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1 Introduction 

The externally driven, damped nonlinear· Schrodinger (NLS) equa­
tion, 

(1) 

arises in a variety of fields 'including plasma and condensed matter 
physics, n~nlinear optics and superconducting electronics. In some of 
these applications ( e.g. th~ theory of rf-driven waves in plasma [1]; 
th~ description of the optical soliton propagation in a diffractive or 
dispersive ring cavity in the presence of an input forcing beam [2]) 
Eq:( 1) has a direct· interpretation. In others - like for instance in 
charg~-density-wave conductors with external ele~tric fi~ld [3]; shear 
flows in nematic liquid crystals [4]; easy-axis ferromagnets in an exter­
nal magnetic field parallel to the easy axis. [5]; ac-driv.en long Joseph­
son junctions' [6], a~d periodically forced Frenkel~Kontor~va chains [7] 
--:- it occurs as an amplitude equation for small and slowly changing 
s~lutions of.the ext~maily driven, damp~d sine-Gordon equation: . 

qtt + )..qt - qxx + sin q = r cos(wt). 

Without loss of generality n in Eq.(1) can be normalized to unity; 
hence, the driver's strength h and dissipation coefficient , are the 
only two essential control parameters. Given some h and 1, a funda­
mental question is what nonlinear attractors will arise at this point 
of the (,, h )-plane. In their pioneering paper [8] Kaup and Newell 
considered Eq .( 1) on the infinite· line under the vanishing boundary 
conditions at infinity. By means of the Inverse Scattering-based per­
turbation theory; these authors have demonstrated that for small h 
and , Eq.( 1) exhibits two soliton solutions phase-locked to the fre­
quency of the driver. As h is decreased for the fixed , , the two 
solitons approach each other and eventually merge in a turning point 
for h = (2/rr), [8]. Consequently, this value plays the role of a 
threshold; no solitons exist below h = (2/rr),. Later the same exis­
tence. threshold was reobtained by Terrones, McLaughlin, Overman 
and Pearlstein [9] in a regular perturbative construction of solutions 
to (1) in powers of hand, (see also [10]). · 



In ref.[11] equation ( 1) was studied, numerically, in, the full range 
of hand,. It was found that the two soliton solutions persist for 1 

· up to·app:roximately 0.7. · For each, $ 0.7 there is a turning point at 
some h = hthr at which one branch of solitons turns into another, and 
which plays the rol~ of the lower boundary of the existence region [ 12). 
Amazingly, Kaup and Newell's approximate relation hthr =J2/1r)1 
was found to r~main valid even for not very small , . For example, 
fo~ 1 = 0 -'.'18the_ ratio hthr h was different from 2 / 7r by only one p;rt 
in a 'thousand [11}. _ _ _ 

A completely different approach was put forward by Kollmann, 
Capel and Bountis [13] who regard Eq.( 1) as the continuous limit of a 
discrete NLS equation which~ they study by means of fixed point anal­
ysis and Melnikov-function method. In particular, the lower bound~ 
ary was obtained from the tangential inter.section of the invariant 
manifolds of a hyperbolic fixed point. A remarkable accuracy of Kaup 
and Newell's linear law detected in [11'] as well as conclusion·s of their 
own Melnikov-function analysi; prompted the authors o{f13} to sug­
gest that the relation h~hr = (2/1r), is exact, at least fo~ sufficiently 
small,. 

The aim of the present note is to demonstrate that this relation 
is, in fact, not exact, and the actual re~son why it appears to be- so 
accurate for small I is simply because the coefficient ofthe next term 
in the expansion of hthr( 1 );in powers of, is anomalous!y small. We 
do this by reconstnicting the two solitons in the vicinity of the lower 
boundary of their existence domain by means of a singular ( rather 
than regular) perturbation expansion. 

The outline of this note is as follows. -We start by discussing 
the regular asymptotic expansion as h and , -+ 0 (section 2). The 
procedure is similar to the one in [9]; the only difference is that since 
we now deal with solutions decaying at infinities (\JI x -+ 0) rather than 
periodic as in [9], we will be able to find perturbative corrections in 
closed form. In section 3 we explain why .the perturbation series of 
\JI breaks _down as h approaches the turning point, and replace it by 
a singular e~pa:nsion. This will allow us to find the next terms in the 
expansion of hthrh ). Some concluding remarks are made in section 
4 followed by a brief summary of our results. 
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2 Regular perturbation expansion 

By making a substitution \J!(x,t) = 'lj,(x,t)ei1 Eq.(1) can be reduced 
to an autonomous equation 

i'I/Jt + 1/ixx + 2l'I/Jl 2 '1/J - 7P = -i,'1/J - h., (2) 

We will be interested in time-independent solutions of Eq.(2); these 
satisfy the stationary equation 

'l/1xx + 217/1127/1 -:- 1/1 = -i-y'lj, - h 

with the boundary conditions 

'ljJ(x) - 'I/Jo as lxl - oo. 

(3) 

We start with developing a regular perturbation expansion away 
from the turning point. As the authors of [9], we assume that \'.(e 

are approaching the origin on the (,, h )-plane along a straight line 
h = h1 (where his a proportionality coefficient, not to be confused 
with Planck's constant.) Letting 

7/J = (u + iv)e-m, (4) 

where a is some constant phase that can be conveniently chosen at a 
later stage, we expand 

u = uo + ,u1 + ... , v = Vo + ,-ui + ... (5) 

and substitute into Eq.(3). The coefficient of , 0 gives the unper­
turbed stationary NLS equation with a well-known soliton solution 

( 
Uo -) ( COS 0 ) 
Vo = sin 0 sech:z:. 

Here 0 is a free parameter. Next, at the order 0(,1) one gets 
- . 

iI O ( 1t1 ) = _ ( h c?s a -' Vo ) , 
Vt fi Slll O' + 1LO 

(6) 
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where the Hennitean op~rator 

·Ho= ( .:..:.fJ2 + 1 Ji- 2 ( vJ + 3,ul .·· . , 2uoPo .) ,. 
2uovo . u5 + 3v5 ' 

(7) 

f) = a/ ox and i._ is the 2 X 2 identity matrix. In order for the equa­
tion (6) to be solvable, its right-hand side needs to be orthogonal 
to the vector ( v0 , -,-u0 f, the eigenfunction of the operator Ho asso~ 
ciated with the zero eigenvalue. (This zero eigenvalue· results from 
the U(l) phase-invariance of the unperturbed NLS equation.) The 
orthogonality gives a relation between cv arid 0, 

1rhsin(0 - a:)= 2, (~) ' 

implying that only one of the two parameters (say, 0) can be chosen 
freely. It does not matter what exactly we choose for 0; the net phase 
of the leading-order approximation depends only on ( 0 - ix) and this. 
is fixed by Eq.(8). The.'meaning of this relation is sfraightforward. 
For h -~· 1 = O; the NLS equation has a family of soliton solutions, 
'ljJ = ei(O,-_c,)sechx, with (0-'- a:) arbitrary. However; if we want to 
continue the solution along the line h = li1 , the unp'erturbe'd solution 
that we need to start with has the phase given by Eq.(8). 

It is convenient to take 0 = 1r /2; this makes the linear operator 
(7) diagonal. i;'he constant phase a: is then determined by 

2 1 
cos 0: = ; ,;, · (9) 

In fact, there are two values of a: defined by this equation, one positive 
and one negative. The positive a: = a:+ corresponds to· the soliton . 
'lj;( +) and th~ negative a: = a:_ defines the soliton.'lj;(-). Since the left­
hand side cannot exceed 1, the right-hand side gives the well-known 
formula for the lower boundary of the domain of existence of the two 
solitons: Ii 2: lithr = 2/n (8, 9; 10]. (In the next section we will obtain 
a more precise formula for this threshold.) 

Now for 0 = 1r /2 the equations ( 6) become 

Lou1(x) = licosa - vo(x); 

L1v1(x) = lisin a, 
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where vo(x) = sechx and Lo and Li are the well-known Schrodinger 
operators with familiar spectral properties: 

Lo = -82 + 1 - 2sech2x; 

Li= -82 + 1 - 6sech2x. 

The operator Li is invertible on even functions; 'in partkular, . 

(12) 

(13) 

1 
L1isechx = 2(xtanhx - l)sechx, (14) 

- 1 
L1isech3 x = - 4sechx (15) 

and 
. L1i 1 = 1 - 2sech2x . 

Hen<;e Eq .( 11) is readily solved: . ' . " 

•'Vi,=· h sin a:(l _, 2sech2x ); 

ire co~1it,io~ (9)','~~i~~.in °pla~e, EqtlO·) is;:sol~ed: as well: 

ui = Ui(x) + Aseclix, · 

where 
· · 2 1 ' · 1 · . · . . . 
U1(x) =.-,+ -

2
,tanhxsinhx +- X {j(x)sechx-,-

7r ' 7r 

.:_(x sechx + sinhx) arcsiri(tanhx) - 1 }, 

j(x)_=.fox ~sech~d~, 

. (16) 

(17) 

(18) 

(19) 

and A is an arbitrary constant which is to be fixed at higher orders 
· of the ex'pansion. Hence we prnceed to 0( , 2) to find . . 

Lou2 = (2vou1 - l)v1, 

Li v-i = 2vo( uf + 3vi) + u1. 

(20) 

(21) 

. Equation· (20) is solvable if its right-hand side is orthogonal to sechx. 
Substituting from (17)-(18), this condition fixes the constant A: 

41 " A_= A(0
) =;. U1(x)sech2x(l - ~scch2:,;)dx, (22) 
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where,·we· have·used'-Eqs;(:15~16)~ ',(Hern"\Ve;·have ,vritteri A (o) for-A 

so as to emphasize that this;is·now,a::fixed'number/thisnumber·will 
re<1ppear in the singular expansion below.) Eq.(20) is now solved in . _,
1
. ! : + · C ' .. ·r ·,i·\_ l .c. , , , 

t 1e 1orm . 
u2·~ud(x) + Bs~chx. (2:1) 

The confit_ant ,.l:Jds-to ,he ,fixed at the; -,~-level, wher,e we obtain tln· 
equation 

. : : 2 ... :i • .• : ,· . . 
Lou3 = 2{ u1( v1 + ui) + 2vo( u2v1 + u1 v2)} - v2. (24) 

The solvability condition for eq.(24) gives us B: 

B = ( 71" h sin a, )-1 x 

X j vo{2u1(uf +vi)+4vo(u1v2+U2vi)-v2}dx. (25) 

So far our treatment followed the lines of Terrones et al [9); the 
only difference is that our vo, u1, v1 , ••• are. given by explicit formu­
las. Using (19) in (22) and integrating numerically, we identify the 
constant A (o) which completes the determination of the first-order 
corrections: A(ci) = -2.4378 x 10-1 • 

· Let us now send h--+ (2/1r),. The formula {18) for u1 (x) is not 
affected and the expression (22) for A remains valid as well. There­
fore, the solvability of Eq.(20) is ensured and u2 can be written in the 
form (23). The constant Bis expected to be identifiabfe from Eq.(25). 
However, for h--+ 2/1r we have sin a,--+ 0 and so this formula gives 
B = oo unless 

j vo(4vou1v2 + 2uf- v2)dx = 0. (26) 

(Here we have used that v1 --+ 0 as sin a, --+ 0.} In general the 
condition (26) is not in place, and therefore the regular expansion 
blows up. 

3 Singular perturbation expansion at the 
turning pointJ 

The reason for the breaking down of the expansion is that it was 
implicitly assumed in Eq.(5) that v1 = 0(1) whereas in the actual 
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fact, in the limit h--+ 2/rr we have v1 -·o. Thus, let us now explicitly 
take this fact into account by writing 

2 2 
u = 1 u 1 + 1 u2••·• v = Vo + 1 v2 + ... , 

where v0 = sechx and 

fi = ho + h1 --y + h2,
2 + .... , 2 

ho=-. 
71" 

(27) 

(28) 

Here we have fixed 0 = 11" /2 and a, = 0 straight away. Substituting 
into ( 3), the first order in I yields eq.( 10) where we should only 
replace h--'- h0 • Its solution is given by the same eq.(18-19) as before, 
with A an undetermined constant. At the order 1·2 we obtain 

Lou2 = h1, 

and hence h1 = 0 and u2 = B sechx. We also obtain the equation for 
v2 which is always solvable: 

-1 2 v2 = L 1 ( u1 + 2vou1 ). 

Finally, the 1
3-level yields 

Lou3 = 2(2vou1 v2 + uf) - v2 + h2, 

whose solvability condition is given by 

j Vo (4vou1v2 + 2u?- 112 + n.2) dx = 0. 

(29) 

(30) 

We will show now that it is only this equation ( 30) that fixes the 
constant A in Eq.( 18). 

Substituting.u1 from (18) and v2 from (29), Eq.(30) reduces t.o a 
quadratic equation for the unknown A: 

2 A - 2P A+ Q - 7rft2 = 0, (:n) 

where after some algebra the coefficients are found to be 

- 2 ho J - . · } . P = - 2fi0 + 2 { fto - U1 ( x) dx ( :32) 

7 



and 

Q = j {Uf -ili(l'+- 2U1seclix) X 
x [ho( I - 2secli2 .T) + sei:h:i: ( 1 - x tanhx )]}dx. ( 3:1) 

I • . 

l11 the derivation of (:32-:3;3) we-used Eq.( 14) and the identity 

-1 2 -t · 4 L1 ( v0 U1) = L1 ( ho - Vu) - U1; (:M) 

this is a straightforward consequence of Eqs.(9),(10) and the fact that 
the Schrodinger operators (12)-( 1:3) differ by 4 sech 2 x: 

2 . 
Lo= Li+ 4v0 (x). 

Since there is a cubic term in u 1 in Eq.(30), one could expect the 
resulting equation for A to be cubic; however the coefficient in front 
of A3 is easily shown to vanish. Anot_her observation is that the 
coefficient P coincides with the constant A(o) [Eq.(22)] ·obtained in 
the regular expansion. To see that, one only needs to use the identity 
(34) once agairi. 

Solutions of (31) are given by · 

A(±)= A(O) ± ✓Jr (ri2 - h~0
)), (:35) 

where 

h~o) = _!_(Q- p2). 
7r 

( 36) 

If h2 > h~
0
l, we have two solutions 'l,b(±) which are only different iu 

the co~fficients A(±). If h2 < h~0l, we have no solutions at alL The 

value h2 = h~O) is therefore the turning point. D~ing numerically 
the integral in (33) we find Q = 6.4665 x 10-2 • Recalling that P 
coincides with Eq.(22), P = A(o) = -2.4378 x 10-1 , Eq.(36). gives 

h~o) = 1.667 X 10-3• Finally, the coefficient A corresponding to the 
turning point coincides with the off-turning point value, Eq.(22): A = 
A(O)_ 

It is worth noting here that if 1i2 = 0, Eq.(30) is formally co­
incident with Eq.(26). This does not mean, however, that soliton 
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solutions exist for h2 = 0, and that these solutions can be found by 
regular expansions ( 4-5). The point is that in Eq.(26) the function 
11i(:r) has the cqefficientA which has already beenfixed by Eq.(22), 
wherc>as Eq.( :30) is an equation for unknown A. 

Next, how close to hthr does the regular expansion stop working 
and has. to be replaced by the stngular one? For ti = 2/1r + h2, 2 

Eq.(9) produces 

0:± = ±~, + 0(,3) 

and ~o the regular expansions for 'l,b(±) read 

'l,b(±) = i sechx + ,U1 ( x) + 
+, (A(~) ± ,;;r;;,) sechx + 0( , 2) 

with U1 as in ( 19), whereas the correct, singular expansion is 

(37) 

(38) 

7/J(±) = is~chx + 1U1(x) + ,A(±)sechx + 0(, 2), (39) 

where A(±) are given by Eq.(35). Comparing (38) to (39), one con-· 
eludes that the difference between the regular and singular expansions 

is ·negligible provided h2 ~ h~o) ~ 2 x 10-3 . Otherwise the difference 
cannot be ignored. 

4 Concluding remarks and conclusions 

1. In the undamped case(,= 0) for any h E (0, ,/2727) Eq.(3) has 
two explicit solutions [14]: 

{ 
2 sinh

2 
a } 

'l,b(±l(x) = 'l,bo 1 + 1 ± cosh(Ax) cosha ' ( 40) 

where 

{ }
-1/2 

'l,Vo = 2(1 + 2 cosh2 a) 

is the asymptotic value of 'l,b(±l(x) as !xi--+ oo; the parameter 0: is 
defined by inverting the relation 

h _ ~cosh2 a 
- (1 + 2 cosh2 a:)3/ 2 ' 

9 
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Fig.J.Soliton transformation for small -y ('Y = O.OL). (a,b): For h far 
above the turning point hthr = 6.3662 x 10-:3 the imaginary parts an· 
close to zero and the two solitons are well a.pproxima.tPd by tlw two 
undamped solitons (40) (dashed lines). Ash approad1Ps tlw turning 
noint, the real parts decrease· and converge while imaginary parts 
grow (dotted then solid lines.) (c,d): In the immediate vicinity of 
hthr the hump in the 7/J(+) profile rapidly transforms into a dij> a.ud 
the two solitons collapse into one ( dashed then solid thPn dottPd linP.) 
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and -1 is given by 

. ./2.sinha 
A = 2'1/Jo smh a = --;:=====;:::= 

JI +2cosh2 a 

(Note that'in ref.(11) the last formula is reproduced with a misprint; 
namely, the factor ./2 is missing.) , 

One could expect that Eq.( 40) would remain a reasonable approx­
imation for th.e solitons with the same h and small nonzero 1 -- in 
other words, that the two solutions can be smoothly continu~d from 
the h-axfa to the (,,h)-plane. On the other hand, we know that for 
the given value of h the soliton 'ljJ( +) merges with 'ljJ(-) at some 'Ythr · 

[defined, approximately, 'by h = (2/1rhthr + h~0>,fhr1· If h is small 
then this ,thr _is also small, s~ that the point of the merger is very 
close to th.e h-axis and hence intujtively one could expect solutions 
at this point to be close to the undamped solitons ( 40 ) ... However, it 
is not quite obvious h~w this. proximity -can· ·be re~ondled with the 
fact that the two real solutions ( 40) are rather far from each other; 
1j;(+) has a hump and 'ljJ(-) has a dip. 

The situation near the turning point can be clarified by invo~ing 
the asymptotic expansions ( 4-.5) and (27-28). For the sake of illustra- · 
tion, we have also computed the two solitons numerically for a fixed 
small , (, = 0.01) and varying h; results are shown in Fig. I. In 

· agreement with Eq.(4-.5);,Jor not very small h (h 2: 0.1) the imagi­
nary parts of the solitons are seen to be almost zero [dashed lines in 
Fig.l(b)] while the real pa{t~ ~hange slowly with the variation of h. 
For these h the pair of real solu tior;s ( 40) does indeed provide a good 
approximation for the corresponding 7/J(±) with , = 0.01. However, 
as h goes down, the real parts start changing (decreasing) more vig­
orously while the imaginary parts begin to grow; consequently, the 
approximation deteriorates. Near the turning point the, real parts of 
both solitori~ become much smaller than•'thefr'h:iiaginary' parts [see 
Fig .. I( c,d)]. Nevertheless., 'for h not v.ery close t~ the 'turning P?int 
(more specifically, for h ~ 6.366.5 x 10-3 ),'_the reaf part of -ijJ(+) still 
has a hump- and real· p·art of 'ljJ(-) still has a dip: [Fig. i(a)]. 'This 
justifies our usage of the notations y;(+) and 'ljJ(-) for, f:- 0. Finally, -
in a very near vicinity of the turning point hthr. = 6.3662 x 10-,3, the 

' ' . ·, . . . 
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hump of the real part quickly transforms into the dip {Fig.I( c)]. 
This evolution 9f the two solitons (in particular, the rapid change 

near the turning point) can be easily understood in terms of the 
singular expansion (27-28). Near the turning point, where h2 is close 

to h~0
),, we can define a small € by writing 

- . (0) 
1rh2,- 1rh2 + €. ·(41) 

I 

The corresponding A's in Eq.(18) are then given by 

A(±) = A(O) ± Vf. (42) 

Recalling that to the leading order in , it is only 'this coefficient_A 

that determines the dep.endence of solutions ori h;· Eq;(42) gives the 
rate of change of their real parts: 

8u 1r 1 2 
ari

2
,,= .±2 VE sechx_ + 0(, ). , (43)· 

As it should be the cas~ near the turni~g point, the derivative· (43) 
becoines very large as E ·:....+ 0 implying a very rapid t:ra~sformation':Of 
the soliton. Away from the neighbourhood of the turning .point, in 

. the region of the applicability of the regular expansion ( 4-5), the rate 
of the transformatio'n of the sc,. 'to!}s 1/J± · is given by.__ · 

da 2 I 

dh = 1rh J11,2 _ (2/1r)2. 

Similarly to Eq.( 43), this shows that as h --:-+ 2/1r, the. two solitons 
transform increasingly fast. 

Thus .if we.want tci use the two real solitons ( 40) as approximations 
for their respective (, f:- 0)-counterparts, we should keep in mind 
that this approximation is valid only far away from the turning point 
'Ythr-' Since for small h the turning point is close to the h 0 axis (i.e. 
'Ythr ~ ( 1r /2)h is also small), the validity of the approximation will be 

· restricted to very small , , 1 / h ~ 1r /2. 
2 . . It is important to emphasize that the perturbative expansion 
constructed in this note is asymptotic, i.e. it only tends to hthr( 1 ) as 
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1 -+ 0. To see that the series does not necessarily have to converge 
for finite,, take 1 = 0.48 in which case the numerical analysis [11] 
shows that the difference hthrh- (2/1r) is approximately 10-3 _ The 
discrepancy between this numerical value and the perturbative result 
(1.667 x 10-3

),2 is of the order 6 x 10-4 , which is a good agreement. 
However if we wanted to improve the accuracy even further, by adding 
the next term n3,3 to the expansion hthr = L nn,n+l, then in order 
to account for the above discrepancy we would have to take n3 ~ 6 x 
10-3

• The coefficie'nt n3 being several times larger than the previous 
coefficient n~o) is .an indication of the divergence of the series. 
3. Finally, we briefly summarize the main points of this work. 

(a.) The )ower boundary of the existence domain of the two 
solitons is given by the following asymptotic expression (as,___. 0): 

2 . 
hthr = -, + (1.667 x 10-3

),
3 + 0(1

4
). 

7r 
(44) 

(b.) For h away from the above threshold, more precisely for h -
(2/ 1r), ~ 0.002,3

, the solitons are given by the asymptotic expansion 
- Eq.(4-5) where v1 and u1 are given by explicit expressions (17)-(19) 

with A(0 ) = -2.4378 x 10-1 . 

(c.) For h close to the turning point, h = (2/1r),+n21
3 with n2 ~ 

0.002 the second, 1
2-order of the regular expansion ( 4-5) becomes 

greater than the first order, and the expansion breaks down. In this 
case the two solitons are given by the singular expansion (39) with 
A{±) as in Eq.(35) and n~0

) = 1.667 x 10-3 • 
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EapaweHKOB H.B., 3eMJUillilll E.B. 
TTopor cymecTBOBaHH.sl COJJHTOHOB B HeJJHHeHHOM ypas11eHHH 
Wpemrnrepa c ,uuccunauueii 11 11aKa'-!Ko11 

El7-98-290 

l13BeCTllO, '-!TO COJJHTOHbl 11em111el'i11oro ypas11erm.si Wpe,um1repa C ,UHCCHnauuel'i 
H nep110,UH4eCKHM B036)')1()leHHeM cymeCTB)'IOT JJl!lllb B CJJY'-!ae, eCJJH aMllJJHTy,ua 
HaKa'-!KH npeBbIWaeT npu6ml3HTeJJbl!O (2 / re) y, r.ue y- K03cpcjmu11eHT ,UIICCHnauHH. 
He,uas1me liCCJJe,UOBaHH.sl noKa3aJJH, '-!TO cpopMyJJa hthr - (2 / re) y OllHCbIBaeT nopor 

B03HllKIIOBeHH51 COJJHTOHOB ropa3,UO T04Hee, 4eM MO,KHO 6hIJJO 6bl m1rn,uaTb, HCXOM 
H3 Toro o6cT051TeJJbCTBa, '-!TO OHa llOJJY'-!eHa JJHlllb B maBHOM nop51,!lKe TeopHH 
B03MymeHHH. Ha 3TOM OCHOBaHlill 6bIJJO BbICKa3aHO npe,unOJJO)KeHHe, 4TO YKa3aHHM 
cjJOpMyna .sisn.sieTc.si T04HOH, T.e. cnpase,umrna BO scex nop.si,uKax. B 11acT05ill.leH 
pa6oTe Bbl4HCJJeH CJJe,U)'IOlUHH nop51,UOK B pa3JJO)KeHHH hthr (y) li ll0Ka3aHO, '-!TO 

,uel'iCTBHTeJJbllOii npH411HOH ::i-i:oro 51BJJemrn 51BJJ51eTC51 aHOMaJJbHM MaJJOCTh KO­

::icpcp11u11eHTa cne,uy10mero 4ne11a pa3JJO,Kemrn: hthr = (2 / re) y + 0,002 y 3. 

Pa6oTa BblllOJJHe11a B Jla6opaTOpHH Bhl'-IHCJJHTeJJbHOH TeXHHKli H aBTO­
MaTH3aUl!H Ol15H1. 

npenpHHT Ofu.e/IHHeHHOro IIHCTHTyra ll/lepHhlX IICCJle/IOBaHIIH. ,Uy611a, 1998 

Barashenkov I.V., Zemlyanaya E.V. 
Existence Threshold for the AC-Driven Damped Nonlinear 
Schrodinger Solitons 
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It has been known for some time that solitons of the externally driven, damped 
nonlinear Schrodinger equation can only exist if the driver's strenght, h, exceeds 
approximately (2 / re) y, where y is the dissipation coefficient. Although this 
perturbative result was expected to be correct only to the leading order :n y, recent 
studies have demonstrated that the formula h1hr = (2 / re) y gives a remarkably 

accurate description of the soliton's existence threshold prompting suggestions that 
it is, in fact, exact. In this note we evaluate the next order in the expansion 
of hthr (y) showing that the actual reason for this phenomenon is simply that 

the next-order coefficient is anomalously small: hthr = (2 / re) y+ 0.002 y 3. 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation, JINR. 
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