


1 Introductlon .

4 ‘.‘, e

Manganites of the perovsklte structure of the form Ri:+B:MnOs (where ‘Rare trlva.- .
lent rare-earth and B are divalent alcaline ions; respectively) and related compounds .
that present the phenomenon of ”colossal” ma.gnetoreslsta.nce (CMR) have recently

attracted much attention both from the basic point of view a.nd due to their potentla.l ,

application [1];°[2]:: The large magnetoresistance occurs closé to the metal—msulatori,
and the pa.ra.ma.gnetlc-ferroma.gnetxc transitions where the’ 1nterp1ay of tra.nsport -

magnetic and structural properties is of the great importancé (see’ [3]) The key
elements of the manganese oxides are Mn ions.: In the parent compound ‘LaMnOs

the clectronic configuration of Mn*3 is (3 eg) In this configuration due to a strong .
intra-orbital Hund’s coupling #3, electrons go into tightly bound:d,y, dy:; :ds: core;
states and make up an electrically inert core Heisenberg spins S of magnitude 3/2.
The t3, conﬁgura.tion is, very sta.ble and rema.ins localized over-the entire range‘of

dopmg ’ S e Rt

- In the undoped case, with one e, electron per Mn ion, two e, orbitals, d 2y Y

and ds;2_,2 types, arg sphtted due to the J a.hn-Teller effect. At low temperature e,
electrons occupy d3,: -2 and’ dayz -2 ordered a.lterna.tely in ab plane with their spins

aligned to the core spin by interorbital Hund’s coupling. Due to the Goodenough- :

Kanamori.rules:{4]. it results in the A-type antrferroma.gnet (AFM) ground state o

(AFM.vector:Q=(0, 0, 0.5)) with spin S = 2'for' LaMnOs.’ ‘Upon doping with holes
by substituting: La;with Sr or any other divalent ions systembecomes ferroma.gnetlc‘
(FM) and conducting. The hopping between two Mn sites is ma.XJma.l when the core
spins are-parallel and - minimurh when they ‘ate a.ntlpa.rallel Tha.t results in eﬂ'ectlve S
ferromagnetic exchange between the nearest nelghbor core spms ‘and thus leads to

the FM metallic ground state of doped compounds.” This behavior is quahtatwely

well described within-the framework of the dotiblé: exchange (DE) mecha.msm (seev, :
[5],[6],[7]). - At hlgher hole concentration, z >-0.5, a charge ordermg ‘for holes i is.
observed, and.at z = 1 an insulating G-type AFM state (with @ = (0.! 5, 0.5, 0. 5))

takes place for.CaMnQO3 compound. Therefore to describe the experlmentally ob-

tained phase diagram ( see, for example; (8]) one should ta.ke into account both the: .
Heisenberg type of AFM exchange between the core tgg ‘electrons’ a.nd the strong: E

Hund coupling between ¢, and e, electrons (see, eg.’ [9; 10]) These competin,

interactions could be responsible for a coexistence of AFM and' FM states observed - i
recently in neutron scattering experiments in (Lao 25Pro 75)0 7Cao 3Mn03 [11] and .

in the bilayer manganite La; 2SmsMny0r [12]5 Also a Crossover from an ideal -
isotropic FM spin-wave behaviour’at low tempera.ture to a dlﬂ'uslve spin propaga-. e
tion observed in LagyCagsMnO; [13] could'be expla.med if one ‘takes into account

both the localized ¢, spin (S = 3/2) and the itinerant e, spin (¢ = 1/2) subsystems.

In the present paper we study the spin dyna.mlcs in manganites within the gen-

eralized ferromegnetic Kondo model (FKM) allowing for. the AFM ‘exchange inter- ..

action between ¢, spins. . Unlike to the DE ‘model (see7 [14]), where Jy/t = oo

is considered and the system is treated as perfectly spin pola.r]zed with § ='2,in /=
our work both the fluctuation of the localized ‘and- itinerant spins are taking into -

account. However, we ignore in the present calculatlons a possible orbital ordering
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which is very important in explaining different types of AFM ordering in the insulat-
ing phases [10, 15] but plays less essential role in the FM state considered here. To
take into account strong Coulomb interaction between e, electrons which excludes
the double occupancy of ¢, electrons for a lattice site we employ the Hubbard op-
erator technique. The spectrum of spin: waves in the FM state is calculated by
employing equations of motion for the matrix Green function (GF) for the localized
and itinerant spins. In the next Section-the model and general formalism for the GF
are presented. The. spin-wave spectrum in a generalized mean. field approximation
(MFA) is-calculated in Sec. 3 and self-energy corrections and spin-wave damping
-are evaluated in Sec. 4. !

2" The model

We -consider :an-eflective Hamiltonian of ‘the generalized FM Kondo model .which
can ‘be written in‘the followingform"(9]:

H==3 t;X[°X}" - J—H“ES;W + lz Ji;S:S; . (1)
‘i 25 i 21.'.,'

The first term-of:Eq. (1):describes an:electron:hopping:between Mn-ions where X7°
is‘the creation: operator of-an electron:with:spin-o-in one of the.¢; orbitals. Here we
neglect- orbital degeneracy-of e,-electrons and:introduce orbital independent hopping
parameter:t;; with't;; =t:for'the nearest:neighbors. The second:term describes:the
ferromagnetic’Hund:coupling - (Jy.>>:0) ' between:e,. and:ty, spins .where: S; refers:to
the localized"'Mn core spin'S'=-3/2. The third:term describes the antiferromagnetic

coupling of localized spins; between the nearest neighbor sites. In.real materials the . = ..
coupling of ‘core spinsis not the same in:different’ directions and should:be describedi:* h

**'iﬁLtﬁg’}‘ﬁhtfik'ﬁforﬁx,“but for:simplicity:we are analyzing the isotropic case (Ji; = J).
We-exclude:the doubly occupied: e,-statefrom: the. effective. Hamiltonian: by using
the’Hubbard: operator:representation‘because:the electron-electron interaction has
- the largest: energy:scale’ (intra-atomic:Coulomb. interaction:in the-e,- orbitals) and
can’be-estimated as ‘7 — 8 eV.while.Jy ~ 1-eV.:Due'to large:Hund: energy we
neglect: superexchange - interaction- between- ¢, electrons  of  the order .of :t2/U [10).
The - conduction: bandwidth - is-smaller. than ‘the Hund coupling energy and:from
density-functional studies can be estimated as ¢t ~ 0.15 eV [16].

The HO’s in Eq. (1) are defined as X = |i,a)(i, 8] for three possible states at
the lattice site : |i;a) = [i,0), )i;0) for an empty site and for a:singly occupied
site with spin & = (1,4) = (+,—) . The completeness relation for the HO’s reads as

XP+L X7 =1 2)

For itinerant electrons the spin-and: density operators in' Eq. (1) are expressed by
HO’s as

of =XP, o7 = X, 07 = XI-XP), m=XTT 4 XH. (3)

The HO’s obey the following_commuta.tion relations

[x22, X7, = 6 (SpXetbdsaX?P). " T

In Eq.(4) the upper sign stands for the case when both HO’s are Fermi-like ones

(as, e. g, XP). The spin and density operators (3) are Bose-like and for them the
lower sign in Eq.(4) should be taken. o L e

1t is assumed that the core spin operators S{ obey the standard commutation
relations, e.g, :

I,J o » :‘ [S;i-

,V-SJ-“] =2;8 . 7 ‘ ] (5) .

To treat the fluctuations of localized and i_tin_éra'.nt fs‘p:i,ns ‘3t the same level ?f k
approximation we:introduce the dynamic spin sﬁscgptibitit);i (D8SS) of the system in. .
the matrix form R ' ' '

o= (0 )=, ©
where o + T
A= () A=)
Here R IN w _1 : -
((AqlA;))wz’—l fo dtg-'uf‘_ﬁ;ﬂe—tq(fft-)(’[él(t)" ':1;]) | 0

denotes the Fourier transformed two-time retarded commutator Green function (GF)
[18, 19]. The diagonal elements x11(g,w) and x22(g,w) stands for the itinerant and
core spin GF, respectively, while the nondiagonal elements x12(q,w) and x21(q,w)
define the cross-correlations between the two spin subsystems. The GF (6) obeys

the following equation of motion G ket
(A AT = ([Ag AFD +{0ALAT N 5. .
a w((zAGIA:))“ = (["Aq: A:]) + ((ZAqlif' ZA;-))W A T A R (8)

These equations (8) could be easily combined in a more convenient form of the
equation of motion [19]: :

(Al = (A0 A7)
A A A irr 1 ’ ) .
+ (0o AT + (0Ad = ADND) gy (AdAD - O)

where the current is defined as 1A = JA/dt = [A4, H ] and in the matrix form can.
be given by the following expression: ' '

1A, = (:g‘;) el (10)

(4] = 2 ANET = ((1Aq] = 1AT))w

and



= (A AN AATNS! (Al = A1) (1)
is the irreducible part of the higher order GF.
We can rewrite (9) in the Dyson form

Xo(w) = [who — 0, = Ti(gw)]™ - I, (12)

where 7 is the unity matrix and

ot —) DS ) (% o\

where (0%) = (of) and (5%) = (57) .
The matrix Q.= Q, I™! describes the mean ﬁeld (MF) energy spectrum-and
' (q,w) I(q,w ) I -lis the self-energy matrix. They are given by

o= ity = (il (o sih), (14

: S\ \irr w0t 1om))T oF15= )y
o = hi=i = (A GHENT). o

25

with : .
‘ o zt.,(x“’x x“’x“) ;g(s, of — Siat) (16)
St ==L (S'a,-—.s+a, ZJ-—:‘(S’.-'S#—‘S:S.-*)- .o

'3 Mean ﬁeld approx1matlon

Let us now examine the spectrum and DSS in mean field ipproximation (MFA).
The spin-wave dispersion is determined by the following equation

: det‘(df‘o*vﬁq)=0. ’ C(18)

From (14)- we obtain for the matrix elements of (),

[d + a(1 — %))/2{e*) —d/o(s7)
= C=digey A= b1 - w)l/2S") ) (49
where we are using the following notation: ‘
d= 28 (2(oiS7) + (e ST (20)
a=zt(n] +nf), b=2JMN, (21)

with ¢, = zt7q, Y = (2/z)(cos gz + cos gy + cos q,), where z = 6 for the simple
three-dlmensmna.l cublc lattice with the nearest-neighbor hopping ¢. In ( 21) the
nearest neighbor particle-hole and spin correlation functions are defined as follows

o 1 . o o (-4 o
ny = 'N‘Z’Yk"k y My = (XP°XP)
% L . ~
1 . R : o . . s
M= NZ’YI:NI: , Ne=2(Si5%,) + (SESk) - (22)
%

The equation (18) has two solutions describing two branches of spin wave excitations:

1 _ ~ . .~ - - .~ ~‘
B == [n:‘ + 93__’, T \/ (o —02)" + 493,’93‘1 S . (23)

For the model calculation we can expand this equatlon at ¢ —) 0 and for the ﬁmte
value of d we obtain : = :

B
EsMeDg, o

where E(‘) corresponds to the gapless (acoustic) spm-wave excitation with the stiff-
ness D, glven by : .
. a-b

12((8%) + (o)
and E(z) descrlbes the optic mode of the'spin fluctuations with the gap. A and the ‘
effectlve stiffness Dy determined by the followmg expressnons

{5+ (o%)
A= ey
a(S’)z-fb(a‘)z :

* (N0 + (o)

The ferromagnetlc acoustic spin-wave becomes unstable when-the stiffness’ Dl 50
ora—b=0inEq. (25) It may happen for small concentration of itinerant electrons,"
n < ne'~'28J/t ~ 0.3. The self-energy corrections considered below (see Eq. (47))
even increase the critical value n..

The spectrum of spin‘fluctuations in MFA. are given by the spectral functions

Dy = (25)

D, = (26)

B%F(q,w) = —;Imngf(q,w + 15») Lo o (27) 5 .
for the spin susceptibility

on_pm B @™ )
MF z
B (gw) =2(c*) (Wé(w - E;I)) + Wé(w E®) (28)
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=11 n E(’) _ ﬂ”

~ Qu — E )
BMF(g,w) = 2(5%) (ma(w E,f”)+E$T-——(1—)6(w E(’))) (29)
q

BYF(qw) = B}F(qw) = (6w~ EM) = 8w — EM)) . (30)

The spectral functions (28) - (30) obey the following sum rules:
, . «
/:oo d““'Bﬂip(%w) = dag ,

/J; wdwBlE (g,w) = n“"—([zA.,,A Das » (31)

where the matrices I,5 and Q27 are given by the Eqgs.(13), (14).

"4 Self-energy corre_cfions

The next step is to consider the self-energy corrections to the MF spectrum. Taking
into account the self-energy corrections the equation for the spectrum transforms
into the following form: '

© det (a}ﬁ,—fzq - ﬁ(q,w)) =0. . . C(32)

First we compute the self-energy matrix elements by using mode-coupling approxi-
mation in terms of the dressed particle-hole and spin fluctuations (see, e. g., Gotze
et al., (17]). This scheme is essentially equivalent to the self-consistent Born ap-
proxxma.tlon in which the vertex corrections are neglected. The proposed scheme is
defined by the following decoupling of the time-dependent correlation functions:

(XZAOXTHOXTOXP™) 2 (XWX HXTH ) XTO), (33)
(oi(®)Sa(t)oiST) ~ (i ()oi ) Sa()ST) s (34)
(S:()SA()S;ST) = (S{()S{NSA()ST) - (35)

The self-energy matrix elements are obtained by using the above defined decou-
pling scheme (33) and (35) with the spectral representa.tlon for the GF. The diagonal
elements involve two contributions:

Mhe(ew) = nllx)(zz)(q,w) + ngx)(zz)(q»w) . (36)

The first one describes fluctuations of the internal degrees of freedom of the given
spin subsystem. While the second one stems from the Hund’s term and describes
the coupling between itinerant and core spins.

For the itinerant spins the first term in Eq. (36) is due to decay of spin fluctua-
tions into particle-hole pair excitations and reads as

(.) _ 1 e gt n(w) —w) — n(w)

w—w 41

/‘

Xy thA"(k — qwy —w)A (k,w) (37)
k.o

where ty, = zt(yx — 7k,q), n(w) = (* +1)7!, and A?(k,w) is the single-electron
spectral function. By using the MF approximation for that, Eq. (A.7), we can
integrate over the frequencies in Eq. (37).and obtain the following estimation:

INLICRELCY

. 38
wtel ,—ef +ie (38)

1 o
1(g,) = 5 X1 = ")
k.o

It has the standard form for a one-loop particle-hole contribution to the self-energy
(see, e.g. [20]).

The second terms in Eq.(36) are the same for both subsystem and coincide with
the nondiagonal elements of the self-energy matrix due to the Hund coupling

1D 200 w) = —Magn(g,w) = Ma(g,w) S (39)
1 + NWw —w )+ N(wl)

u(q,w) = (25) Nr? /+°°/+°° w—w +t1e

x Z (Imx3,(k,w1)Imx1(k — ¢’ —w)) + Imxgz(k,wl)lmx“(k q,w —w)] (40)
k o

wif_h

where N(w) = (e"“'-— 1)7, x%, and X3z denotes the longitudinal susceptxblhty of the
itinerant and core spins, respectively.

Let us consider now the remaining ng’ term which describes the fluctuations
in the core spin subsystem. This contribution is due to the Heisenberg excha.nge
between the localized spins and is given by ‘

Y too preo L, 14+ N(w' —wi) 4 N(w)
M (q,w) = 7r3./ -/oo ' duy w—w 4+ 1€ .
x 3 JigImxgy(k — gy wn)imxas(k,w’ —wy) (41)
k

where Jgg = 2J (7 ~ Yh-q)-

In order to evaluate the longitudinal susceptibility in Egs. (40), (41) for both
subsystems we will use for them the simplest one-loop approximation (see, e.g. [20]).
In this approximation the imaginary part of xf,(q,w) is glven as the convolutlon of
the smgle—eleetron GFs

~ Iy (a,) = 717 / /[’ — w) ~ n(w)]
X kX: A% (kWA (k — g, — w). (42)

The imaginary part of the core spin susceptlbllxty X3, can be expressed in the linear
spin-wave approximation as

—imx(0,0) = mer [ (VW — ) ~ NW)



> Imxaa(k — g,0' = w)Imxn(k, o), (43)
k

which follows directly from the Holstein-Primakoff representation.- o
_To study the spin wave spectrum including self-energy corrections let us consider
the static limit for ¢ — 0. For the self-energy’ matrix we can write )

C m TG 0) = ~A¢—-d . 4 . "'_ :
31_1'1(1)1_[(%0) = ( d; —B@* = d ) (44)
where . .. . . en - e R s - v
N | (¢ (a0 T
A= —lim 113} (2‘1, 0), B = -lim E"l"’(zq_’),dl - TH"'}"I(O’O)-‘:" .{45)
Ceoem0 gt =0 g

Here the-coefficient :" A, B; andd, " are positive since H(q, 0) < 0 in the second

order of the perturbation theory. As it follows from:Eqs. (44) and (45), the self-

energy corrections coming from the Hund’s coupling does not renormalize the spin_,

stiffness and gives input only into the gap. Hence the spin-wave spectrum in the
longwavelength limit can be written as ‘

‘ wé') ~ Dnlq2 '

where.the renormalized spin stiffness and the gap are given by

B (IR ) I
B (e AN — (b4 B)ar - e
,-,_1,3,2,_ 12(5)(a*)({S%) +(a2)) -

b Ao d=d)((S) +(07) .

L ASNe),

‘N‘ow we consider the damping for the acoustic spir{ wave mode given by the
imaginary parts of the self-energy matrix. For the damping induced by particlehole
excitations we get from Eq. (38) in the MF approximation for the single-electron .

Ve TR st
T 4 a 4 4 4 ;7 ‘
= 3 2 th(1 =) (1 = n%)[n(ef_,) — n(eD))6(w +ef_, — ) (48)
ko . . R . . .

The contribution, due to "tlie‘ﬁ,n,ite k-—iridep’endeﬁt gap in single-electron spectrum
in the ferromagnetic state disappears in the low frequency limit, I‘ﬁ)(q,w) = 0 for
w < ho(see Eq. (A.14)). o

The damping due to the antiferromagnetic, exchange interaction.given:by: the

imaginary part of the self-energy I1)(g,w), Eq. (41), gives a.small contribution: .-

proportional to ¢? in the longwavelength limit and can be disregarded due to small
antiferromagnetic exchange interaction J. T T

LW xAiDg T ()

The largest contribution to the damping of spin waves is given by the imaginary )
part of the self-energy due to the Hund coupling, Eq. (40):

2) ;lﬁ/.;md%(lw(w—wx)w(w,))

x 2 [Imxza(k — g,w — wy)Imx; (k,wr) + Imx (k — g,00 ~ w)ImxZ,(k,w)]. (49)
k

Ta(q,w) = —ImMy(q,w +16) = (

Here for the imaginary parts of the spin susceptibilities xu(k,w) and x2(k,w) we
will use their MF values in Eqgs. (28), (29) taking into account only the acoustic E(M
mode: : ; o

11 MF' z ﬂ:z_Egn)i » (1) Allg Y
- my;; (g,w) =~ 2(0 )mé(w— Eq )= Aq §(w —-E,), (50)

1. wr i _ g b |
—olmxg (g,w) = 2(5')13("2—)5'(,—,5@# EY) = AP(w-E,). (51) -
; ’ Aog Ly '

For the longitudinal spin susceptibilities in'(49) we will use Egs. (42),'.(43)‘.‘.

- After integration over w, we get the following result
» Ju\? = o
Th(q,w) = wIT _ 1 ( H) A2 _ 2
H(q w) (C ) 2S . 4N2 k%g“k-q(l E na)

XN (BiaIn(ef, )1 = n(ef, )o(w ~ Breg + €7, ¢5,)

It = :

w/T "JH

() mm A,
X N(EONE)L+N(Bn 6w = EY, + BYL, - By) . (52)

It describgs a spin wave damping due to its decay into an’ electron-hole pair and ’
another spin wave (the first term) and a three spin-wave scattering process (the
second term). The latter has a standard form for three magnon scattering (see, -
(31.2.20) in [21]). At low energy regime (w — 0) and at the léngwaveienght.limit
the. requirements for conservation of energy and momentum allow only small wave
'vectors and thus only small energies. Hence we can consider A} and A2 as k-
independent. ‘In the limit ¥ —'0 we obtain ’ >
5y___(o%) (57)
e vy O
In this approximation from the Eq. (52) follows that at.low energies, (w <« T'), the
damping has a linear w-dependence, ['/# (¢,w) ~ w, and does not depend explicitly
on the wave vector g. In the low temperature region, (w < T <« wp) where wp
is.the maximal acoustic spin-wave frequency, estimations for Tu(q,w)/w show
that the first contribution in Eq. (52) is proportional to (T/wo)(JE/N(er)vrks)
where N(er) is the density of state at the Fermi level and vg is the Fermi velocity,
ko ~.27/a and a is a lattice constant. The second lerm gives to the damping the
contribution proportional to (T/wo)(Ju/wo)? . To give more accurate estimations

for the spin-wave damping numerical studies should be performed which will be
considered elsewhere.

A =AY =20 AP ~ A =257



5 Conclusions

Chraemagl

In the present paper we have calculated dy'namicalv spin susceptibility for the gen--

eralized ferromagnetic Kondo model (1) by taking into account explicitly both the
strong Hund interaction. for the itinerant e, and localized t5, electrons and AFM
interaction between the tyy electrons.’ We consider the ferromagnetic phase and

therefore neglect a possible orbital ordering of the e, electrons. Strong electron cor--
relations between e, electrons are treated within the Hubbard operator techmque .

which is important in calculation of the single-electron GF for the itinerant electrons
We have, proved -that' even.in the MFA' described by the frequency ‘matrix,

Eq. (19), we get the acoustic spin-wave excitations, Eq. (24), due to coupling of' ’

the two modes with gaps for itinerant and locallzed electrons., The gapless’ mode
should appear in the model’ (1) with rotation symmetry for spin system. A gapless
mode in the limit Jy — oo, considered in Ref. [14], was obtained only by taking into
account self-energy corrections. In our case the self ‘energy corrections. calculated in
the self-consistent Born approximation, Egs. (32)-(34); resulted in ‘additional renor-

malization of the stiffness of the acoustic ferromagnetlc spin waves. The imaginary , .

parts of the self-energy gives the damping of spin waves. We have eva.luated.the most
important contribution due to Hund coupling in the second order, Eq (49), which
can be described as a three magnon scattering. The damping of acoustie spin waves
is proportional to the frequency for w «'T, Eq. (51), and should be small for small
wave vectors. To give numerical estimations one should. solve self-cansistently the
system of equations for the matrix spin susceptibility, Eq. (6), and the self-energy
functions, Eq. (37). Also the spectrum of single electron excitations, given in the
Appendix, should be evaluated to consider the itinerant electron contributions to
the spin waves, Eq. (36). These problems will be considered elsewhere. -
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Appe’ndix

" In this Appendix we e\}aluate the single-electron Green function defined as

o G(he) = (XEIXEN (a1),
with the correspondmg spectral function Af(w) = —(l/7r)Im G"(k w + 15) In the

site representatron the equation of miotion for led (k,w) reads as

((X(Jalxzo)) {X?a Xﬂo})+ IXSU!X;O))W." ) (A2) ,7:

Using the commutatron relatlons Eq. (4), we obtain

g IXO” - [XOU H] th [ XOO +Xaa)XOa +XaaX ]
T T

10

~75 [oSIX{ + 51x%] . (A3)
The next step is to define the irreduc‘ible‘ part 2% of the current operator ;X;Q? by
XY = Ee-’,XO” + ZP” ({Z?”,X;p}) =0. (A4)

The definition gives for the frequency matrlx

= ({sX{ ,X”°})/(1 -n’), (4.5)

where by usmg the completeness relatxon, Eq.(2), we write {X P,X "°}) &ii(1—
n%) with n? = (n ") By using equation of motion (A:3) we get - ’

(’{’ Xao}) =—t;((1 - na)(l - n; )) _.,tu(X.‘WXj”‘p)
N 4 G z J, 4
+EMXWH——ﬂMa—ﬂ%iinﬂ% (A.6)
‘In:the present paper we will 1ot include the se]f-energy correctlon coming from Z¥

‘term (A.4) and-treat the smgle-e]ectron GF within the lmea.r, MF type approxima-
tion. That results.in-the following form of the smgle-electron GF

is the spin-dependent energy shift of the spectrum. In the momentum space the

.spectrum is

& = ; e Mueg = & — 219y, (A.12)
where
tegs = (1= 2n") £ N 1/(1 - %), (A.13)

is.an effective bandwidth that is. narrowed:and spin dependent due to the spin and

charge correlations. - In the MFA in the ferromagnetic state we have a spin gap in
the single-electron.spectrum:

& — & ~ o(Ju/25)(5*) = oh. (A.14)

A

-

1 —n?
G (k
Gl (A7)
‘By.introducing the nearest nelghbor charge-spm correlation function
N =5 z:vk [(x2° X2 + (X2 xz%)]
=(X, "X."Ia) (X7 X) (4.8)
+..+We can rewrite the frequency matrix in, the form . U it
fj =c 6._., + Cu . (A.g)
where
€ = 4;5[(1 ~2n%) + N2 )/ (1 — n%) (A.10)
is'the one particle spectrum in the linear approximation, and
o_ Ju . (S’X”) ztnd
€ = 4S[(S)+ n5]+1_n6, (A.11)
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Mepkunc H.B., Inakuoa H.M. E17-98-391
CnuHoBas AWHaMHKa B 060611eHHOI (heppoMarHUTHOH MOMENH

Konno mnga MaHraHuToB

HpOBeIIeHO BHIUHCIEHHE THHAMH4EeCKOMH CMUHOBOM BOCNNPHHMYHUBOCTH B 0606-

HEHHOH MoOenu KOH,E[O, OIIHCHIBAIOILEH B3aHMOAEHCTBHE 30HHBIX 3JICKTPOHOB eg

TMNA C JIOK&IM3OBAHHBIMM 3NEKTPOHAaMH, Iy, THNA, CBA3aHHBIMH aHTH(eppo-
MarHHTHHIM 06MeHOM. TToKa3aHo, YTO CIHH-BOMHOBOM CIEKTP CHCTEMH B (eppo-
MarHuTHOW (pase B NPHOMMKEHHH CPENHEro, Mojs HMEET aKyCTHYECKYIO
U ONTHYECKYIO BeTBH. PaccunTaHbl COOCTBEHHO-HEPreTHYECKHE MOMPABKH K CIIEK-
TPY M OLIEHEHO 3aTyXaHHe aKyCTHYECKHX MarHoHOB.

Pa6ora BrinonteHa B JlaGopartopuu teoperuyeckoit ¢usnkn um. H.H.boromo-
6osa OHSIH.

Mpenpunt OGbeARHEHHOTO HHCTHTYTA SAEPHBIX HcciedoBanui. [lyOua, 1998

Perkins N.B., Plakida N.M. E17-98-391
Spin Dynamics in the Generalized Ferromagnetic Kondo Model

for Manganites

Dynamical spin susceptibility is calculated for the generalized ferromagnetic
Kondo model which describes itinerant e, electrons interacting with localized the

electrons with antiferromagnetic coupling. The calculations done in the mean field
approximation show that the spin-wave spectrum of the system in ferromagnetic
state has two branches, acoustic and optic ones. Self-energy corrections
to the spectrum are considered and the acoustic spin-wave damping is evaluated.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1998




