of the hopping integrals which 
are coupled to the fluctuations of the energy 
levels and the overlap integrals (Sects. 2 
and 3). The obtained expression for the lo-

. c a 1 i z at ion fun c t ion n L( E) ( Sec t • 3 ) i s e s t i­
mated in Sect. 4 with the help of several 
improved approximations ( c f. 131 ) . Thereby 
it is found that the coupled diagonal and 
off-diagonal disorder and the presence of 
fluctuating overlap integrals lead to an 
asymmetric change of the mobility edges. 
Furthermore it is confirmed that the ODR 
causes an effect of delocalization. 

Consequently, an Anderson transition in 
amorphous systems can only be expected if the 
diagonal disorder is strong enough, i.e., 
chemical or other kinds of diagonal disorder 
are additionally present. As an example, in 
Sect. 5 we briefly study the influence of 
diagonal spin disorder due to electron corre­
lation described by the Hubbard model and 
treated within the alloy analogy (cf. /22,27-29;), 

2. MODEL 

Let us consider a system containing N 
~ 

identical atoms at the points Rn forming 
an amorphous structure. The Hamiltonian Hfor 
such a system is supposed to be of the form 

H ~ h(;- R n) + T(;), 
n 

where T(\Z) is the kinetic part and h(~- R ) 
denotes an effective potential due to an 

( 1 ) 
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.... 
atom at the site R0 • Now let N linearly inde­
pendent functions l¢

0
> span the space of N 

eigenfunctions It/!·> of }(with energies E. from 
. J • I J • Ea to Eb. These functlons ¢

0
>may be approxl-

mated by localized atomic or~itals associa­
ted with atoms at the point Rn (cf. / 30/).). 
Solving the matrix equation 

<E.S-h)vj = 0 
J ' 

where the matrix elements of S and h are 
given by 

s = < r1. 1 r1. > = o + ~s nm "t" n "f' m nm - nm ' 

hnm=<¢n1J<1¢m> =fn°nm+Vnm 

(Vnn = ~Snn = 0), the corresponding eigenfunc­
tions lt,U?then are 

N . 
\t/l.>=~vl\¢>. 

1 n n n 

( 2 ) 

( 3) 

( 4 ) 

As is shown by Halpern/Withe density of 
• 

states between energies Ea and Eb can be 
calculated by the reduced Green's function 
which is essentially the projection of the 
full Green's function (GF) onto the space 
of the function !¢ 0 >.In Sect. 3 it is shown 
that on the basis of the reduced GF the 
question may be discussed whether or not 
an eigenstate of }( with energy E(Ea~E~Eb) 
is localized. 

For the sake of simplicity we will work 
within the nearest-neighbour approximation 
(NNA) where 
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~ I I= 0 if n,m nearest neighbours (NN) 
vnm• snm 

= 0 elsewhere. 

This approximation is a good one if we 
assume that the functions arewell enough loca­
lized and the amorphous structure may be 
characterized by a well established short 

·range order, e.g., the number of NN Z is 
nearly constant for various atoms. In the 
framework of NNA and neglecting three-centre 
integrals, {n and vnm are given by 

-+-+ -+ --+--+ 

=<¢ lh(w-R >+T(w)l¢ >+ ~ <¢ lh(w-R >1¢ >. n n n n m,ln n m m 
-+--+ -+-+ -+ ( 5 ) 

V n m = < ¢ n I h ( W - R n) + h ( W - R m) + T ( W ) I ¢m > . 

Th~ vaiiation of the atomic distances ~ll 0 m= 
= \Rn-Rmlin the amorphous structure lead to 
randomly distributed values of<

0
,Vnm and 

~Snm. If l¢ 0 > is an s-like state these 
quantities are functions of the distance 
~l{nm· Therefore the fluctuations of <

0
, Vnm 

\nm and t\Snm are strong coupled so that 
really only one random variable exists. As 
we have assumed no large fluctuations in 
the NN shell, in a first approximation, 
expanding < n• V and i\S 1 i nearly in the va-nm nm 
riati6n of ~Rnm• the following simple rela-
tions can be obtained 

= a ~ (\' - V 0 
) + b, m/=n nm nm 

1\S = s (V - yo ) + c , nm nm nm 

( 
n 

( 6 ) 

where v~m belongs to the averaged atomic 
positions which determine the type of short 
range order. For the sake of convenience 
further we shall choose for b=O and c=O. 
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For more complicate atomic orbitals 1¢n> 
< n, V nm, and AS nm are only partially c orre­
lated. However, for the first estimation 
of the coupling of diagonal and off-diagonal 
randomness we can use relation (6) also in 
this case . As we will see in the next Sec­
tions and because of the results obtained 
in/31/these coupling is of importance in the 
considered model of amorphous systems. 

In recent papers/8· 9· 321 concerning amor­
phous or liquid systems the assumption <n=con~ 
has been used. Indeed, estimations of the 
deviation of <n from the atomic level due 
to the second part in Eq. (5) yield small 
corrections for crystalline systems (cf. 1321). 
However, it does not mean that the fluctua­
tions of <n can be neglected, although it is 
expected that <n fluctuate not so strong as 
V nm , i . e . , I a I < 1 . 

3. EXTENDED E/C-THEORY OF LOCALIZATION 

For the derivation of several localization 
criterions it is, in general, not necessary 
to restrict the consideration to regular 
lattices(cf. 133/) and diagonal disorder 
(cf./22, 25,26/ ). In the Anderson sense/18/ an 
electron is localized if there is a finite 
probability of rediscovering the electron 
in the region in which the electron was 
initially localized. Let the initial state 
1!/l<t=O)> be 1¢n>,then the probability \ltn 
that the electron will be in the initial 
state after infinite time evolution (t ... oo) 
:i:s given by Wn =lim l<¢n I!/J<t>>l 2 . Analogously 
to the derivatidnooin/19/, \\ may be ex-

n 
pressed in the following way 
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00 

\It = lim + ~ J dE G <E + is) G <E - is), 
n s->0 TT_oo n n 

where 

G (E) = < ¢ I (E- JO- 1
1 ¢ > n n n 

represents a projection of GF onto 
the subspace of such eigenfunctions 

( 7) 

( 8) 

of H defined by (4). Therefore Gn is the 
diagonal element of the reduced GF introdu­
ced by Halpern/W/. This quantity may be 
expressed in terms of the self-energy An(E) 
defined by 

-1 
G (E) = <E - ( - A (E)) . 

n n n ( 9) 

Following the arguments used by E/cl191it 
can be shown that an eigenstate overlapping 
with 1¢n> and with eigenenergy E(E

3
:SE::; Eh) 

is localized if and only if the self-energy 
An(E) is analytic at E. In the E/C theory the 
analytic properties of An<E> are considered by 
the convergence of the perturbation series 
(PS) for An <E>. In order to get this PS, we 
start with the equation of motion for the 
reduced GF which may be represented in the 
following matrix form (cf. Eqs.(2,3)ani301) 

G = S<ES- h>-18 = S~S ( 10) 

For the quantity S the equation 

-
0 =g+giV , 0 , ;:, nm n n , nm ;:,m m 

m 
-1 

holds, where gn = <E-t:n) and 
If we partially renormalize 
for § nm we get 

(11) 

'V nm = Vnm -EAS nm · 
the PS solution 
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§ nm = § n °nm + § n T nm (E)~:' (12) 

where 
-1 

§ = (E - E - d (E)) n n n - - -
dn (E) = I Vnmgm Vmn + ~ Vnmgm Vmkgk Vkn + ••. ' 

m-f.n m,k;bn 

and for n f. m (rnn = 0> 

T (E)= V nm nm + ~ v ,g ,v, + ••• 
'J nm m m m 

m rn,m 

( 13) 

§n is defined in the same way as ~ , the 
m n 

superscript n denotes that ~n has been 
m 

calculated for E =oo.Finally, according to 
(9)-(13) the self-energy !1 (E) has the 

• n 
solut1on of the form 

f1 (E)= (d (E)+ (E- E n)X (E))j(l + X (E)), n n n n 
( 14) 

where 

X (E)=~S~nr g + ~ S
2

£; +I S § rk0~Sk.(l5) 
n m;bn n m mn n m;bn nm m m,k-f.n nm m m n 

If we assume that for a certain energy E the 
renormalized perturbation expression (RPE) 
for the quanti ties dn(E), dm(E) , d~ (E) , 
d~ (E), r (E) and r mk(E) converges, then 
from /19/ it follows that the only singularity 
of these quantities are simple poles, conse­
quantly, because of (14) also the self­
energy f;.n(ID has only simple pole singula­
rities and is analytic elsewhere. The corres­
ponding eigenstate at the energy E is then 
localized. In the opposite case nonanalytic 
behaviour of dn(E) or Xn(E) yields nonanaly-
t i c s e 1 f-en erg y !1 n (E) w hi c h i s due t o a 1 o c a 1 i z 
state. Under the assumption that the conver-
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gence of the above-mentioned RPE is equiva­
lent to the convergence of the series 
alone (cf. /3, 19/ ) the problem is reduced 
to find the probability distribution of the 
M -th term of these series in the limit 
M~oo. The considered diagrams for the va­
rious series are similar but have only 

.different starting and end points which are, 
however, in a finite region if we use NNA. 
Therefore these boundary conditions cannot 
influence the probability distribution of 
infinite extended diagrams. Thus, the consi­
der at i on of the an a 1 y t i c it y of t\ n (E) can 
be reduced to the study of the convergence 
of the dn(E) -series alone where the overlap 
integrals only aEpear in renormalized hop­
ping integrals Vnm=Vnm-E!\Snm· 

Supposing, that the amorphous system has 
a finite structural correlation, we can 
apply all arguments of E/cl 191to derive 
a general localization function L(E) which 
( etermines localized states at energy E 
by the condition L(E)< 1. L(El can be rede­
fined in the following way 

- - -
UE) =lim ( ~ V.0 So ... V 

0 ••• n. l O ••• nM-1 1/M 
- 1- 0 ) 

C:: ···~nM 
M->oo n 1;£ 0 n l n 1 ni- 1 n i 

n
2

;£ O,n 
1 

u n i 

(16) 

~M;bo, n1··· "'.1-l 
where the products VS are given by 

- _o ••• ni-1 - o ••• ni-1 
ln<V ~ )=<ln(\V /<E-< -d >I)>. 

"i-1"i' ni "i-l"i "i "i (lT) 

The symbol< ... > denotes here a structure 
averaging according to a distribution func­
tion of sites. For doing this calculation 
further apprpximations are required. 
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4. APPROXIMATE L(E) AND RESULTS 

4.1. Zero-Order Approximation 

Neglecting the statistical character of 
o ... ni-1 

the self-energies d n. in (17) 
1 

( f /3 19 26 I ) . . . · c • ' ' , lt ls posslble to omlt 
these quantities. By a constant factor the 
approximated express ion for L(E) is then 
fitted in such a way that in the ordered 
case mobility and band edges coincide. Thus, 
one obtaines 

L(E), L 
0
(E) = (K/K )Z expk ln <\ V I <E-< )I)>), 

(J nm m ( 18) 

whereK is the connectivity of the amor­
phous structure and may be defined as the 
1/M -th power of the sum of all possible 
diagrams in (16) in the limit M .... oo, K 0 is the 
corresponding value of the ordered structure 
with the same short range order. 

The averaging in (18) corresponds to a 
summation over all possible clusters con­
taining a central ~tom and the surrounding 
nearest~neighbour atoms. Here we assume that 
the NN positions with respect to the central 
arom fluctuate independently around the 
mean. 

For a qualitative estimation of (le).the 
fluctuations of the distances in the cluster 
can be replaced by statistically indepen­
dent fluctuations of V nm according to a gi­
ven probability distribution. As an example, 
we examine the case of Lorentzian distri­
bution which is characterited by the mean 
value v

0 
and the half width['. Then one 

gets 
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2 2 2 2 ' 2 l/2 
L 

0
(E) = Z«V

0 
+ f' <1-Es) )/(E + (Zal) )) (19) 

The characteristic properties of electron 
localization are the mobility edges E 

c 

which separate extended from localized states 
and are determined by L(Ec>==l.Here these edges 
are symmetric to E 0 ==-s(Zf')

2/0-<Zsl~) 2 ) and 
.decrease (or increase) with increasing 
disorder (the measure for it is f') if 
<1- <Zs[') 2 )a2 > ( <) (1 - (ZsV 

0
) 2>. It is known that di a­

gonal disorder /1,3,18/ leads to an Anderson 
transition. Including ODR all states become 
localized only for O-<zsn 2)a 2 2:0+<V0/I')

2 -<zsn 2L 
It is seen that random hopping integrals act 
against localization and if lal < 1 no Ander­
son transition is possible and the Ec in­
crease monotonously with I' (Fig. 1). The 
presence of fluctuating overlap integrals 
yields the interesting result that for 
a 2 >0-(ZsV0 )2) the difference between Ec 
fi~st decreases but then increases with 
growing I' (Fig. 1). This feature of Ec con­
tains the possibility that for a certain 
value of a and f' first an Anderson transi­
tion takes place but then with increasing [' 
a second transition occurs where the states 
once again become extended. This is caused 
by an additional delocalization effect due 
to fluctuations of overlap integrals. This 
effect is the greater the stronger the fluc­
tuations. 

4.2. Second Order Perturbation Theory 

In the second order perturbation theory 
o ... ni-1 

for d n· the localization function is 
1 
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approximately given by 

um"'L
1
<E>=Kcxpkln<\V /<E-c -a2\Y \

2
/<E-E ))\)>), 

ni-lni ni n nin n 

w her e a = Z- K
0

, if we on c e again x- e qui r e the 
r i g h t b e h a v i our o f L 1 (E) i n t he a r de r e d 
case. It is possible to test t.his criterion 
numerically in the same way as L.jE). Thereby 
we would get the same formulas as Herscovici 
in the paper /26/ if we there replacer v_,f'(l-Es), 

f'E -• Z\a\f' and choose for simplicity K= K0 • 

Herscovici/~/has shown for s=O that according 
to this criterion the mobility edges for 
f~/ic «1 are displaced to smaller energies 
(in modulus) compared with the inferior 
approximation. This result holds also for 
sf 0. On the other hand L 1<E> leads to a stron-
ger delocalization compacing with L 0 (E) if 
l~ .... o and rv tO. 'rhus L 1(h) is more sensitive 
to increasing disorder. In spite of this we 
must criticize this criterion because it 
completely fails to describe the character 
of states in the middle of the band. The 
reason for the wrong behaviour of L 1(E) at 
E=O comes from the breakdown of the second 
order perturbation theory. 

4.3. Approximated Renormalization Expansion 

An improved expression for UID, 
all energies, can be got using the 
lized perturbation expansion (RPE) 

valid at 
renorma­
for 

o ... ni-1 /318 19/ 
d

0
. (cf. ' ' ) and terminating 
1 

these series after the first term. To eli­
minate the difficulties with the restricted 

occupation of sites in d~~ .. ni-l 

approximately (see/ID,26/), 
1

) 

we replace 
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0 ... n i-1 

d n· 
I 

d =al:IV 1
2
/<E-f -dn)' n i n ni n n (21) 

where the sum is taken over all nearest­
neighbours of ni • The obtained simplified 
RPE can be regarded as a R~E for a fictive 
Bethe lattice with cn and Vnm given by the 

- 0 ••• n · 1 real amorphous system. Thus, all ~ 1
-n. 

~ - B I B 
i n ( 16 ) c an b e c a 1 c u 1 at e d by f? = < ln (! ~ · I ) > , 

'-' n i n i 

where ~:. is the diagonal element of the 
I 

lattice GF (cf. Eq. (12)) for the fictive 
Bethe lattice. A method to obtain the quan­
tity § 8 is the self-consistent effective 

n i 

medium approach or CPA/4 - 1 ~.The simplest 
version of CPA, which includes diagonal and 
off-diagonal randomness, is the single bond 
CPA/34, 35/. An improved CPA version is the 
Bethe-Peierls approximation~?/ which is also 
applicable for fluctuating vnm coupled 
with cn. 

Here we do not want to go in details of 
such calculations. For studying L(E) on prin­
ciple we consider only the case of Lorent­
zian distributed hopping integrals and neg­
lect the correlation between different ~ 

- 8 nm 
Then the CPA is not required because ~ n. 
can be exactly solved by cogtour integra~ion 
(cf. /19,36,37/ ) • Since the Ynm occur only with 
the absolute value, no restrictions for the 
parameter a are necessary to perform the 
contour integration. Using the abbreviation 
rv=r<1-Es) andr~'=Zialr, L(E) can be written 
down in the form 

L(E),.,L <E>=K(V 2+rZ,:v' 2 1~8 <E,f ->( -ir , V -.(a(V 2 +r~)11 2 )I, 
2 Ov 0 00 f 0 Ov 

where 

16 

' \ 

' I 

~B )-I ~ = <E -c -d 
0 0 

and 

_ 2 2 I/2 
d=Z<E-£

0
+ «E-£

0
) -4(Z-DV

0
> )/2(Z-1). (23) 

The sign- (or+) is used if (E -c
0

),2 0 
(or <E- fO) < 0 ) • The so far unknown parame­
ter a is fitted by the condition that for 
the corresponding ordered case (K ... K

0
, 

Vnm ... Yo, fn-> co, and Snm ... onm) ) the mo-
bility and band edges coincide, i.e., 
L 2< ± ZV0 >= 1. It follows a= <Z- K 0XZK 0 + Z -K 0>!Z 2 . 

For the sake of simplicity further we shall 
choose K = K0 • Since K is only a factor in 
the formula of L 2(E), it follows that the 
smaller K the easier the electrons become 
localized. The results for the mobility 
edges Ec (L 2<Ec>=l>are shown in Fig. 2. 

From formula (22) one directly sees the 
effect of random hopping integrals. It 
yields an effective increasing of the band 
width. Analogously to the second order 
approximation, the diagonal disorder has 
here a stronger localization effect compared 
with the results of the L 0 -criterion, e.g., 
for a ... "", rv ... O, r£ -/:.0, and s = 0 an An­
derson transition takes place about <Z-2)/Z 
times sooner (Fig. 2a). Furthermore the limit 
for the parameter a at which an Anderson 
transition becomes impossible is lowered, 
ins t e ad o f I a L I = 1 now I aLI = Kl Z . The r e s u l t s for 
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---\ a\ .... oo , 1 .... 0 , - · - · - · I a I = 1 and - - - I a I = 213 . 
a) s = 0 and b) s = 0.04. 
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s = 0.04 are shown in Fig. 2b. It 
that the qualitative picture is 
as for the L

0
-c r iter ion. 

1.s seen 
the same 

4.4. The Licardello/Economou Criterion 

Licardello and Economou (L/E) 131 have de­
monstrated that the function L(E) is not 
very sensitive to the special restriction 

- 0 ••• n. 1 
when c a 1 c u 1 at in g -~ 

1
-n· 

I -

have proposed to replace all ~o ... ni-1 

Therefore they 

by 
- m ni 
~ n· where m is one of the NN of n .. Using 

1 1 

the approximation <In<\§ I)>"" lnq<:~> I ),1/ E have 
then calculated this quantity by a single 
site CPA. Here we apply a cluster version 
of CPA. We consider a compact cluster for­
med by a central atom surrounded by its Z 
nearest-neighbours and embedded in an effec­
tive medium which is characterized by an 
effective Bethe lattice with a coherent 
hopping integral Vc. For such a cluster §:. 
is calculated (cf. 13, 381 ) where the 

1 

structure averaging over all possible clus­
ters can be performed in the same way as 
described in Sect. 4.1. The use of the Lo­
rentzian distribution enables us to carry 
out the integration over the stochastical 
variable Vnm in an exact manner, if the 
parameter a obeys the condition \a\ ;::::\1-Es\ 
(cf. I 19, 37 I ). Requiring now the CPA like 
condition 

<ln<\~m\)> I =ln(\~m ff\), ( 24) 
n. c uster · n. e 

I I 

the coherent hopping integral Vc can be 
determined self consistently. It is found 
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v c = v 0 - i r~ v sign (a) . 
pression for L(E) 

Hence the approximated 
has the form 

L( E) ~ L 3 (E)= I EZ + (E L, 2 
- z + 1 )

1 I 2 I me EZ ~ 0) ' 

where 

EZ = (E- <o +if'< )/2(V0 - ii'v sign(a)L 

ex-

( 2 5) 

Results based on this criterion are shown 
in Fig. 3. For diagonal disorder Bi­
shop/38/ has analysed the L/E-criterion in 
the case of Bethe and real lattices. These 
results show that this criterion is extre­
mely successful qualitatively (cf. 1 3 1 ). 
The Z-dependence of the position of Ec is 
similar to that found for L 2 . A further im­
provement 'of this criterion is concerned 
with the asymmetric change of the mobility 
edges due to the coupling between £ 0 and 
Vnm. This is expected from the exact re­
sults for the density of states in the 
extended Lloyd model 1371. There an asymmetric 
damping of the k-states appears and it 
should be expected that the electron loca­
lization is_ the stronger the greater the 
damping of k -states 1331, This statement is 
confirmed in the case of small fluctuations 
where for aV 0 <0 the presence of random 
hopping integrals enhances (lowers) the 
damping and the localization effect at 
the bottom (top) of the band. However, for 
greater fluctuations the effect of diagonal 
and off-diagonal disorder on localization 
does not simply interference in that way .... 
as for the k-state damping. This can be 
explained by a general delocalization effect 
of ODR. 
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The quoted results of the L 3 -criterion 
are directly confirmed by the exact inves­
tigations of a one-dimensional model invol­
ving diagonal and off-diagonal disorder 
in the used manner /39/. 

The influence of fluctuating overlap in­
tegral (sf,O) is qualitatively the same as 
for the L 2 and L 0 -criterions. It gives an 
additional reason for asymmetric change of 
the mobility band. After the obtained An­
derson transition <ial»l) another transi­
tion can appear at higher values of r where 
the states once again become delocalized. 
It must be pointed out here that the latter 
result cannot be physically realistic. At 
first the Lorentzian distribution for V nm 
represents the real situation, the worse the 
greater the width of the distribution. On 
the other hand, there exists a bound for the 
overlap integral, i.e., ISnmi:S: 1. Consequently, 
the ansatz (6) and the obtained results 
are quite good only for sufficient small 
parameters I' and s. 

4.5. Concluding Remarks 

We only note that it is still possible 
to derive an upper bound of L(E) (cf. /19,26/). 
In the case of Lorentzian distribution of 
Vnm and under the condition lal?. 11- Esl 
the resulting F(E)-criterion has the same 
form as L 0 • 

Overlooking the different approximations 
in the E/C-theory of electron localization 
for amorphous one-comnonent systems and 
regarding all available results of the li­
terature we conclude that ODR acts against 
localization of electrons, i.e .• has a quali-
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tative opposite influence than diagonal ran­
domness. Therefore, because of the impor­
tance of ODR in amorphous systems, this kind 
of randomness must be included when discus­
sing properties of electronic conductivity 
in this systems ( c f . I 29/ ) . 

One consequences of that is related to 
the expected small effect of diagonal dis­
order <I al < 1) in amorphous one-component sys­
tems. This does not allow that a structural 
stimulated metal-nonmetal transition takes 
place in such systems. Only other, additio­
nal kinds of diagonal disorder, e.g., chemi­
cal or spin disorder, can cause such a tran­
sition in amorphous samples. 

5. Matt-Anderson Transition 

In amorphoup systems of transition metals 
the electron correlation has, maybe, an im­
portant effect in producing localized states. 
For instance, it is obtained an effective 
cellular disorder if we consider the Hub­
bard model for correlation in narrow energy 
bands/~/ and use the alloy analogy approxi­
mation122· 27 28 · 291. On the other hand, there 
are problems in understanding the dynamical 
effects which are neglected in the alloy 
analogy. Here we quote a phenomenological 
point of view, comparing the dynamical fluc­
tuations in the Hubbard model with the 
thermodynamical one in the one electron case. 
It is known that for nonzero temperatures 
the electrons can be delocalized by thermal 
activated hopping. In spite of this a rela­
tive sharp mobility edge appears for compa­
rable small temperatures. 
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In this sense we suppose that the dynami­
cal fluctuations of correlated electrons 
only cause smeared mobility edges which 
may be detected by the alloy analogy. Such 
a supposition is justificatedif in the energy 
region of quasi localized states the dynami­
cal corrections only slightly change the 
results of the static approximation. In the 
case of fully localized states, i.e., in 
the atomic limit <U~oo), the alloy analogy 
is exact. From that we may expect that also 
for states, which are only partially exten­
ded in space (U finite) -localized in the 
alloy analogy, the dynamical fluctuations 
have merely a second order effect. 

Let us now derive a localization crite­
rion to determine quasilocalized states for 
the Hubbard model. For this purpose we re­
formulate the alloy analogy in the following 
way. A spint electron in the atomic limit 
can have the energies f n or f n + U depending 
on the circumstances whether or not an elect­
ron with spin + is present at the same place. 
In the senses of a static approximation the 
spin+ electron can be regarded as fixed in 
position if we switch on hopping for spint 
electrons. Assuming a random distribu­
tion of the+ electrons we can apply methods 
developed for disordered alloys. 

In particular, we want to calculate the 
localization function L<E> for such a sys­
tem using the L/E approach (Sect. 4.4). The 
averaging over all spin+ configurations in 
the expression for L<E) is performed by ap­
plJing a single site CPA for the quantity 
§ =ln<i<E-€ -dm>-1 1) where£ can have the 

n n n n 
above-mentioned two values. According to 
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Shiba's CPA approach/~ the environment of 
then -th atom is replaced by an effective 
me d i urn wit h c o her en t pot en t i a l s f m + ~ (m f, n ) . 
Then,~ will be self-consistently determined 
by the condition that the spin+ conflgura­
tion and structure average of the local 
quantity~~ is equal to the corresponding 
value of the effective medium, i.e., 

< ~ m (E, f + ~ )> = n t < § m(E, f ) > + n < ~ m <E , f + U )>, ( 2 6 ) 
n n n n + n n 

where na is the averaged occupation number 
per atom (see /28/). The structure ave-
rage in (26) may be performed in the same 
way as described in Sect. 4.4 for all three 
quantities and is equivalent to the repla­
cement of all vnm by a coherent hopping in­
tegral Vc = V 0 - if' sign(a) <Ia I ~ 1, s = 0) in an 
effective Bethe lattice. When the num-

ber of electrons present is one per atom and 
the system is assumed to be paramagnetic, 
we have nt=n =V2, and hence the solution of • • the problem becomes easy. Numerlcal results 
are shown in Fig.4 where the mobility edges 
are plotted against the parameters of dis­
order U and f'. 

In the case of small f' and varying the 
correlation parameter U the mobility bands 
behave like the density of states bands for 
f' = 0 (cf. 127 • 28 / ) • The density of states for 
the case 1-f, 0 has marked tails /37/ and 
therefore is no longer directly related to 
the metal-nonmetal transition in the Matt­
Hubbard sensei~~The onset of such a transi­
tion will now be dependent on the position of 
the Fermi levelEF in relation to the mobility 
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bands. Because of asymmetric change of the 
density of states in our model of amorphous 
systems,EF changes the position with increa­
sing r also in the case n=l so that the cri­
tical value of the parameter U cannot be 
determined simply by the value at which the 
mobility gap disappears. With increasing r 
in both subbands an Anderson transition takes 
place and for a certain value of r only one 
mobility band remains. 

Let us assume that UIV 0 and the width of 
the vnm distribution will be lowered if 
pressure is applied on amorphous nonmetallic 
systems. Then we may meet the possibility of 
realization of nonmetal-metal transition. 
This transition is a mixed type of Mott and 
Anderson transition whereas the dominant 
mechanism is due to electron correlation 
( c f . I 28 I ) . I n t he c o nne c t i o n wit h our r e­
marks on the dynamical effects in the Hubbard 
model the found transition cannot be very 
sharp, although observable in real amorphous 
systems. 
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