


INTRODUCTION

Investigation of nonlinear properties of magnet crystals attracts a great atten-
tion in the past decades [1 —.10]. Mainly, this interest has been initiated both by
rapid development of the theory of nonlinear differential equations (such branches
as inverse scattering method, algebraic and geometrical methods of integrating, nu-
merical experiments and so on), new experimental data, and the possibility of their
wide application in the different branches of applied science and technology.

It should be mentioned that the most popular model used in the investigations of
nonlinear particle - like excitations in magnets is the model introduced by Landau
and Lifshitz [9]. The Landau - Lifshitz equatlon (LLE) could be written, in particular
isotropic case, in the following form

ihs, = %[S,s,,], (1)
where we introduce g s .
2 - —
S=<S+ __Sz)zs'?7 | (2)

here § = (8°,5¢,5%) is the vector of magnetization §* = 5% +15Y are the cor-
responding value of the projection of the classical spin vector, or exactly, of the

—
magnetization vector (i.e. we allow that S=M )s

- 01y o _ 0 i\ .~ (1 0
=10 i 0 )% T o -1

are Pauli operators, and the brackets [...] ( {...} ) correspond to (anti)commutator.
This equation (1) give us the macroscopic descrlptloﬁ of magnetization dynamics
in ferromagnets and represents the equation of motion of the magnetization vector
in non — dissipative media. .
On the other hand, it is well known that in the microscopic Jevel the most popular
models for descrlptlon of magnetic properties of a crystal are the spin models of
Heisenberg — Frenkel magnet '

B=-Y 57535, @)
. i,k :

—

where Ji are exchange integrals, S are the spin operators of the atom in the j- th
site. -

The problem of the correspondence between classical and quantum concepts and
the transition procedure from quantum — mechanical description of ferromagnet
(3) to the description on the classical, macroscopic level (1) is not trivial. This
problems has been discussed by many authors ( see for example, [1] and the papers
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cited there). At the same time, the presence in the spin Hamiltonian (3) of such
physical parameters as exchange integrals, constants of anisotropy, values of atom
spin and so on, makes more favorable to investigate magnets starting from quantum
— mechanical Hamiltonian (3). The present study is devoted to investigation of the
particle — like (localized) excitation in magnets describing by the soliton solutions of
nonlinea.r‘diffe’rentia.l equations. Namely the presence of particle — like excitations
in spin systems can explain'a number of peculiarities of the slow neutron scattering
on magnets, dynamic structure form factors and 50 on [10 — 12] in the presence of
interaction of spin subsystem with phonon one.

The derivation of the equation of motion of the magnetization vector (or, ”the
vector of classical spin”), starting from microscopical description is not trivial. Con-
cerning the formal procedure of transition from spin Hamiltonian (3) to the qua-
siclassical description it should be noted, that this procedure could be based, for
example, on the bozonization of spin Hamiltonian (by use of Holstein — Primakoff
transformation {13, 14] or other [13]) and after that the obtained bozonized Hamil-
tonian should be averaged using the Glauber coherent states [4, 6]. As'the result
of carrying out of the above mentioned procedure we obtain a classical Hamiltonian
of the model. As it was shown in the paper (6] this approach is permissible (and
correct) for the magnets with sufficiently large values of spins (S > 1, or for 65 > 1
[14], 6 is the constant of anisotropy). It should be noted that in this approach the
appearance of nonphysical degrees of freedom due to the truncation of the infinite
expanding series could lead to uncontrollable mistake [6)].

In the case of magnets with the spin value S = 1/2, and also for magnets with
the spin value S > 1/2 in the presence of exchange anisotropy only (i.e. when the
multipole spin dynamics is frozen), direct use of the generalized coherent states which
is constructed on the operators of SU(2) group becomes possible. In this case it is not
necessary to carry out the bozonization procedure of the spin Hamiltonian, because
both the Hamiltonian and the coherent state are constructed on the operators of - the
same group. Also it should be mentioned, that in the case of magnets with the spin
value S = 1/2, the correct use of exact Wigner — Seitz transformation allow us to
write the Ha.rniltonia.n (3) in terms of Fermi operators and then using the transition
procedure we obtain generalized nonlinear Schroedinger equation for the probablhty
amplitudes of the spin excitations [11].

Investigation of the magnets with the spin values § > 1 taking into consideration
the single—ion and some other types of anisotropy in the spin Hamiltonian (3) is
‘more complicated due to the exciting of the multipole spin dynamics. In this case
number of quasiclassical parameters required for the full macroscopic description of
magnet grows up to 45, and the procedure of derivation of the equation of classical
spin and multipole dynamics should be based on the generalized coherent states
constructed on operators of SU(2S + 1) group (see details in papers [6, 7, 15]).

In the present paper the spin — phonon interaction in quasi — one — dimen-
sional magnet crystals with the spin value § = 1/2 is investigated in the scope of
the SU(2) generalized coherent states technique. As we have mentioned above this
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investigation is correct not only for the magnets with the spin value § = l /2,.but also
for the magnets with the spin value § > 1/2 if we take into cons1derat10n exchange
anisotropy only, neglecting single — ion — anisotropy, and for the case of magnets
with spin value § > 1 [6 - 8].

QUANTUM AND CLASSICAL MODELS OF MAGNETS
WITH MAGNETOELASTIC INTERACTION

“Let us consider the model of the Heisenberg ferromagnet with single — axis
anisotropy in the presence of osc1lla.t10n of sites of the crystal la.ttlce :

T

B=BAH, @

where
N o~ o~ ~ -~
=—Z{2 (S;-SJ+1+SJ Sf+l)+‘] i .1+1}E
= . : A
= —JOZ { 5 3’,“ +AS ,+1} 7 (5)
= oo :

is the spin part of the Hamiltonian,

Hy = z{ .y,ﬂ—y,) { e ©)

is the phonon part of the Hamiltonian. Here A = (J* — J®) /J° 1s the constant of
exchange anisotropy, m and p are the momentum and mass of the atom, correspond-
ingly, |y;+1 — ;| is the displacement of the j- th atom from the equilibrium position,
k is the elastic constant, j is the summation index. In the expression (6) we take
into consideration'the harmonic oscillations of the crystal lattice only.

Let us pass over to the classical description. In order to make this we average
H, by use of the SU(2) generalized coherent states (GCS) [4, 5]. Let us remind that
SU(2) GCS in complex parameterization has the form

& = [TIe) =T (1 +16P) " exp {&:5] } 1k, ), (1)

here k is the number of representation, ¢; is the parameter of quasiclassical descrip-
tion. Spin operators averaged by use of the SU(2) GCS get the following form



Note, that the parameterization via more habitual angle variables is possible. In this
case the values of the averaged spin operators have the form

g = 5(sin @ cos ¢, sin 0 sin ¢, cos §). 9)
The relationship between the complex parameters € and the angle one 8, ¢ is given
by stereographycal projection

g =tan (3) exp livi}, | (10

where the values of angle parameters are restricted as 0 < § < 7 and 0 < ¢ < 27. By
use of the vector (7) we carry out the averaging procedure of the spin Hamiltonian

H,. We have |
¢) =

—32 i {2‘]0 (EJ€J+1 + EJ€J+1) + J* (1 - |£J| ) (1 - |EJ+1| ) }
(1 + |£Jl ) (1 + I£J+1I2) )

and the Hamiltonian of the system takes the form

H = (¢|H,

j=1

=<§’ﬁl§>=H,+Hp.‘ v 11)

In order to obtain continual limit of the Hamiltonian (11) we assume

a). In the expansion of exchange integral J* we take into account the linear
terms only (we assume, that isotropic exchange integral do not depend on the lattice
deformation, i.e. J® = const)

J* = I+ B lyin —uil, : (12)
b). In the expansion of {;;1 we take into account terms no more than quadratic
‘iIl agp !
a5
€J'+1 = €J + a0€j: + _2"6,)':: +
Yi1 = Y5 + aoyjz + ... ‘
Then rewriting Hamiltonian (11) in spherical variables we obtain
H=—5 Z{—(S+SJ"+1+S S+1)+J’S’S;+1}+H . (13)
j=1

This Hamiltonian in the continual limit takes the form

H=H,+H,+ Hy, (14)
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where

H, =s*J°2 20 Z— B ((S’) + (S”) +(Sz 2) 5(S%) ] : (14.a)
2 70 [ dz 22
Hyp=—5%J x/—yr G (14.)
ag
dz (p* . kal 2)
— &£, % 14.
Hy /ao (2m.+ g ¥z ) (14.)

here § = 2A /a2 is the constant of single-axis anisotropy,

J* =004+ T+ Py —ysl = P+ Plyg — il = J° + xJ°—-—|y"“ao_ vl

and x = J3ao/Jo (7 = 2x/ad)is the dimensionless constant of spin-phonon interac-
tion. Note that in the expression (14) we neglect the constant terms

_ 2
—J%?N + / & [—ay,.]3 (aoS’S: + %QS’S:I)] = const.
- ao

Introducing Poison brackets in the following form (see [5])

SASB ., 6ASB 6ASB
{4,B) = /{ 35S e h b 6p}dz, (15)

‘we derive the equation of dynamics of magnetization vector coupled with the lattice

(chain) oscillations

6H

hS, {H,S'}——e.zk-s—g;Sk,
SH_
= ép m’

§H
Pt = B = kadyzz — xs*J° [(S?) ]

or, rewriting this system of equations in the matrix form we obtain

2
S+ 02 S, S.a] + s2J°(—A—T2£‘—) (5,57]{S,5.) = 0, (16.0)
. Y., =0, O (16.5)
) B m
here we put u =y,
5% §-
5= ( §* - ) ’
5



and brackets [...,...]({..:,...}) correspond to (anti)commutator.
After simple scale transformation '

I"= bI, tl = at
where

s kR . kh

- ma? (s2J°)2”a = mstJo’

we obtain the following system of equations:

(A + xu)

‘ 1S¢ + %[S, SII] + G - 2 [S, 3,] {S’az} = 0,~ , (17a)
uy — vze + A [(S7)],, =0, I (Y2
where ~ : - Lt , 0~ )
stJ
G= (woh) .
( k
W = —_y
m
stJ°
=k_‘lg .

MODELS WITH PHONON UNHARMONICITY

Let us now take into consideration terms of higher order in the expansion of
potential energy of interaction between the atoms of the crystal lattice (chain). The
energy of lattice oscillations takes the form

N 2 e
g =N"Pig
Hy = ;'m +U, (18.a)
where
N - ‘
U= e@m—y) o (18.a)
Jj=1

After making the corresponding transition procedure as above, we obtain the system

of coupled Landau — Lifshitz and Boussinesq’equations describing nonlinear spin

excitations accompanied with the nonlinear sound mode propagating in ferromagnet
(A + xu)

.
ihS, + 52J°% [S, Szel + 82 I =52[8,57]{8,8:} = 0,

6

2 JO

[(5*)].. =0,

2 2 a2
Ut — VylUgr — A (u )rr aoBuzrrr + X m

where )
A =5¢"(0) a3,

v;
B=3,

" (0)af _ kag
m  m
is the sound velocity, k is the constant of elasticity. This system of equations after

scale transformation can be written as

8

A ~ ~
iso+ 115,50+ ¢ 5,3 (5,5.0 =0, (19.)
uy — Uge — e (u?)__— Buszzs + XA [(S’)z]" (19.5)
where
m kB
=M A= —= .
“ ka? 3 a3 (s2J0)*

Let us consider now multisublattice model consisting of p sublattices of ferromag-
net type and q sublattices of antiferromagnet type (M = p+¢). Interaction l?etwet?n
the sublattices is defined by the phonon subsystem. This model can be written in

the form y
A=Y H;+H, (20)
=1
where
N o o oy o ZAZ AZ
By = =3 {09 (8585 + 818%) + 9155 t )
i=1
and H, is defined by the formulae (18). Carrying out the procedure as above, we

get in long wave limit approximation the following system of equations of spin —
phonon interaction

A . N " )
St + %[5:', Sjzz] + Gj(——’—;w (S;,5:]{5;,0:} =0, (21.a)

P M
Uy — Ugr — & (U2)xx — ﬂuzzzz + (Z XkAk (52)2 + Z X;Ak (52)2) = 0, (21.b)
k=1 zT

k=p+1

7



here
J’: — JE + X;JO ij+1 - y.‘il

ao
and ) is the dimensionless constant of interaction of the antiferromagnet subsystem
with the phonon one.
Now let us take into consideration exchange 1ntera.ct10n between the ferromagnet
and the antiferromagnet sublattices -

Z Z 1;835%, (22)

,_1 =1 i=1

where Ii; is the integral of exchange between k- th and j- th sublattices and the
Hamiltonian of the model is

M A '
z mt+H

where ﬁ,j is defined by eq.(20) and H, is determined by eq.(18). In this.case the
system of coupled Landau — Lifshitz and Boussinesq equations takes the form

. 1.
1S5t + 5 (S5 Sieal +

e p M 4
+G;[S;,5.] (xju{sj,az}+ZAk,-{sk,a}+ > AL {Sk,az}> =0, (23.0)

k=1 k=p+1

. » . M
Ut — Uz — O (uz)ﬂ: - ﬂu::::x + (Z Xk/\k (S’f)2 + Z X;c/\k (S;)2> = 07 (23b)

k=1 k=p+1 .
here ’ o i
[T + 6ix (Lii + J° — D))
o A= ’
and for- the antiferromagnet sublattice the same expression for A}; has been intro-

S5z 57 . o
duced and S; = ( S+ —JS? ) 1s magnetization. vector.
Below we d1scuss some limit cases of the system of equations (23).
1): Quasistationary limit v €« 1, uy < ugs.
In order to simplify our consideration we put & = # = 0, then the eq.(23.b) give
us

u(z,t) =Y N [(S7) = 1] + Z X [(S5)? 1] - (24)
k=1

k=p+1

Here the constants of integration defined by the boundary conditions
(Si (+o00,1))* = 1,u(Fo0,t)=0.
Substituting eq.(24) to eq.(23.a) we get

Jt + [SJa SJII] +

4 M
+x;G; [sj,a,](<z xede [(SP =11+ D XA [(80)° - 1]) {S;,3:}+

k=1 k=p+1

P M
+GJ [Shaz] <Z A"j {Skyaz} + Z ALJ {Sk,az}> = 0. (25)

k=1 k=p+1

In the simplest case M = p =1, ¢ = 0 from eq.(25) we have
1S + [S Szz] + = [XZ/\ [(Sk) -1} + Al(S,5.1{S,5.} =0, (26)

here S = 5.
Note, that the Hamiltonian of this equation is deﬁned by the expression

H=J/d—[?(§’)+[ka ](S') ’”()} (27)

2). Nearsonic llmlt v~ 1.
In this case using the standard procedure

0 — 02~ —-2(0+0;)0:

we can replace this operator in the equation (23.b). Integrating this equation with
vanishing boundary condition we obtain

o B B o
U+ ur + '2"' (UZ)I + Euz‘x:z - <Z Xk/\k (Sk) + ;{_1 Xk/\k Sk ) =0. (28)

‘In the harmonic phonon approximation the constants o = B = 0 and this equation
can be written in the form

o .

1 (<& . .

up + Uz — 5 (Z XEAk (Si)2 + Z X;:/\k (Sk)z) =0. (29)
k=1 k=p+1 . T

3). Small amplitude approximation.



In this case we assume, that deviations of classical spin vector from the equi-
librium position (classical vacua) is sufficiently small |S+|2 & 1. We introduce the
function ; (z,t) = S7 (z,1), so l@j]* < 1, then Sf=1-3 lo;{®. Substituting this
relation to eq.(23) we derive

19s — Pzz + 2XGup + 2AG0 — AG (Bp)p =0 (30.a)

Uy — Uz — a (u)

where

= (#150m) s A = (A, s B, By Bly)
X = (xh---,xp, x§,+1---xM)

Pp= lel + Z loel”,

. k=pi1

A; ZAk1+ZA ..

k=p+1

We have obtamed the system (30) neglecting the followmg terms

1
©; I%I,, 5 Piss loo1? +xu I%I ©;

as a terms of higher order of nonlmearlty.
In harmonic approximation a = § = 0, and from eq.(30) we derive

101 — Yoz + 2XGup + 2AGp — AG ()9 =0 (31.q)

Ut — Uzg + 2X’\ (@), = 0. (31 b)

Note the most remarkable ca.se, whlch is the nearsonic limit v ~ 1 that reduces
€q.(31) to nonlinear Schroedinger equation with Yajima — Oikawa potential (see
ae) (=1 2

' 19 — Yrz + 2xGup + 2AGp - AG|p| ¢ = 0, (82.a)

ur+ uz + XA (o), = 0. - (32.b)

Here we take into account relation
0} — 82~ -2 (0: + 0.) O

It  should be mentioned, that the regular method of constructing of multisoliton
solutions of eq.(23) is proposed in ref. {17].

10

- ,Hu:c:c:cz + 2X/\ ("ra‘r’)u = 01 (30b)

DOMAIN-WALL AND SOLITON-LIKE SOLUTIONS

In order to derive and investigate soliton solutions of the obtained nonhnea.r
quasiclassical models it is convenient to pass over the angle variables for the classical
spin (magnetization) vector. Then the Hamiltonian averaged by use of SU(2) GCS
in the continual limit takes the following form

H=H,+H,+H, (33)

2, [do[ad (=)’ 2
H,=SJO -(%' E SI —A(S)

is the spm part of Hamlltoma.n (6is the constant of exchange anisotropy),

n-fE(Gg)

is the phonon part of Hamiltonian, and

d ~ .
H,, = —sthox / a—:y,(S’f  (33.)

where

(33.0)

is the Hamiltonian of spin — phonon interaction.
In terms of angle variables the magnetization vector (classical spin) is

. .
S = s(sin 6 cos ¢, sin @ sin p, cos 6). (34)

Let us remind that the Hamiltonian equation of motion obtained for SU(2) GCS in
ref. [5] by path integral method, have the following form

R = —ﬁ% (35.0)
ho, = ;ull_o%’ (35.5)
and supplementing this equations by obvious equations
y = _%I - _%, (35.c) -
P = %I;" , o : (35.8)

we obtain the full set of classical equations of motion. Using the equations (35) and
the Hamiltonian density

b= 520 { B (02 4 sinb?) - [A 29} 4 22| 90k 2 36
=s"b {5 +sinfp;} — [A + xy.] cos to -t g Yz (36)

11



derived from eq.(33) we obtain the following system of equations of spin — phonon

dynamics

R
a20,. — [adpl +2[A+ xu]] sinfcos§ + Toit sin B¢ = 0, (37.a)
2 (sin? 0 —h—'00—0 (37.5)
a? (sin® Op.) — Jos? sin 06, = 0, .
2 2
Uy — ﬁuu - xﬂ (cos2 0):: =0. (37.¢)
m m

In (37.c) we introduce the designation u = ys. It should be mentioned that in
order to obtain solution with physical sense of the system (37) we assume that the
boundary ‘conditions for 8(z,t) and ¢(z,t) are defined by the minima of the classical
Hamiltonian (33) of easy — axis magnet (6 > 0) (i.e. by the classical vacua of the

system)

§=0,7,z — Foo. (38)
In order to simplify the system (37) it is convenient to use dimensionless variables
z = bz, = at, (39)
where . : .
?= 5, 0= . (40)
ma? (s%Jo) ms2Jo
Then we can rewrite eq. (37) in the form
2 S2Jo 2 ’ . .
0., — |ys+2 — {A + xu}| sinfcos 0 +sinfp, =0, (41.a)
wo
(sin2 099,)1 —sinfd, =0, (41.0)
2
Upp — Ugzz — XS J;) (cos2 0) =0, (41.¢)
. kaO zz
here
. Wo =4[/ —-
_ m
" We shall obtain the soliton solution of system (41) in the following form
0(z—vr),u=u(z—vr),p=1(z—vr)+wr, (42)
and with the boundary condition (easy — axis magnet)
0= 0(2,7’)»‘2(,)_,:500: 0,7[', (43)
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we derive

0 2 s*Jo ? . :
ee — |9 +2 ok {A +'xu}| sinfcosd + {—vipe + N} sinf =0, (44.a)

. (sin? Op¢) + vsin 66 = 0, - (44.5)
2 s%J |
(v - (1)‘u“ + X—kﬁ (co's2 0)“ =0. » (44.c)

Note that in the case x = 0.the system (44) reduces to the systerﬁ of equation

(8.10), (8.16) (see [1]). Integrating the equation (44.c) taking i
condition (43) and q (44.c) taking into account boundary

u=0,6 — Foo, ‘ (45)
we obtain
kalv? -1’ (46)
or .
u'zxi.{g sin® 0 o
ka? v? — v?’ (47)

.Here v .is the velocity of the magnetic soliton in the system with spin - phonon
interaction. Sound velocity in our designation (40) is '

_ k- o
Vs == Qg ;:1 (48)

wo = 4[— - ) (49)
m .

and

Thus in the case v = v, solution (46) becomes singular. ‘This singularity we define

as .ma.gne.t- acoustic resonance, which means that in the case of motion of magnetic

soliton with nearsonic velocities the pumping of energy of magnetic soliton to thé

phonon subsystem takes place in the system: ‘
We can inj:egra.te the second equation of the system (44)

.2 . - . ‘ ‘ ; o
, (sin® Gyp¢ — v cos 0)6 =0 ] C o (50)
if we take into account boundary conditions | o
dp , .
E—):}:oo,?d?<0,0=0.l o (51)
Then we derive the following relation
v 1
Ve = " 2 cos? 6/2 (52)
13



The boundary conditions (51) correspond to nonlinear excitation of bell —- saliton

types.
Substituting relationships (52) and (46) into (44. a) we obtain

2 0 0
(g) + sing {vz_ cos™3 (5) + wcos (5) } -
134
. 0 0 A 0 _
- [alA - 4x2~19i—a3; sin? (5) cos? (5)] sin (5) cos (5) cosd =0, (53) »

here 2 2
S Jo
=2(222) =26, (54)
a) 2 ( woﬁ )
52.]0
=7 = A (55)

First integrating of eq.(53) with boundary conditions (51) gives

2 2 [/] [ ., 0 40 . 49
(g) :—E;—tan2§+a1Acos2—sm2§——wsm2§+2x2Acos —2-sm 2 (56)

2/ 2
where . ayas )
_ A= 1—v?
Integrating equation (56) we obtain the elliptic integral of the following form
E—to=y [ — uey . )
2J (y—1)y/-Syt—w +ady? + 2% A (Y — 1)
where ‘
y = tan® g + 1L (59)

Integral in the eq.(58) can 1 be expressed through the elliptic integral of Weierstrasse
of I and III types and then the numerical calculations must be done. However we
can consider some limit cases of solution of the system (41), which can be expressed
by the elementary function. . . _

a). Let us consider magnetic solitons moving with velocity v, v* < v, (v, = 1).
Then x4 — 0 and assuming x*A = 0 (i.e. magnetic solitons do not feel the
deformation of lattice), we have the solution

: . ‘
== a ) (60.a)
2 7 Qcosh? uf — [ — Q] /2

tan?
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where £ = z — v7,p = y/a A —w — (2)°, and Q = /02 + 442 (/2)? is the param-
eter, that in laboratory frame of reference performs the dimensionless frequency of
precession of magnetic moment in nonlinear spin wave with the parameters v and
w, and Q; = w + (v/2)? defines the dimensionless frequency of the precession of
magnetic moment in the soliton with the same parameters v and w in the laboratory
frame of reference. Integrating eq.(52) and ta.kmg into account (60.a) and (42) we
obtain

p=wT — P—{ + arctan
2 +

miL tanh'yf] : . (60.b)

The solution (60.a,b) taking into account our de31gna.t10n (39) completely coincides
with the solution obtained in ref.[1]. Solution for the deformation wave accompanying
magnetic soliton we get from eq.(46) using the solution (60.a- b) .

2Jo 44%  Qcosh? u¢ — [0 — Q4] /2
1—v2{Qcosh2p£ [Q Ql]/2+p}

(60.c)

b). In the case of the magnet solitons moving with the veloc1ty v? > v?asin

'(57) we have A — 0 and a.ssummg A= 0 we have solution (60).

Thus both the supersonic magnetic solitons and -the solitons, moving with the
velocities less than velocity of sound do not feel the la.ttlce deformation

c). Let us consider solutions of the system of equation (44) in the small amplitude
spin deviations approximation. We rewrite the eq.(58) as

/ (z+1)dz
\[— .7:+1) —w(x+1) +a1A(z+1) + 2x2Az

(61)

where

= tan® =
T 2

and assuming that the deviation of the classical spin from the equilibrium position
(i. e. from the ground states of the classical model) is sufficiently small § <« 1,
we take into account in eq.(61) terms O(z?) and neglect the terms of higher order.
Then the eq.(61) can be reduced .to the following sum of integrals, which can be

easily integrated :
' 1 dz dz :
~b=z|—=+—F=| 62
6=t ﬁ*/zﬁ] @

R=a+bz+cz2,

where

v?

a=p2=a1A—w——z-, :

15



b= 2x?A +20,A - 3w — %,

3
v c=a1A—3w— % :
- Integrating the eq. (62) we obtam the solution in the followmg form

2 2cz+ b 2 20 2 + ba: . » '
= ——arcsinh ——— — —arcsinh ————, ~ ' (63)
6 bo= Ve vD M zv D .

where D = y/4p?c — b2
Finally let us find the domain — wall type solutions of the system (44). We put

@ = "P‘o = const,
and find the solution of ‘éq.(44.a) in the following form
' §=0(¢),E=z—vr (64)
Substituting eq.(64) to the equation (44.a) we derive

O¢e — a1 [A+ xu]sinfcosd = 0. (65)

Integrating eq.(65) with the vanishing boundary conditions (we consider the easy
— axis model) leads us to the following expression

LT,
07 — a1 Asin® 0 — x25 sin* @ = 0. (66)
Solution of this equation can be expressed trough the integrals ,
| dz dz
2 -&)=| —=+ | —= 67
where
S Jo 1
ka vz —1’

R=a+bz+cz? s
a=c=aqA,
b=2(a1A+X2F),
= tan® -,
z = tan’ g |
One can easily integrate eq. (67) and get the solution in the following form

2vaR+ 2a(z +1) +2x*T (68)
2VaR + 2a(z + 1) 4+ 2xTz|

2va(f ) =Inls
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It is obvious, that in the case Y% = 0 the solution (68) takes the form of well —
known domain wall

, 0 = 2arctanexp {a (€ — &)} . (69)
If we put x* < 1 expanding the solution {68) we obtain the domam wall type solutron
in the following form

1

tan ) = - Felva-f). (70)

CONCLUSION

Thus, in this paper we show, that magnetic solitons in deformable crystal lattice
is accompanied by the deformation wave. In the case of motion of the magnetic
soliton with the near — sonic velocities the effect of resonance due to the interaction
of spin subsystem with the phonon one takes place in the system. We define this
phenomenon as magnet — acoustic resonance, and here the energy pumping from
the magnetic soliton to the deformation wave takes place. At the same time the
linear approximation for the sound equation used to derive solutions (60) and (61)
is doubtfully based. Neglected nonlinear terms could play a leading role in the case
of near — sonic velocities. This fact can be amplified also by the requirement to
take into consideration effects of dissipation of the energy of magnetic soliton. More
realistic model should take into account also the presence of two additional transver-

sal sound modes, and, consequently, the possibility of resonance by interaction of

magnetic soliton with tra.nsversa.l waves.
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