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INTRODUCTION 

Investigation of nonlinear properties of mag~et crystals attracts a great atten­
tion in the past decades [1 -.10]. Mainly, this interest has been initiated both by 
rapid development of the theory of nonlinear differential equations (such branches 
as inverse scattering method, algebraic and geometrical methods of integrating, nu­
merical experiments and so on), new experimental data, and the possibility of their 
wide application in the different branches of applied science and technology. 

It should be mentioned that the most popular model used in the investigations of 
nonlinear particle - like excitations in magnets is the model introduced by Landau 
and Lifshitz [9]. The Landau - Lifshitz equation (LLE) could be written, in particular 
isotropic case, in the following form 

ihS1 = ½ [S, S.,.,], (1) 

where we introduce 

( 
s• s- ) - _ 

s = s+ -s• = s . a ' (2) 

--+ 
here S = (S"', SY, S') is the ve~tor of magnetization s± = S"' ± iSY are the cor-
responding value of the projection of the classical spin vector, or exactly, of the 

magnetization vector (i.e. we allow that S = M), 

- ( 0 1 ) - ( 0 -i ) - ( 1 0 ) a.,= 1 0 ,ay= i 0 ,a,= o_ -1 

are Pauli operators, and the brackets[ ... ] ({ ... })correspond to (anti)commutator. 
This equation (1) give us the macroscopic description of magnetization dynamics 

in ferromagnets and represents the equation of motion of t_h~ magnetization vector 
in non - dissipative media. 

On the other hand, it is well known, that in the microscopic level the most popular 
models for description of magnetic properties of a crystal are the spin models of 
Heisenberg - Frenkel magnet · 

- """' --+--+ H = - L..,, J;k sis k, (3) 
i,k 

--+ 
where J;k are exchange integrals, Si are the spin operators of the atom in the j- th 
site. 

The problem of the correspondence between classical and quantum concepts and 
the transition procedure from quantum - mechanical description of ferromagnet 
(3) to the description on the classical, macroscopic level (1) is not trivial. This 
problems has been discussed by many authors ( see for example, [1] and the papers 



cited there). At the same time, the presence in the spin Hamiltonian (3) of such 
physical parameters as exchange integrals, constants of anisotropy, values of atom 
spin and so on, makes more favorable to investigate magnets starting from quantum 
- mechanical Hamiltonian (3). The present study is devoted to investigation of the 
particle - like (localized) excitation in magnets describing by the soliton solutions of 
nonlinear.differential equations. Namely the presence of particle - like excitations 
in spin systems can explain a number of peculiarities of the slow neutron scattering 
on magnets, dynamic structure form factors and so on [10 - 12] in the presence of 
interaction of spin subsystem with phonon one. 

The derivation of the equation of motion of the magnetization vector (or, "the 
vector of classical spin"), starting froi;n microscopical description is not trivial. Con­
cerning the formal procedure of transition from spin Hamiltonian (3) to the qua­
siclassical description it should be noted, that this procedure could be based, for 
example, on the bozonization of spin Hamiltonian (by use of Holstein - Primakoff 
transformation [13, 14] or other [13]) and after that the obtained bozonized Hamil­
tonian should be averaged using the Glauber coherent states [4, 6]. As the result 
of carrying out of the above mentioned procedure we obtain a classical Hamiltonian 
of the model. As it was shown in the paper [6] this approach is permissible (and 
correct) for the magnets with sufficiently large values of spins (S » 1, or for 6S » 1 
[14], {J is the constant of anisotropy). It should be noted that in this approach the 
appearance of nonphysical degrees of freedom due to the truncation of the infinite 
expanding series could lead to uncontrollable mistake [6]. 

In the case of magnets with the spin value S = 1/2, and also for magnets with 
the spin value S > 1/2 in the presence of exchange anisotropy only (i.e. when the 
multipole spin dynamics is frozen), direct use of the generalized coherent states which 
is constructed on the operators of SU(2) group becomes possible. In this case it is not 
necessary to carry out the bozonization procedure of the spin Hamiltonian, because 
both the Hamiltonian and the coherent state are constructed on the operators of the 
same gi-oup. Also it should be mentioned, that in the case of 'magnets with the spin 
value S = 1/2, the correct use of exact Wigner - Seitz transformation allow us to 
write the Hamiltonian (3) in terms of Fermi operators and then using the transition 
procedure we obtain generalized nonlinear Schroedinger equation for the probability 
amplitudes of the spin excitations [11]. 

Inv~stigation of the magnets with the spin values S ~ 1 taking into consideration 
the single-ion and some other types of anisotropy in the spin Hamiltonian (3) is 
·more complicated due to the exciting of the multipole spin dynamics. In this case 
number of quasiclassical parameters required for the full macroscopic description of 
magnet grows up to 4S, and the procedure of derivation of the equation of classical 
spin and multipole dynamics should be based on the generalized coherent states 
constructed on operators of SU(2S + 1) group (see details in papers [6, 7, 15]). 

In the present paper the spin - phonon interaction in quasi - one - dimen­
sional magnet crystals with the spin value S = 1/2 is investigated in the scope of 
the SU(2) generalized coherent states technique. As we have mentioned above this 
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investigation is correct.not only for the_magnets with the spin value S =:: 1/2,.but also 
for the magnets with the spin value S > 1/2 if we take jnto consideration exchange 
anisotropy only, neglecting single - ion - anisotropy, and for the case of magn~ts 
w~th spin value S » 1 [6 - 8], 

QUANTUM AND CLi'ssicAL MODELS_ OF MA.(;NETS 
WITH MAGNETOELASTIC INTERACTION. . 

Let us consider the model of the Heisenberg ferromagnet with single - axis 
anisotropy in the presence of oscillation of sites of the crystal lattice 

., 
·.ii= ii. +Hp, (4) 

where 
~ N{JD·(~+~-- ~·~+) ~~} 
H. = - L 2 s; s;+i + s; s;+i + JZSJSJ+i = 

J=l- . -

D - . ~ ~ : N {--- } 
=-J ;, S;S;+1+ti.SJSJ+1 ', (5) 

is the spin part of the Hamiltonian, 

Hp= t {:! + ~(Y;+i -y;)2} 
J=l 

(6) 

is the phonon part of the Hamiltonian. Here ti. = ( JZ - JD) / JD is. the constant of 
exchange anisotropy, m and p are the momentum and mass of the atom, correspond­
ingly, IY;+i - Y;I is the displacement of the.j- th atom from the equilibrium position, 
k is the elastic constant, j is the summation index. In the expression (6) we take 
into consideration the harmonic oscillations of the crystal lattice only.-

Let us pass over to the classical description. In order to make this we average 
ii. by use of the SU(2) generalized coherent states (GCS) [4, 5]. Let us remind that 
SU(2) GCS in complex parameterization has the form 

It) =III(;) = II (1 + 1e;12rk exp {(;St} lk, -k), (7) 
j j 

here k is the number of representation, (; is the parameter of quasiclassical descrip­
tion. Spin operators averaged by use of the SU(2) GCS get the following form 

st= s; =(st)= 1 :~~;
1
2,sJ = (s;) = ~ ~ :::::. (8) 

3 



Note, that the parameterization via more habitual angle variables is possible. In this 
case the values of the averaged spin operators have the form 

S = s(sinOcoscp,sinOsincp,cosO). (9) 

The relationship between the complex parameters l and the angle one O, cp is given 
by stereographycal projection 

l; =tan(~) exp {icp;}, (10) 

where the values of angle parameters are restricted as O :5 0 :5 7r and O :5 cp < 21r. By 
use of the vector (7) we carry out the averaging procedure of the spin Hamiltonian 
ii •. We have. 

H. = ( e I ii: I e) = 

= _ 2 ~ { 2J0 (e;e;;; + f;t;+i) + JZ (1 - 1e;l2) (1 - lt;+11 2
)} 

S L., 2 2) ' 
i=l . (1 + ll;I )(1 + ll;+il . 

and the Hamiltonian of the system takes the form 

H=(eliile) =H.+Hp. (11) 

In order to obtain continual limit of the Hamiltonian (11) we assume 
a). In the expansion of exchange integral JZ we take into account the linear 

terms only (we assume, that isotropic exchange integral do not depend on the lattice 
deformation, i.e. J0 = const) 

JZ = J3 + J3 IY;+i - Y;I, (12) 

b). In the expansion of l;+i we take into account terms no more than quadratic 
in a0 

a2 
l;+i = l; +aol;x + ; l;xx. + • •· 

Yi+t = Yi+ aoY;x + •·· 
Then rewriting Hamiltonian (11) in spherical variables we obtain 

H = -s2 t { ~o (SjS;-+1 + s;sj+l) + JZSJSJ+i} + Hp. 
J=l 

This Hamiltonian in the continual limit takes the form 

H = H, + Hp + H.p, 
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(13) 

(14) 

where 

H. = s2J 0;~ I!: [i ((s:)2 +(St/+ (s:)2) - 8(Sz)2], (14.a) 

2ojdx z2 H,p = -s J x -yx (S) , 
ao 

( 14.b) 

H = I dx (L ka~ 2) 
P 2 + 2 Yx ' ao m 

(14.c) 

here 8 = 2!::./a~ is the constant of single-axis anisotropy, 

JZ = J0 + iz' + J 3 IY;+1 - Y;I = J 3 + J 3 IY;+1 - Y;I = J 3 + xJ0 IY;+t - Y;I, 
ao 

and x = J3a0 / J0 ( 1 = 2x/ a~)is the dimensionless constant of spin-phonon interac­
tion. Note that in the expression (14) we neglect the constant terms 

-J0s2 N +I!: [-ayxJ3 
( aosz s: + ;~ sz s:x)] = const. 

Introducing Poison brackets in the following form (see (5]) 

I { 
8A 8B k 8A8B oA8B} 

{A, B} - -t:,;k 8Si 8SiS - op oy + 8y 8p dx, (15) 

·we derive the equation of dynamics of magnetization vector coupled with the lattice 
(chain) oscillations 

8H 
;,,s) = {H,s1

} = -t:;1k
85

;sk, 

8H p 
Yi=--=--, 

8p m 

8H 2 2 o [ z 2] Pt = 6y = ka0Yxx - XS J (S ) xx 

or, rewriting this system of equations in the matrix form we obtain 

'"S 2J0a~ [S s l 2 o(t::. + xu) [S ~zl {S ~} tn t + S 2 , xx + S J 
2 

, <J' , Uz = 0, 

here we put u = Yx, 

ka2 s2Jo 
Utt - _oUxx + x-- [(Sz)2] = 0 
. m m. xx ' 

( 
sz s- ) 

s = s+ -sz , 
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(16.b) 



and brackets[ ... , ... ]({ ... , ... }) correspond to (anti)commutator. 
After simple scale transformation 

x' = bx, t' = at 

where 

b2 = kfi2, 2,a;, ~, 
ma~(s2J0 ) ms2J0 

we obtain the following system of equations• 

where 

iSt + ~ [S, Sxx] + G(~ ~ xu) [S, o'z]{S,o'z} = 0,, 

Utt - Uxx + A {(sz)2Lx = o, 

G = (s2Jo.)2 
' Won ' 

Wo= {k y~, 

A•= s2JO 
ka2 • 

0 

MODELS WITH PHONON UNHARMONICITY 

(17.a) 

(17.b) 

Let us now take into consideration terms of higher order in the expansion of 
potential energy of interaction between the atoms of the crystal lattice (chain). The 
energy of lattice oscillations takes the form 

where 

N p~ , 
Hp= E-2'· +u, 

j=l m 

N 

u = L cp (Y;+1 - Y;). 
j=l 

(18.a) 

(18.a) 

After making the corresponding transition procedure as above, we obtain the system 
of coupled Landau - Lifshitz and Boussinesq equations describing nonlinear spin 
excitations accompanied with the nonlinear sound mode propagating in ferromagnet 

iliSt + s 2 J0 a; [S,Sxx] + s 2J 0 (~ ~ xu) [S,o'z]{S,o'z} = 0, 
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where 

2 2 2 s2 JO z 2 
Utt - v,Uxx -A (u tx - aoBUxxxx + x--;;- [(S ) Lx = 0, 

A - ! 111 (0) 3 
- 2cp ao, 

2 
B- v, 

- 2 1 

v2 = cp" (0) a~ = ka~ 
• m m 

is the sound velocity, k is the constant of elasticity. This system of equations after 

scale transformation can be written as 

iSt + ~ [S, Bxx]_+ G(~ ~ xu) [S, D'z] {S, D'z} = 0, (19.a) 

Utt - Uxx - a (u2tx - fiuxxxx + XA [(sz)2Lx (19.b) 

where 

m 1i2B 
a= kal' f3 = a~ (s2J0)2 

Let us consider now multisublattice model consisting of p sublattices of ferromag­
net type and q sublattices of antiferromagnet type (M = p+q). Interaction between 
the sublattices is defined by the phonon subsystem. This model can be written in 

the form M 

ii= Eii,; + Hp, (20) 

j=l 

where 
N 

- """' { 0 (- - - - ) - - } H,; = - L, l; s;;sii+t + S1f S1f;+1 + J[ SJ;SJ;+1 
i=l 

and Hp is defined by the formulae (18). Carrying out the procedure as above, we 
get in long wave limit approximation the following system of equations of spin -

phonon interaction 

·s 1 [S S ] G (~; + x;u) [S - ] {S - } i jt+
2 

j, jxx + j 
2 

j,<1z j,<1z =0, (21.a) 

Utt - Uxx - a (u2 )xx - f3uxxxx + (txk.\k(Sz)2 + t X~.\k(Sz)2) = 0, (21.b) 
k=1 k=p+1 xx 
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here 
Ji, = Jf + x~Jo IY;+i - Yi I 

ao 

and x~ is the dimensionless constant of interaction of the antiferromagnet subsystem 
with the phonon one. 

Now let us take into consideration exchange interaction between the ferromagnet 
and the antiferromagnet sublattices 

M N 

~ "" ~~ H;n1 = - L..,, L..,, h;S1;S,:;, 
k,j=l i=l 

(22) 

where h; is the integral of exchange between k- th and j- th sublattices and the 
Hamiltonian of the model is 

M 

ii = L ii.; + H;nt + Hp 
j=l 

where ii.; is defined by eq.(20) and Hp is determined by eq.(18). In this.case the 
system of coupled Landau - Lifshitz and Boussinesq equations takes the form 

. 1 
zS;t + 2 [S;,Sjxx] + 

+G; [S;,az] (x;u{S;,az} + t·D.k;{Sk,az} + t D.~;{Sk,az}) = 0, (23.a) 
k=l k=p+l 

( 

P . M ) 
Utt - Uxx - a ( u2tx - ,Buxxxx + L Xk>.k(Sk)2 + L x~>.k (sn2 = o, (23.b) 

k=l k=p+l xx 

here 
I). [I;k + D;k (I;;+ J3 - J;°)] 

kj = .. ,. JO , 

and for the antiferromagnet sublattice the same expression for D.~; has been intro-

.d d d S ( SJ s; ) . . . _uce , an ; .= S; -SJ 1s magnetizat10n vector. 

Below we discuss some limit cases of the system of equations (23). 
1). Quasistationary limit v « 1,u11 « Uxx· 
In order to simplify our consideration we put a= ,8 = 0, then the eq.(23.b) give 

us 
P M 

u(x,t) = L>.k [(SD2 
- 1] + L x~>.k [(SD2 

- 1]. (24) 
k=l k=p+l 

8 

Here the constants of integration defined by·the boundary conditions 

(S,: (±oo, t))2 = 1, u (±oo, t) = 0. 

Substituting eq.(24) to eq.(23.a) we get 

1 
S;t + 2 [~;, S;xx] + 

+x;G; [S;, ii.[ ( (t. x,A, [(S:l' - 1] + ,t, x(A, [( S,l' - 1]) { s,, ii.)+ 

+G; [S;, D'z] (t D.kj {Sk, o'z} + t /).~j {Sk, az}) = 0. (25) 
k=l k=p+l 

In the simplest case M = p = 1, q = 0 from eq.(25) we have 

iS1 + ½ [S,Sxx] + % [x2>. [(sn2 - 1] + D.] [S,az] {S,az} = 0, (26) 

here S = S1. 
Note, that the Hamiltonian of this equation is defined by the expression 

H = s2Joj dx [a~ (S:)2 + [x2s2J20 - !).] (Sz)2 - X2s2J20 (Sz)4] · 
a0 2 ka0 ka0 

(27) 

2). Nearsonic limit v ~ 1. 
In this case using the standard procedure 

8;- a;~ -2(81 + Bx)Bx 

we can replace this operator in the equation (23.b). Integrating this equation with 
vanishing boundary condition we obtain 

Ut + Ux + i (u2t + ~Uxxxx - ½ (t XkAk (Sk)
2 

+ t X~Ak (S:}
2

) = 0. (28) 
k=l k=p+I X 

In the harmonic phonon approximation the constants a = ,8 = 0 and this equation 

can be written in the form 

Ut + Ux - ½ (t XkAk (SD
2 + t xPk (SD

2
) = 0. 

k=I k=p+I X 

(29) 

3). Small amplitude approximation. 
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In this case we assume, that deviatio~s of classical spin vector from the equi­
librium position { classical vacua) is sufficiently small IS+ 12 « 1. We introduce the 
function 'Pi (x, t) = Sf (x, t), so l'Pil

2 « 1, then SJ= 1- ½ l'Pil 2
• Substituting this 

relation to eq.(23) we derive 

where 

icpt - 'Pxx + 2xGucp + 21:!.Gcp - !:!.G (cpcp) cp = 0 

Utt - Uxx - Q (u2tx - /Juxxxx + 2x). (cpcp)xx = 0, 

C{! = (cp1,••·,'P:W)t,!:!. = (!:!.1,•••,!:!.p,~~+1···!:!,.'.w), 

X = (X1,•••,Xp,X~+1···X'.w), 

P M 

<pep= L l'Pkl
2 + L l'Pkl

2
, 

k=l k=p+l 

P M 

l:!.j = L!:!.ki + L !:!.~i• 
k=l k=p+l 

We have obtained the system {30) neglecting the following terms 

2 1 2 . 2 . 

'Pi l'Pi lxx + 2'Pjxx l'Pi I + XU Jcpi I 'Pi 

as a terms of higher order of nonlinearity. 
In harmonic approximation a = fJ = 0, and from eq.{30) we derive 

icpt - 'Pxx + 2xGucp + 21:!.Gcp - !:!.G (cpcp) cp = 0 

Utt - Uxx + 2x>. (cpcp)xx = 0. 

{30.a) 

(30.b) 

{31.a) 

(31.b) 

Note the most remarkable case, which is the nearsonic limit v ~ l that reduces 
eq.(31) to nonlinear Schroedinger equation with Yajima - Oikawa potential (see 
[16]) (M = 1) 

i<pt - 'Pxx + 2xGucp + 21:!.Gcp - !:!.G Jcpl 2 
<p = 0, (32.a) 

Ut + Ux + x>. (lcpl
2tx = 0. (32.b) 

Here we take into account relation 

a?- a;~ -2(8t + 8x)8x. 

It should be mentioned, that the regular method of constructing of multisoliton 
solutions of eq.(23) is prpposed in ref. [17]. 
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DOMAIN-WALL AND SOLITON-LIKE SOLUTIONS 

In order to derive and investigate soliton solutions of the obtained nonlinear 
quasiclassical models it is convenient to pass over the angle variables for the classical 
spin (magnetization) vector. Then the Hamiltonian averaged by use of SU(2) GCS 
in the continual limit takes the following form 

H = H. + H.P + Hp, (33) 

where 

H. = 8 2
J0 /!: [ ;5 (tY- f:!.(S

2

)

2
] (33.a) 

is the spin part of Hamiltonian, ( ti is the constant of exchange anisotropy), 

H == J dx (L a5k 2) 
P 2 + 2 Yx ao m 

(33.b) 

is the phonon part of Hamiltonian, and 

2 J dx ( z)2 H.P = -s Jox -yx S 
ao 

(33.c) 

is the Hamiltonian of spin - phonon interaction. 
In terms of angle variables the magnetization vector ( classical spin) is 

-S = s(sin 0 cos cp, sin 0 sin cp, cos 0). (34) 

Let us remind that the Hamiltonian equation of motion obtained for SU(2) GCS in 
ref. [5] by path integral method, have the following form 

1 liH 
n<pt = - sin0 Tri' 

1 liH 
n0t=-=--0~, 

sm vcp 

and supplementing this equations by obvious equations 

liH p 
Yt =-- =--, 

lip m 

liH 
Pt=-

liy 

(35.a) 

(35.b) 

(35.c) . 

(35.d) 

we obtain the full set of classical equations of motion. Using the equations (35) and 
the Hamiltonian density 

2 { a5 2 • 2 2 } P
2 a5k 2 h = s J0 2 (0., + sm0cp.,) - [!:!. + XYx] cos 0 + 

2
m + 2 Y.,, (36) 
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derived from eq.(33) we obtain the following system of equations of spin - phonon 

dynamics 

a~Oxx - [a~<p; + 2 [~ + xul] sin 0 cos 0 + J,1i 2 sin O<pt = 0, 
oS 

a~ ( sin2 O<px) - J,1i 
2 

sin 00t = 0, 
x os 

(37.a) 

(37.b) 

ka~ s
2

Jo ( 2 ) Utt - -Uxx - x-- COS 0 = 0. (37.c) 
m m xx 

In (37.c) we introduce the designation u = Yx· It should be mentioned that in 
order to obtain solution with physical sense of the system (37) we assume that the 
boundary co~ditions for O(x, t) and <p(x, t) are defined by the minima of the classical 
Hamiltonian (33) of easy - axis magnet ( {j > 0) (i.e. by the classical vacua of the 

system) 
0 = 0,1r,x-+ ±oo. (38) 

In order to simplify the system (37) it is convenient to use dimensionless variables 

z = bx,T = at, 

where 
b2 = k1i2 2' a = __!!:___ 

ma5 (s2J 0 ) ms2Jo 

Then we can rewrite eq. (37) in the form 

Bzz - [<p~ + 2 (::;) 
2 

{~ + xu}] sin0cos0 + si~Ocp,. = 0, 

( sin2 O<pz t - sin 00,. = 0, 

s2Jo ( 2 ) u,.,. - Uzz - X ka2 COS 0 zz = 0, 
. 0 

here 

Wo= ff. 
We shall obtain the soliton solution of system ( 41) in the following form 

0 (z - vr), u = u (z - vr), cp = t/,> (z - vr) + wr, 

and with the boundary condition ( easy - axis magnet) 

0 = O(z,r) lz(x)-±oo= 0,1r, 

12 

(39) 

( 40) 

( 41.a) 

(41.b) 

( 41.c) 

(42) 

(43) 

l 

'4 

we derive 

Bee - [<p~ + 2 (:; r {~ + xu}] sin0cos0 + {-vt/->e + n}sin0 = 0, 

• (sin2 0rpe)e+vsin00e=O, 

( 
2 ) s

2 
Jo ( 2 ) 

v - 1 . uee + x ka5 cos 0 ee = 0 . 

(44.a) 

( 44.b) 

(44.c) 

Note that in the case x = 0 the system (44) reduces to the system of equation 
(8.10), (8.16) (see [l]). Integrating the equation (44.c) taking into account boundary 
condition ( 43) and 

we obtain 

or 

·u = o,e-+ ±oo, 

s2Jo sin2 0 
u = X ka5 v2 - 1 ' 

( 45) 

(46) 

s2 Jo sin2 0 
u = x-k 2 -2--2· (47) 

a0 v - v, 

Here v is the velocity of the magnetic soliton in the system with spin - phonon 
interaction. Sound velocity in our designation ( 40) is 

ff· v, = ao = 1 (48) 

and 

Wo =ff• . m (49) 

Thus in the case v = v, solution (46) becomes singular. This singularity we define 
as magnet- acoustic resonance, which means that in the case of motion of magnetic 
soliton with nearsonic velocities the pumping of energy of magnetic soliton to the 
phonon subsystem takes place in the system. 

We can integrate the second eq~ation of the system (44) 

(sin2 0t/->e - vcosO)e = 0 · 

if we take into account boundary conditions 

dt/-> 
( -+ ±oo, d( < 0, 0 = 0. 

Then we derive the following relation 

V 1 
t/-> ----e - 2 cos2 0 /2 · 

13 

(50) 

(51) 

(52) 



The boundary conditions (51) correspond to nonlinear excitation of bell -- soliton 

types. 
Substituting relationships (52) and ( 46) into ( 44.a) we obtain 

here 

(Dee+ sin~ {: cos-
3 
(~) + wcos (~) }-

[ 

2 a1a2 . 2 (0) 2 (O)] . (0) (0) - a1L\ - 4x 
1 

_ v
2 

sm 2 cos 2 sm 2 cos 2 cos O = 0, 

( 

2J, )2 
a1 = 2 ~ = 2G, 

woli, 

s2Jo 
a2 = -k 2 = >.. 

ao 

First integrating of eq.(53) with boundary conditions (51) gives 

(0) 2 v 2 
2 0 2 0 . 2 0 . 2 0 2 4 0 . 4 0 - = --tan -+a1L\cos -sm --wsm -+2x Acos -sm -

2 e 4 2 2 2 2 · 2 2' 

where A= a1a2 

1- v2 • 

Integrating equation (56) we obtain the elliptic integral of the following form 

1 / ydy e e - , 
- o-2 (y-1)J-~y4-wy3+a1L\y2+2x2A(y-l) 

where 0 
y = tan2 

2 + 1. 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

Integral in the eq.(58) can be expressed through the elliptic integral of Weierstrasse 
of I and III types and then the numerical calculations must be done. However we 
can consider some limit cases of solution of the system (41), which can be expressed 

by the elementary function. 
a). Let us consider magnetic solitons moving with velocity v, v

2 ~ v;, (v, = 1). 
Then x 2 A -+ 0 and assuming x 2 A = 0 (i.e. magnetic solitons do not feel the 

deformation of lattice), we have the solution 

0 2 
tan2 - - µ 

2 - ncosh2 µl - [n - n1] /2' 
(60.a) 
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where l = z - vr,µ = Ja1 L\ -w - (¥) 2
, and n = Jni + 41 2 (v/2)2 is the param­

eter, that in laboratory frame of reference performs the dimensionless frequency of 
precession of magnetic moment in nonlinear spin wave with the parameters v and 
w, and n 1 = w + (v/2)2 defines the dimensionless frequency of the precession of 
magnetic moment in the soliton with the same parameters v and w in the laboratory 
frame of reference. Integrating eq.(52) and taking into account (60.a) and (42) we 
obtain 

v [Jn - n1 ] c.p = WT - 2e + arctann + n1 tanh ,e . (60.b) 

The solution (60.a,b) taking into account our designation (39) completely coincides 
with the solution obtained in ref.[l]. Solution for the deformation wave accompanying 
magnetic soliton we get from eq.( 46) using the solution (60.a- b) 

s 2 J0 4µ 2 
· n cosh2 µl - [n - n1] /2 

u = 4x kai 1 - v2 { n cosh2 µl - (n - n1] /2 + µ }' . 
(60.c) 

b). In the case of the magnet solitons moving with the velocity v2 ~ v; as in 
(57) we have A -+ 0 and assuming A= 0 we have solution (60). 

Thus both the supers~mic magnetic solitons and· the solitons, moving with the 
velocities less than velocity of sound do not feel the lattice deformation 

c). Let us consider solutions of the system of equatio~ ( 44) in the small amplitude 
spin deviations approximation. We rewrite the eq.(58) as 

l - ea= ! J (x + 1) dx ' (61) 
2 

xJ-~ (x + 1)
4 

-_w (x + 1)
3 

+ a1L\ (x + 1)
2 

+ 2x2Ax 

where 
0 

X = tan2 

2 
and assuming that the deviation of the classical spin from the equilibrium position 
(i. e: from the ground states of the classical model) is sufficiently small O ~ 1, 
we take into account in eq.(61) terms CJ(x2

) and neglect the terms of higher order. 
Then the eq.(61) can be reduced to the following sum of integrals, which can be 
easily integrated 

where 

· 1 [J· dx . ·! dx ] e - ea = 2 v'R + x,/R ' 

R = a + bx + cx2
, 

2 . v2 
a = µ = a1~ - w - -, 

4 
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(62) 



b = 2x2 A + 2a1 tJ. - 3w - v2
, 

3v2 

c = a1!J. - 3w - -. 
2 

Integrating the eq. (62) we obtain the solution in the following form 

· 2 . · 2cx + b 2 . 2µ2 + bx 
( - fo = r,. arcslllh rn - - arcslllh rn , 

ye vD µ xvD 
(63) 

where D = J4µ 2c- b2. 
· Finally let us find the domain - wall type solutions of the system (44). We put 

cp ~ ~o = const, 

and find the solution ofeq.(44.a) in the following form 

0 = 0 ((), ( = Z - VT 

Substituting eq.(64) to the equation ( 44.a) we derive 

Bee - a1 [!J. + xu] sin() cos() = 0. 

(64) 

(65) 

Integrating eq.(65) with the vanishing boundary conditions (we consider the easy 
- axis model) leads us to the following expression 

()2 A.2 0 2r.4 0 0 e - a1u Sill - X 2 Sill = . 

Solution of this equation can be expressed trough the integrals 

where 

J dx Jdx 
2 (( - fo) = xv'R + v'R' 

s 2Jo 1 
I'=-k 2-2--1, 

a0 v -

R .= a + bx + cx2
, 

a= c = a1!J., 

b = 2 (a1!J. + x 2r), 
() 

x = tan2 

2. 
One can easily integrate eq. (67) and get the sol~tion in tlie following form 

2ya-(( - fo) = In Ix 2v'aR + 2a (x + 1) +12x
2

r I· 
2v'aR + 2a (x + 1) + 2x2fx 
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(66) 

(67) 

(68) 

It is obvious, that in the case x 2 = 0 the solution (68) takes the form of well -
known domain wall 

o = 2 arctan exp { va ( e - lo)} . (69) 

If we put x2 ~ 1 expanding the solution {68) we obtain the domain wall type soluticm 
in the following form 

2 () 1 • 
tan 2 ~ 1- x2r exp {2va{(-(o)}. (70) 

CONCLUSION 

Thus, in this paper we show, that magnetic solitons in.deformable crystal lattice 
is accompanied by the deforJl?.ation wave. In the case of motion of the magnetic 
soliton with the near - sonic velocities the effect of resonance due to the interaction 
of spin subsystem with the phonon one takes place in the system. We define this 
phenomenon as magnet - acoustic resonance, and here the energy pumping from 
the magnetic soliton to the deformation wave takes place. At the same time the 
linear approximation for the sound equation used to derive solutions (60) and (61) 
is doubtfully based. Neglected nonlinear terms could play a leading role in the case 
of near - sonic velocities. This fact can be amplified also by the requirement to 
take into consideration effects of dissipation of the energy of magnetic soliton. More 
realistic model should take into account also the presence of two additional transver­
.sal sound modes, and, consequently, the possibility of resonance by interaction of 
magnetic soliton with transversal waves. 
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