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1 Introduction 

Manganites of the perovskite structure of the form R1_.,B.,M n03 ( where'R are triva..: : 
lent,rare-earth an:d Bare divalent. alcaline ions,Tespectively) and related ·c5>mpoii.;ds. 
that present the phenomenon of"col6ssal" magnetoresistance (C~R) have i:~cently 
at'tracted much attention both from the basic point of view arid due to their j>otent'ial 
application [1), [2].• The large.magnetoresisfance occurs dose' to th{rrietal-insulator' 
and the paramagnetic-ferromagnetic transitions where tlil(interpl11r o:ftr~spCJi;t, 
magn~tic and structural properties is of the ·great 'itnportanct! (see' (3)) .. The key 
elements of the manganese oxides are Mn i?ns. In the parent compotind 'LaMn03 ' 
the electronic configuration of Mn+3 is (t~

9
e9 ). In this configuration due to a strong 

intra-orbital Hund's coupling t~9 electrons go into tightly bound, di;y, dyz, •4xz core .. 
states and make up an electrically inert core Heisenberg spins S of magnitude 3/2. 
The_ ~~9 co~~&u~a,!io~ is, ,v1rry stable and ,remains localized over the entire range of 
dopmg. . . . : , , . · ,, · ,: i , ·, :• • 

In the undoped case, with one e9 electron per Mn ion, two e9 orbitals, d.,2_y2 
and d3,2-r2 types, ar(l splitte,d due t_o _the Jahn-Teller effect. At.low•temperature e9 

electrons occupy d3;2~r• and d3y>-r• ordered ·alternately in ab plane with their spins 
aligned to the core spin by interorbital Hund's coupling. Due _to the Goodenoug¥­
Kanamori..rules,:(4] it results in the A-type antiferroinagnet (AFM) g'rCJund state 
(AF:M vector .Q::,:;(0,_0, 0.5)) with spin S = 2 for'LaMnO3• Upon doping ~ith holes 
by ~ubstituting.La.:with Sr or any other divalent ions ·system becomes ferro~agniiic 
(FM) and conducting. The hopping between two Mn shes is maximal when the core 
spins are parallel and minimum when they ate antip~r~llel.That' re~ults in ~ffective 
ferromagnetic exchange between the nearest neighbor core spins· and thus lead~ to ... 
the FM'metallic ground state of doped compounds .. This behavior is qualitatively. 
well described within the framework-of the double exchange'(DE) mechanisni.(s~e·: ' 
[5],[6],[7]). At higher hole concentration, x_ ~- 0.5, a charge oi-dering'for holes is 
observed, and.at x == 1 an insulating G-type'AFM state (with Q = (0:5, 0.5; 0.5)) 
takes place for CaMn03 compound. Therefore t6 describe the experimentally ob- . 
tained phase diagram ( see, for example, [8]) one should.take into account both the_ 
Heisenberg type of AFM exchange between the core t 29 electron~ and. the strong . 
Hund coupling between t29 and e9 electrons (see: e.g. [9; 10]), · These competi11g.· 
interactions could be responsible for a coexistence ofAFM and.FM states observed .. 
recently in neutron scattering experiments in (La0,25Pro.1s)o.1Cao_3Mn03 [11] and 
in the bilayer manganite La1.2Sr1.8Mn20 7 [12]: Also a crossover from ,1tn ideal 
isotropic FM spin-wave behaviour at low temperature to a diffusive spin propaga­
tion observed in La0,7Cao,3Mn03 [13] could be explained ifone takes into a~comit 
both the localized t29 spin (S = 3/2) and the itinerant e9 spin (o- = 1/2) subsystems. 

In the present paper we study the spin dynamics in manganites within the gen­
eralized ferromegnetic Kondo model (FKM) allowing fo~ the_ AFM ex~~ange in~er~ · 
action between t 29 spins. Unlike to the DE 'rriodeL(see; (14]), where JH/t ➔ ,oo 
is considered and the system is treated as perfectly· spin pCJlarized with S = 2, in 
our work both the fluctuation of the localized and itinerant spins are taking into 
account. However, we ignore iri th~ present calculatim:1s a possible o~bitai'ordering 



which is very important in explaining different types of AFM ordering jn the insulat­
ing phases (10, 15) but plays less essential role in the FM state considered here. To 
take into account strong Coulomb interaction between e9 electrons which excludes 
the double occupancy of e9 electrons for a lattice site we employ .the }lubbard op­
erator technique. The spectrum of spin waves in the FM state is calculated by 
employing equations of motion for the matrix Green function ( GF) for the localized 
and itinerant spins. In the next Section·the model and general formalism for the G.F 
are presented. The spin-wave.spectrum in a generalized mean field approximation 
(MFA) is, calculated in Sec. 3 and self-energy .corrections and spin-wave ,damping 
are evaluated in Sec. 4. 

2 Themodel· 
We consider ,an effective Uaniiltonian of'the generalized FM Kondo model which 
can be written i~ the following form [9}: 

H .'°' X"0X0" Jn.~S 1 '°'JS S · = - ~ t;; ; ; - 2S 4,, ;a; + 2 4-:' ;; / ; . 
'tJP I ·IJ 

(I) 

The first termofEq. (!),describes an electron·hopping.between Mn-ions where Xf0 

is the creation·operator of,an electron with spin a in one ofthe,e9 orbitals. Here we 
neglect orbital degeneracy of e9 electrons and· introduce orbital independent hopping 
parameter•t;; witfr.t;;•='fforthe·nearest neighbors. The second term describes·.the 
ferromagnetic'Hund.coupling (:In.> 0) between e9 and t29 spins where S; refers to 
the localized Mn core spin S = 3/2. The third term describes the antiferromagnetic 
coupling of localized spins; between the nearest,neighbor sites. In real materials the. 
coupling of core spins· is not the same in differ'enfliirections and should be described·,,, ! 

· ;iidhe'titattix:form, but for simplicity,we are analyzing the isotropic case (J;; = J). 
We ~xclude the doubly occupied, e9 state from the effective Hamiltonian by using 
the Hubbard, operator representation°because the electron-electron interaction has 
the largest energy. scale (intra-atomic Coulomb interaction in the e9 orbitals) and 
can· be estimated as 7 - 8 eV while Jn ~ I eV. Due .to,large Hund energy we 
neglect superexchange interaction between e9 electrons of the order •Oft2 /U [IOJ. 
The conduction bandwidth is smaller than the Hund coupling energy and from 
density-functional studies can be estimated as t ~ 0.15 eV [16]. 

The HO's in Eq. (1) are defined as Xf13 = li,a)(i,/JI for three possible states at 
the lattice site i: li,a) = li,0}, Ji,a} for an empty site and for a singly occupied 
site with spin a = (t ,.!,) = ( +, -) . The completeness relation for the HO's reads as 

X!'O + '°' X'!" = 1. I ~£.., • (2) 
·q 

For itinerant electrons the spin and density operators in Eq. (1) are expressed by 
HO's as 

a:I' = xiJ. a":' - x:1-t u~ = !exit - x:1-J.) n· = xit + x:i,J. 
I I , I --. I ,· I ·2 I I ) t 1 I • {3) 
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The HO's obey the following commutation relations 

[xa/J x-rs] r ( r X°'5 ± r x-r/J): · i· , j = Uij OfJ'"Y i • USa i .. . 
± , '. ' 

,, '(4) 

In Eq.(4) the upper sign stands for the case when both HO's are Fermi-like ones 
(as, e. g., X?q). The spin and density operators (3) are Bose-like and for them the 
lower sign in Eq.(4) should be taken. , . . , 

It is assumed that the core spin operators Sf obey the standard commutation 
relations, e.g·., 

[ st ,sf] = 20;,j s; . (5) 

To treat the fluctuations of localized and itin~rant spins 11:t the ,same le~el of 
approximation we introduce the dynamic spin susceptibility',(DSS) of the systei;n in. 
the matrix form .· · ·,. · · · · · •' '· 

~(q,w) = ( ~:: ~:: ) = ((AqlAt))~ , .• (6) 

where 

Aq = (~f), At= ,(u; s;) . 
Here 

{{AqlAt})w = -z f" dte-,wt ~ i::e-,q(l-7'.'){[A1(t),~!,]) 
' .• q ' . • ' • 

(7) 

den~te~ the Fourier tr~nsformed two-time retarded commutator Green function (GF) 
(18, 19]. The diagonal elements xu(q,w) and x22(q,w) stands for the itinerant and 
core spin GF, respectively, while the nondia:g~nal element~ X12(q,w) and X21(q,w) 
define the cross-correlations between the two spin subsystems. The GF (6) obeys 
the following equation of motion , ,-. , , , 

+ + . + w{{AqlAq ))w ==: {[Aq, Aq]} + .{{iAqlAq )}w ,, , 
, ' ·, '+ ' . ·+ . ' ·+ w((zAqlAq ))w =:= {[zAq, Aq]} + ({zAql-,- iAq ))w . · (8) 

These equations (8) could be easily combined in a more convenient form of the 
equation of motion [19): 

w((AqlAt))w =,({Aq,AtJ} 

+ (([zAq,At]} + ((zAqj- zAt)):') · ([Aq~At)) · ((AqlAt)}w, (9) 

where the current is defined as z.4 = zdA/dt = [A, HJ and in the matrix form can. 
be given by the following expression: ' · · · · 

. . iu · ( ·+) 
zAq ~ \st ' (10) 

and 
· "+irr • •+ ((zAql - iAq )}w = ((zAql - zAq })w 
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. + + -1 • - ((,AqlAq ))..,((AqlAq )).., ((Aql - iAt)).., (11) 

is the irreducible part of the higher order GF. 
We can rewrite (9) in the Dyson form 

' - - 1 Xq(w) = [wf-0 -nq - II(q,w)i- · /, (12) 

where f-0 is the unity matrix and 

/-([A A+])- ( ([ut,u;-1) ([ut,s;-1) )- ( 2(u•) 0 ·) (l3) 
- q, q - ([St,u;-1) ([St,s;-1) - O 2(S•) 

where (u•) = (u;). and (S•) = {Si) . 
The matrix Oq. =. flq 1,-1 describes the mean field (MF) energy spectrum and 

II(q,w) = II(q,w) 1-1 is the self-energy matrix. They are given by 

~ = ([,A A+])= ( ([,d_t,u;-1) ([zci;-,s;-1)) 
q q, q ([,St,u;-1) ([zSt,S;-1) ' (14) 

_ · _ ·+ irr _ ( ((iujlie19))irr ((11itl189))fr• ) 
II(q,w) - ((,Aql iAq )) - ((is:1,u;)t· ((,StlzS;))irr . (15) 

with 
·+ '°'.t (Xtoxoi xtoxoi) JH (. 5+ • s• +) iu1 = ~ ii i 1 - 1 i - 28 1 0"1 - 1 u1 , 

1 ' ' ', 

(16) 

· s·+ JH (s· + · s+ ') "J. ·(s•s+ ·s•s+) 
i 1 = - 2S 1 0"1 · - . I, 0"1. - ~ ·. ii i 1 - 1 i • 

•• " ! 1 

(17) 
- ··,' 

3 Mean field approximation 

Let us now examine the spectrum and DSS in mean field approximation (MFA). 
The spin-wave dispersion is determined by the following equation 

det (Jfo - fiq) = 0. 

From (14) we obtain for the matrix elements of Oq 

fi _ (· [d + a(l - -y9 )]/2(u') -d/2(S') ) 
q - -d/2(u•) [d - b(l - "fq))/2(S•) 

where we are using the following notation: 

d = :;(2(ujSi) + (utS,)), 

a= zt(nI +nf), b = zJN1, 
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(18) 

(19) 

(20) 

(21) 

with lq =. zt"yq, "/q = (2/z)(cosqx + cosqy + cosq,), where z = 6 for the simple 
three-dimensional cubic lattice with the nearest-neighbor hopping t. In ( 21) the 
nearest neighbor particle-hole and spin correlation functions are defined as follows 

.. u l ~ . u u (Xuoxou) 
nl = - L 'Yknk ' nk = k k 

N k 

N1 = ! L "(kNk , Nk. = 2(SicS:k) + (St S,;) . 
k 

(22) 

The equation (18) has two solutions describing two branches of spin wave excitations: 

El(2) = ~ [n•i + _fi22 =f /(fin - fi22) 2 + 4fi12fi21 
9 . 2 q • 9·· V 9 q . · q q • • 

. (23) 

For the model calculation we can expand this equation at q -+ 0 and for the finite 
value of d we obtain ' 

E<1> ~ D1l, q 

· E<2> ~ ~ + D2l , q - (24) 

where E!1l corresponds to the gapless (acoustic) spin-wave excitation with the stiff­
ness D1 given by 

a-b 
D1 = 12( (S•) + (u•)) , (25) 

and E?l describes the optic mode of· the·spin fluctuations with the gap ~ and t~{! 
effectiv(l stiffness D2 determined by the following expressions: · ·' 

(S') + (u') 
~ = d 2(S•)(u•) ' 

a(S')2 --: b(u')2 

D2 == -12-(S-• )~( u-•,-)(-(S-• )-+-(-u•-)) (26) 

The ferromagnetic acoustic spin-wave becomes unstable when the stiffness D1 ➔ 0 
or a-b = 0 in Eqj25). · It may happe~ for small concentration of itinerant elect~ons, 
n :s; n;.;;.·2sJ/t ~ o.'3. The ~elf-energy corr.ections considered below (see Eq. (47)) 
even increase the critical value nc. 

The spectrum of spin fluctuations in MFA are given by the spectral functions 

'MF .· 1 MF , . 
_B0 p (q,w) =c, -;Imx0 p (q,w + zt:) · (27) 

for the spin susceptibility 

( 

n22 - Ee•> ,; Ec2i - n22 . ) 
Bt{F(q,w) = 2(u') . (2) . 9(1)J(w - EJ1l) + ;2) . (I)J(w - EJ2l) 

E9 • - E9 E9 - E9 · 

(28) 
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B~F(q,w) == 2(S'} n(2) - Eq(l)a(w - E!1>) + ;2) (l)a(w - E!2>) 
(

-11 <•> E<2>-fi11 
) 

E9 - E9 E9 - E9 

(29) 

BtiF(q,w) == B:[F(q,w) == (2) d (1) (a(w - E!1l) - a(w - E!2>)) 
E9 -E9 

(30) 

The spectral functions (28) - (30) obey the following sum rules: 

l+oo MF 
-oo dwB0 /1 (q,w) == fo/1, 

1, +oo MF of] • + 
_

00 

wdwB0 /1 ( q, w) == 0 9 == ([iA9 , A9 ]} 0 /1 , {31) 

where the matrices [0 /1 and n;/1 are given by the Eqs.(13), (14). 

4 Self-energy corrections 

The next step is to consider the self-energy corrections to the MF spectrum. Taking 
into account the self-energy corrections the equation for the spectrum transforms 
into the following form: 

det (wi-0 - fi9 - II(q,w)) == 0. (32) 

First we compute the self-energy matrix elements by using mode-coupling approxi­
mation in terms of the dressed particle-hole and spin fluctuations (see, e. g., Gotze 
et al., [17]). This scheme is essentially equivalent to the self-consistent B_orn ap~ 
proximation in which the vertex corrections are neglected. The proposed scheme is 
defined by the following decoupling of the time-dependent correlation functions: 

(X;.0(t)x?+(t)Xf°x?-} ~ (x;.0 (t)x?-}(x?+(t)Xt°}, 

(o}(t)S;,(t)u1St} ~ (u:(t)u1}(S;,(t)St}, 

(St(t)S;;,(t)S1St} ~ (St(t)S1}(S;;,(t)S{}. 

(33) 

(34) 

(35) 

The self-energy matrix elements are obtained by using the above defined decou­
pling scheme (33) and, (35) with the spectral representation for the GF. The diagonal 
elements involve two contributions: 

II11(221(q,w) == rrm22J(q,w) + rrm221 (q,w). (36) 

The first one describes fluctuations of the internal degrees of freedom of the given 
spin subsystem. While the second one stems from the Hund's term and describes 
the coupling between itinerant and core spins. 

For the itinerant spins the first term in Eq. (36) is due to decay of spin fluctua­
tions into particle-hole pair excitations and reads as 

(1) 1 1+00 1+00 , n(w1 - w') - n(w1) 
II11 (q,w) == N dw dw1 , 

-oo -oo w - w + it: 
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0 

\v 
I 

x }:tZ
9
A"(k - q,w1·-w')A8 (k,w1) {37) 

k,u 

where tkq == zt(,k - 'i'k-q}, n(w) ==, (ef1w + 1)-1, and A"(k,w) is the single-electron 
spectral function. By using_ the MF approximation for that, Eq. (A.7), we can 
integrate over the frequencies in Eq. (37) and obtain the following estimation: 

rr<1>( w) == _!,_ '°' t2 {1 - n")(l - n8 ) n(t:t-q) - n(t:O . {38) 
u q, N ~ kq • w + t:" - gB + it: 

kp k-q k 

It has the standard form for a one-loop particle-hole contribution to the self-energy 
(see, e.g. [20]). , 

The second terms in Eq.(36) are the same for both subsystem and coincide with 
the nondiagonal elements of the self-energy matrix due to the Hund coupling 

rrm22)(q,w) == -II12(21)(q,w) == ITH(q,w) {39) 

with 

ITH(q,w) == (J")2 _1_ 1+001+00 dw'dw.1 + N(w' -wi) + N(w1) 
2S N1r2 -oo -oo w -w' + it: 

x L [Imx;2{k,wi)Imxu{k - q,w' - wi) + Imx22(k,w1)Imx;1(k - q,w' - w1)] (40) 
k 

where N(w) == (ef1w - l}-1
, .x11 and X22 denotes the longitudinal susceptibility of the 

itinerant and core spins, respectively. 
Let us consider now the remaining rrW term which describes the fluctuations 

in the core spin subsystem. This contribution is due to the Heisenberg exchange 
between the localized spins and is given by 

rrW(q,w) == _1_ 1+001+00 dw'dw11 + N(w' -w1) + N(w1) 
N1r2 -oo -oo w - w' + it: 

x L Jf9Imx;2'k - q,wi)Imx22(k,w' - w1) , 

k 

where Jkq == zJ(-y1,: - ')'k-9 ). 

(41) 

In order to evaluate the longitudinal susceptibility in Eqs. {40), {41) for both 
subsystems we will use for them the simplest one-loop approximation (see, e.g. [20]). 
In this approximation the imaginary part of xi1(q,w) is given as the convolution of 
the single-electron GFs 

1 1 1+00 
-;Imx11(q,w) == 

4
N _

00 

dw'[n(w' - w) - n(w')] 

x }:A"(k,w')A"(k- q,w' -w). {42) 

"·" 
The imaginary part of the core spin susceptibility X22 can be expressed in the linear 
spin~wave approximation as 

-;Imx;2(q,w) == 1r
24

~ 2N [:
00 

dw'(N(w' -w)- N(w')) 
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I)mx22{k - q,w' ~ w)Imx22(k,w') , (43) 
k 

which follows_ directly from the Holstein~Primakoff representation. _ 
,"To_study the spin wave spectrum includiµg self-energy corrections let us consider 

the static limit for g ➔ 0. _For the self-energy· matrix we can write · · ' 

_ , . - ( -Aq2 - __ d1 , d1 ) 
-limII(q_,0)= d -Bq2 -di 
·q➔O , _ - 1 

(44) 

where ,; . -, : . (2) , ,, , • (2) . 

A =-1· Illl(q,O) B=-1· II22(q,O) d_ =-ITJH(O o)·-IID 2 , IID 
2 

, . 1 -·, , . •, 
. . q➔O q . q➔O . q · (45) 

Here the coefficient '. A, .B; and d1 ' are "positive since TI( q, o) < 0 in the second 
order of the perturbation theory. As it f9llows from- Eqs. (44) and (45), the self­
energy corrections coming from the Hund's coupling does not renormalize the spin 
stiffness and gives input only into the gap. Hence the spin-wave spectrum in the 
longwavelength _limit can be writt~n as 

w!1> -~ D1q2 
w!2> ~ ~ + D2q2 

wh,e~e, the renormalized spin stiffness and the gap_ are given by 

- a-b~A-B D ~ . 1 
- 12((S•) + (a•)) 

- (a - A)(S•)2 - (b+ B)(a•)2 

D 2 =-12----,-(s-=-,:-:-)(a~•.,....,)(-:-(S,-:-•)-+--,(a~_~.,...,.))~ 

. ' ~ - {d ~ d1)((S') + (a')) . 
- 2(S•)(a•), -. 

'. 

) 
(46) 

(47) 

Now we consider the damping for the acoustic spin wave mode given by the_ 
imaginary parts of the self-energy matrix. For the damping induced by particle-:hole· 
excitations we_ get from. Eq. (38) in -the MF approximation for the single-el;dron 
GF~; - , _ , . . __ '' ·-- -· ,. 

r(l)( · ) . IJ(l)( ) ll· q,w :;::·-Im ll q,w + ze 

= ; L t%q(I - nq)(l - n~)[n(e'.Lq) - n{eZ))o(w + ek-q - en ( 48) 
k,u · , • 

The contribution, due to the. finite k-i~dependerit gap in single-electron spectrum 
in the ferromagnetic state disiJ.ppears in the low frequency limit, rW(q,w) = 0 for 
w < h·(see Eq. (A.14)). · · · · 

The damping due to the antiferromagnetic, exchange _interaction.given-by the 
imaginary part of the self-energy nW(q,w), Eq. (41)°, gives a,_A;mall contribution; 
proportional to q2 in the longwavelength limit and can be disregarded due to small 
antiferromagnetic exchange interi).ction J. 

i- . • -.· ! '.' •. , 
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The largest contribution to the damping of spin waves is given by the imaginary 
part of the self-energy due to the Hund cc,mpling, Eq. ( 40): · 

(
JH)2 1 1+00 . fH(q,w)=-lmITH(q,w+1e)= 
28 

rrN _
00 

dw1(l+N(w-w1)+N(w1)) 

xI: [Imx22(k - q,w - wi)Imxf1(k,wi) + Imxu(k - q,w - wi)Imx;2(k,w1)). (49) 
k • 

Here for the imaginary parts of the spin susceptibilities xu(k,w) and x 22(k,w) we 
will use their MF values in Eqs. {28), (29) taking into account only the acoustic E!1l 
mode: 

I (222 £(1) -

--ImxffF(q,w) ~ 2(a') (2) - (l)o(w- E!1>) = A!1o(w - Eq)' {50) 
rr E9 -E9 

1 on £(1) _ . 
MF( ) (S•\" q - q r( E(l)) _ A22r{ E) --Imx22 q,w ~2 -1 <2> _ (llo w_-

9 
-

9 
ow-

9 
• 

rr_ E
9

-E
9 

For the longitudinal spin susceptibilities in (49) we w·iU use Eqs. {42), {43). 
After integration over W1 we get the following r~sult -

rH(q,w) = (e'4 T -1) G;r 4;2 L Az:q(l-;- nq)2 

k,k,,q 

xN(Ek-9 )n(et)[l - n(ek,-k))o(w - Ek-9 + ek,-k ~et,) 
J 2-

( w/T 1) ( H) 7r ""'"'All A22A22 + e - 2S 4s2N2 L, k-q k, k,-k 
k,k1 

{51) 

x N(E1c-q')N(Ek, )11 +N(Ek,:..k)]o(w..:. E!~q + E!:~k - Ek,). {52) 

It describes a spin wave damping due to its decay into an electron-hoie pair and 
another spin wave (the first term) and a three spin-wave scattering process (the 
second term). The latter has a standard form for three magnon scat_tering (see, 
{31.2.20) in [21]). At low energy regime (w ➔ 0) and at the longwavelenght limit 
the requirements for conservation of energy and momentum allow only small wave 
vectors and thus only small energies. Hence we can consider Al1 and Af2 as k­
independent. In the limit k ➔- 0 we obtain 

All ~ All - 2( z) (a•} A22 ~ All - 2(Sz} (S•) {53) 
k - o - a (S•} + (a•} ' k - o - (S•} + (a•} . 

In this approximation from the Eq. {52) follows that at low energies, (w « T), the 
damping has a linear w-dependence, fJH(q,w) ~ w, and does not depend explicitly 
on the wave vector q. In the low temperature region, (w « T « w

0
) where w

0 
is the maximal acoustic spin-wave frequency, estimations for rH(q,w)/w show 
that the first contribution in Eq. {52) is proportional to (T/w0 )(JJ,/N(cF)vFko) 
where N(cF) is the density of state at the Fermi level and VF is the Fermi velocity, 
ko ~ 2rr/a and a is a lattice constant. The second term gives to the damping the 
contribution proportional to (T/w0 )(JH/w0 ) 2 • To give more accurate estimations 
for·the spin-wave damping numerical studies should be performed which will be 
considered elsewhere. 
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5 Conclusions 
; • •~ l ! . 

In t'he present paper we have calculated dynamical spin susceptibility for the g-eri- •· 
eralized ferromagnetic Kondo model (1) by taking into account explicitly both the 
strong Hund interaction- fqr the itinerant e9 and localized t29 electrons and AFM' 
interaction between· the t29 electrons.' We c~nsider the ferromagnetic phase and 
therefore neglect a possible orbital ordering of the e~ electrons: Strong eledro:n cor- · 
relations between e9 electrons are treated within the Hubbard operator technique. 
which is important in calculation of the single-electron GF foF the iii~~ra:nt elections. ' 

We ha~e proved that· even in the MFA described by the frequenc{matrix, 
Eq. (19), we get the acoustic spin-wave excitations, Eq. (24), due to coupling of 
the two modes with gaps for itiner~nt and localized electrons., The· gap}ess' mode 
should appear in _the model '(l) with rotati'on symmetry for spin system. A gap less 
mode in the limit JH ➔ oo, considered in Ref. [14], was obtained only by taking into 
account self-energy corrections. In our case th,e self energy corrections. calculated in 
the self-consistent Born approximation, Eqs. (32H34), resulted in 'additionahenor­
malization of the stiffness of the acoustic ferromagnetic spin wave,s\ The iI,Dagi_nary , 
parts of the self-energy gives the damping of spin wav.es. We have e:val~atedthe most 
important contribution due to Hund coupling 'in th~ second-order, Eq. (49), which 
can be described as a three magnon .scattering. The damping of acoustic spin waves 
is proportional to the frequenc/for w « T, Eq. (51), and should be small for small 
wave vectors. To give numerical ~stimations om: s~ould solve self-consistently the 
system of equations for the matrix spin susceptibility, Eq. (6), and the self-energy 
functions, Eq. (37). Also the spectrum of single electron excitations, given in the 
Appendix, should be evaluated to consider the itinerant electron contributions to 
the spin waves, Eq. (36). These problems will be ~onsidered ~lsewhere. 
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Appe·ndix 

In this Appendix we evaluate the single-electron Green function defined as 

G"(k,w) = ((Xf"IXf0 ))w (A.'I). 

with the corresponding spectral function Ak(w) == -(I/:r)hn.G"(k,w + ie:). In the 
site representation the equation ofmotion' for G"(k,w) reads· as . 

.· w{(Xf"IXf0))w = ({X?",X;°}) + ((iX;0"!X;°))w .' . (A.2) . ' . 

Using the commlitatiori, relations, Eq.(4), ·we obtain 

: • : 1iil~": ~ [X?", !fl~ -_Ltil [(X?° + Xf°.)X?" + Xf," x?a] 
,, .. ,; · · . • ,· . 1,;!i • 
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... 

-:; [uS/X?" + Sf Xfa] . (A.3) 

The next step is to .define t_he irreducible· part Z?" of the current operator iXf" by 

iX. !Ja - ~ t:'! X 0" + Z~" ({Z0" X'!9}) = O • - L.,,,, " I I , . I ' ', ' • . . I . (A.4) 

The definitio_11 gives for the frequency matrix 
. . 

t:'[; = ({zxr,x;°})/(1 - n"), (A.5) 

. where by using the completeness ,relation, Eq.(2), we write ( { Xf", XJ':'}) = o;,;(l -
n") with na == (nr). By using equation of.motion (A.3) _\Ve get· 

{{iX?",XJ'°}) = -t;;((l -nr}{l -nf)) -t;;(X{"Xf"} 

+·,:V-t (X"oxo") JH (S')(l ")r JH(SaX"")r . 4 ii . i I - 4S u .i - n o;; - 48 i •' o;;. 
I . 

,· . (A.6) 

In, the ,preseqt paper we .will npt iqch1cle. the selfceIJergy co~rectio!J. ,coming.from Zf" 
terqi (A.4) ?,nd-treat t}ie single-e)ectron GF withip tlie liIJ~il-r, l\1F type approxima-
tion. That resultsjn the following form of the single:electron,GF · 

1-n" 
G"(k,w) = -. - . 

. . W-t:" 
" k 

By intrpdµcing the,nearest neighbor ch!J.rge-spin correlation Junction 

.N" = _!_ .. ~,.,, [(X"" X"") + (X"" X"u)] 1,a N L.J ,_k . . k . -k . k k 
. k 

= (Xf" Xf.:a)+(Xf" x::a) 
, we c;an rewrite ,thefrequency matri~ in th;Jorm 

I ' ·•· - ' , ,· ., • • ' • ' 

t:'[; = t:" o;; + cf; . 
where 

t:'[; = t;;[(l - 2na) + Nf~.,]/(1 - nu) 

is the .~me particle spectrum in the linear approximation, and 

., JH [ (S') (S_fXf")] ztnf 
t: =-- u +--- +--

4S 1 - n" 1 - nu' 

(A.7) 

(A.8) 
, :.1,_,rn-~~.-1:: 

(A.9) 

(A.IO) 

(A.11) 

is the spin-dependent energy shift of the spectrum. In t_he momentum space the 
spectrum is 

" ·" -,JcRij " Cl t" f:1,: = L.Je f:;; = t: - Z eJJ"'fk, 
R;; 

(A.12) 

where 

t:ff = t[(l -:- 2n") + Nf~.,]/(1 - n"), (A.13) 

is an effective bandwidth that is narrowed and spin dependent due to the spin and 
charge correlations. In the MFA _in the ferromagnetic state we have a spin gap in 
the single-electr:on spectrum: 

t:f - f:k ~ q(JH/2S)(S') = uh. (A.14) 
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IlepKHHC H.E., IlnaKH,!la H.M. 
CrmHOBM ,!lHHaMHKa B o6o6meHHOH cpeppoManrnTHOH MO,!leJIH 
KoH,!lO ,!lJI~ MaHraHHTOB 

El?-98-391 

IlpoBe,!leHO Bbl'IHCJieHHe ,!lHHaMH'leCKOH CilHHOBOH BOCripHHM'IHBOCTH B 0606-
meHHOH MO,!leJIH KoH,!lO, OfIHCb1Ba10meu B3aHMO,!leHCTBHe 3OHHbIX :meKTpOHOB eg 

THna C JIOKaJIH3OBaHHbIMH 3JieKTPOHaMH. t2g THna, CB~3aHHbIMH aHTH<peppo­

MaTTIHTHhIM o6MeHOM. IloKa3aHO, 'ITO CfIHH-BOJIHOB_Oll cneKTP CIICTeMbl B cpeppo­
MarHIITHOH cpa3e B npII6JIII)KeHIIII cpe,!lHero, non~ IIMeeT aKYCTH'leCKYJO 
II OfITII'leCKYIO BeTBH. PacC'IIITaHhl co6cTBeHH0-3HepreTH'leCKIIe nonpaBKH K cneK­
TPY II oueHeHO 3aTyxam1e aKyCTII'leCKHX MarHOHOB. 

Pa6orn BhmonHeHa B Jla6opaTOpIIH TeopeTH'lecKou <pII3IIKH HM. H.H.Eoron10-
60Ba 0115111. 

TTpenpHHT Ofu.e)IHHeHHOro HHCTHTYTa ll)lepHhlX HCCJle)IOBaHHii. ,lly6Ha, 1998 

Perkins N.B., Plakida N.M. 
Spin Dynamics in the Generalized Ferromagnetic Kondo Model 
for Manganites 

El?-98-391 

Dynamical spin susceptibility is calculated for the generalized ferromagnetic 
Kondo model which describes itinerant eg electrons interacting with localized t2g 

electrons with antiferromagnetic coupling. The calculations done in the mean field 
approximation show that the spin-wave spectrum of the system in ferromagnetic 
state has two branches, acoustic and optic ones. Self-energy corrections 
to the spectrum are considered and the acoustic spin-wave damping is evaluated. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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