


1 Introduction

The externally drlven damped nonhnear Schrodmger (NLS) equa—
tion,

iU, + U + 2|02 = —iy W — he‘m (1)

arises in a variety of fields 'including plasma and condensed matter
physics, nonlinear optics and superconductmg electronlcs In some of
these applications (e.g. the theory of rf-driven waves in plasma [1];
the description of the optical soliton propagation in a diffractive or
dispersive ring cav1ty in the presence of an input forcing beam [2])
Eq.(1) has a direct interpretation. In others — like for instance in
charge den51ty wave conductors W1th external electric field [3] ‘shear
flows in nematic liquid crystals [4]; easy-axis ferromagnets in an exter-
nal magnetic field parallel to the easy axis [5]; ac- driven long Joseph-
son Junctlons [6], and perlodlcally forced Frenkel-Kontorova chains [7]
— it occurs as an amplitude equation’ for small and slowly changmg
solutlons of the externally driven, damped sme—Gordon equatlon

qit + /\gt — (zz + 5in g = T cos(wt).

Without loss of generality Qin Eq.(1) can be normalized to unity;
hence, the driver’s strength h and dissipation coefficient 7 are the
only two essential control parameters. Given some A and v, a funda-
mental question is what nonlinear attractors will arise at this point
of the (7, h)-plane. In their pioneering paper [8] Kaup and Newell
considered Eq.(1) on the infinite line under the vanishing boundary
conditions at infinity. By means of the Inverse Scattering-based per-
turbation theory, these authors have demonstrated that for small h
and v Eq.(1) exhibits two soliton solutions phase-locked to the fre-
‘quency of the driver.” As h is decreased for the fixed 7, the two
solitons approach each other and eventually merge in a turning point
for h = (2/m)y [8]. Consequently, this value plays the role of a
threshold; no solitons exist below h = (2/7)y. Later the same exis-
tence threshold was reobtained by Terrones, McLaughlin, Overman
and Pearlstein [9] in a regular perturbative construction of solutions
to (1) in powers of h and -y (see also [10]).’ T : -
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In ref.[11] equation (1) was studied, numerically, in: the full Tange
of h and 7. It was found that the two soliton solutions persist for y
upito approximately 0.7. For each 4 < 0.7 there is a turning point at
some h = hy,r at which one branch of solitons turns into another, and

which plays the role of the lower boundary of the existence region [12].

Amazingly, Kaup and Newell’s approximate relation henr = ( 2/7r)'y
was found to remain valid even for not very small ~. For example
fory = 0.48 the ratio Ay, /[y was dlﬂ'erent from 2/7r by only one part
in a thousand [11]

A completely dlﬂ'erent approach was put forward by Kollmann
Capel and Bountis [13] who regard Eg. (1) as the continuous hmlt of a
discrete NLS ‘equation which they study by means of ﬁxed pomt anal-
ysis and Melmkov function method. In partlcular the lower bound-
ary was obtamed from the tangential intersection of the 1nvar1ant
mamfolds of a hyperbohc fixed pomt A remarkable accura.cy of Kaup
and N ewell’s linear law detected in [1 1] as well ‘as conclusions of their

own Melnikov-function analysrs prompted the authors of [13] to sug-
gest that the relation Ay, = (2/7r)7 is ezact, at least for sufficiently .

small 5.

" The aim of the present note is to demonstrate that this relation
is, in fact, not exact, and the actual reason why it appears to be so
accurate for small 7 is simply because the coefficient of the next term
in the expansion.of Ay (7)/in powers of v is anomalously small. We
do this by reconstructing the two solitons in the vicinity of the lower
boundary of their existence domain by means of a smgular (rather
than regular) perturbation expansion.

The. outline - of this note is as follows. ‘We start by discussing
the regular asymptotic expansion as h and v — 0 (section 2). The
procedure is similar to the one in [9]; the only difference is that since
we now deal with solutions decaying at infinities (¥, — 0) rather than
periodic as in [9], we will be able to find perturbative corrections in
closed form. In section 3 we explain why the perturbation series of
¥ breaks down as h approaches the turning point, and replace it by
a singular expansmn This will allow us to find the next terms in the
expansion. of hyy, (7). Some concluding remarks are made in- section
4 followed by a brief summary of our results.

2 Regular perturbation expansion

By making a substltutlon U(z,t) = 1/;(:1: t)e Eq. (1) can be reduced,
to an autonomous equation '

Py + Poz + 2P~ = —iy — he 2)

We will be interested in time-independent solutions of Eq.(.2); these
satisfy the stationary equation

Yor + 2[5 = = —ixp—h (3)
with the boundary conditi‘ons
1/)(:1:)—» o . as |z| — oo.

~ We:start with developing a regular perturbation expansion away
from the turning point. As the authors of [9], we assume that we
are approaching the origin on the (7v,h)-plane along a straight line
h = hy (where h is a proportionality coefficient, not to be confused

‘with Planck’s constant.) Letting

= (u+ iv)e_"“‘», : ‘ (4)

where « is some constant phase that can be conveniently chosen at a
later stage, we expand . -
w = ug+ YUy + .. v = + vy + .. (5)

and substitute into Eq.(3). The coeﬂlment of 70 gives the unper;
turbed stationary NLS equation with a well-known soliton solution

( to ) = ( eosB )sech:v.
v /- sin 8 _

Here 8 is a free parameter. Next, at the order O(7!) one gets

- up \ _ [ hcosa— » .
HO(v,)f(ﬁsinaﬁ-uo)’ ' (6)



where the Herrpitean oprera,to_r: S I RCTI LS EER DRI
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vE +$u,§ .o 2ugug YL
2uqvy ud+3v5 )’

CHy= (=94 )i -2 (

9 = 9/0z and Iis the 2 x 2 identity matrix. In order for the equa,->

“tion (6) to be solvable its right- hand side needs to be orthogoual
to the -vector (v, —uo)T the eigenfunction of the operator Ho asso-
ciated with the zero eigenvalue. (This zero eigenvalue results from
the U(1) phase-invariance of the unperturbed NLS equation.) The
orthogonality gives a relation between « and 6,

7rhsin(9‘——a)=2,' T “(8)-

implying that only one of the two parameters (say, #) can be chosen
freely. It does not matter what exactly we choose for 8, the net phase

of the leading-order approximation depends only on (8 = &) and this’

is fixed by Eq:(8). The ‘meaning of this relation is- stralghtforWdrd
For h =4 = 0; the NLS equation has a family of sohton solutions,
Y= ellf- C")secha: with (8= «) arbitrary. However, if we want to

continue the solution along the line h = hy, the Iiilf);ertilrbe‘d solution

that we need to start with has the phase given by Eq.(8).
It is convenient to take 6 = m/2; this makes the linear operator
(7) diagonal. The constant phase « is then determined by
21

cosa =~ (9)

_In fact, there are two values of a defined by this equation, one-positive

and one hegati.ve. The positive @ = a4 corresponds to-the soliton .

#»(+) and the negative & = a_ defines the soliton-1(~). Since the left-
hand side cannot exceed 1, the right-hand side gives the well-known
formula for the lower boundary of the domain of existence of the two
solitons: ki > hynr = 2/7 [8,9; 10]. (In the next section we will obtain
a more precise formula for this threshold.) :

Now for § = n/2 the equations (6) become

Louy(z) = hcosa — vo(z); (10)
Liv(z) = hsina, (11)
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where vo(z) = sechz and Ly and L, are the well-known Schrodinger
operators with familiar spectral properties:

= —9% + 1 — 2sech®z; ' T (12).

Ly=-0*41- 6sech2 . (13)

- The operator L is invertible on even functions; in particular,
. R '

Li'sechz = 5—(2: tanhz — 1)sechz, - (14)

21,13 1 o e

LT 'sech’z = —Zsechm : (15)

and

LT 11_1—2sech2 e " (16)

: Hence Eq (11) is rea,dlly solved

Sp = hsm a(l - 2sech2:c) e T (17)

"The COndltIOIl (9) belng in p]ace Eq (10) is, solved as well:'“;

Ul(z)-{—Asecha: | RN GT)

where

3 'ul(,z:) = -?r—-{— .%;t‘a,nha; svinvha’c +% X {](z) seEh:i — S
~(z sechz + sinhz) a)r‘csiﬁ(‘ta,nh':z:‘) -1}, (19)
k (a:) = / Eseché dE,

~ and Ais an arbitrary constant Wthh is to be ﬁxed at higher orders
K of the expansmn Hence we proceed to 0(72) to ﬁnd

Loug = (27.701&1 - 1)7.71, ' (20)
Lyv; = 2'110(u1 + 3111) + u. ’ (21)

: Equatlon (20) is so]vable if its rlght hand 51de is orthogonal to secha:

Substituting from (17)-(18), this condition fixes the constant A:

A= A0 = %/ Un(2) sech®z(1 = 2sech?a)dn, - (22)
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whereiwé haveuséd “Tgs:(15:16). * (Here we have writteri A for: A
so as to emphasize that this is-mew:a/fixed’number;*this mumber will
Teappear in the singular expansmn below ) Eq (20) is now solved in
the form (

' u'2‘£"u2-"(z)ﬂr'B§échg;. P} (23)
The constant.B.is to he fixed at.the y3-level, where. we obtain the
equation ‘

Louz = 2.:{1‘1('0% +u?d) + 2v0(ugvy + ugwy)} — va. (24)

The solvability condition for eq. (24) gives-us B:
' (7rh sina)™! _
X /v0{2u1(uf + v3) + dvo(urvg + Ugvy) — v3} dz. (25)

So far our treatment followed the lines of Terrones et dl:[9]; the
only difference is that our wvo,u;,vq,... are given by explicit formu-

las. Using (19) in (22) and integrating numerically, we identify the-

constant A which completes the determination of the first- order
corrections: AO) = 24378 x 101,

Let us now send h — (2/7)y. The formula (18) for ul(z) is not
affected and the expression (22) for A remains valid as well. There-
fore, the solvability of Eq.(20) is ensured and u; can be written in the
form (23). The constant B is expected to be identifiable from Eq.(25).
However, for & — 2/7 we have sina — 0 and so this formula gives
B = 00 unless

/v0(4v0u1v2 + 2u3 — vy)dz = 0. (26)

(Here we have used that v; —> 0 as sina — 0.) In general the
condition (26) is not in place, and therefore the regular expansmn
blows up.

3 Singular perturbation expansion at the
~ turning point,

The reason for the breaking down of the expansion is that it was
implicitly assumed in Eq.(5) that v1 = O(1) whereas in the actual

fact: in the limit A — 2/7 we have v; — 0. Thus, let us now explicitly
take this fact into account by writing

(27)

Cu=qu + 72u2..., v = vy + 721)2 + ..., ,
where vg = sechz and .
2 .
= ho + hn‘ + h272 + veeny fl.o = ; . (28)

Here we have fixed § = /2 and a = 0 straight away. Substituting
into (3), the first order in v yields eq.(10) where we should only
replace i — hg. Its solution is given by the same eq.(18-19) as before,
with A an undetermined constant. At the order 42 we obtain

Louy = hy,

and hence hy; = 0 and u; B sechz. We also obtain the equatlon for
vy which is always solvable

vy = LT (uq + 2vout). \ - (29)
Finally, the y3-level yields

Louz = 2(2votv2 + ud) — vy + Ry,

- whose solvability condition is given by

/1)0 (4v0u1v2 + ‘211,:13 — vy + hy)dx = 0. (30)

We will show now that it is only this equation (30) that fixes the
constant A in Eq.(18).

- Substituting .y from (18) and v, from (29), Eq. (30) reduces to a
quadratlc equation for the unknown A: .

A?—2PA+Q-mhy=0, EN

“where after some algebra the coefﬁcients are found to be

- _oh2 ¢ —/{no — Uy ()}da (32)

7



and e ‘ :
Q= / U2 = Ui (14 Ahysecha)
X[ho(1 — 25eéli2$):+ sechz (1 — z tanhz)]}dz. (33)
IlIl the derivation of (32-33) we-used Eq.(14) and the identity’
AL = L (ho — o) — Uy (34)

this is a stralghtforward consequence.of Eqs.(9) (10) and the fd(t that
the Schrodmger operators (12)-(13) differ by 4 Sech T

Lo = Li +4v¥(z).

Since there is a cubic term in u; in Eq.(30), one could expect the
resulting equation for A to be cubic; however the coefficient in front
of A3 is easily shown to vanish. . Another observation is that the
coefficient P coincides with the constant A(°) [Eq.(22)] obtained in
the regular expansion. To see that, one only needs to use the 1dent1ty
(34) once agairn.

Solutions of (31) are given by

A® = 4O ¢ [ (ny - hg))), (35)

where

(0) -

1
T
If hy > hzo), we have two solutions w(f) which are only different in
the coefficients A, If ho < hg ), we have no solutions at all: The
value hy = h( ) is therefore the turning point. Doing numerically
the integral in (33) we find Q = 6.4665 x 10~2. Recalhng that P
coincides with Eq.(22), P = A(®) = -2.4378 x 10~!, Eq.(36)- gives

h(o) = 1.667 x 1073, Finally, the coefficient A corresponding to the
turning point coincides with the off-turning point value, Eq. (22): A =
A0),

It is worth noting here that if hy = 0, Eq.(30) is formally co-
incident with Eq.(26). This does not mean, however, that soliton

8

(Q - P%). (36)

solutions exist for hy; = 0, and that these solutions can be found by
regular expansions (4-5). The point is that in Eq. (26) the function
uy(z) has_the coefficient_ A which has already been ﬁxed by Eq (22),
whereas Eq.(30) is an equation for unknown A. :

Next, how close to hene does the tegular expansion stop working
and has to be replaced by the singular 0ne7 For h = 2/7 + hyy?
Eq.(9) produces

= AR OGY (37)

and so the regular expansions for Wi) read
p*) = {sechs + YU (z) + 4
y (A0 4 Vihy) sechz + 0(y%) (38)
with U, as in (19), whéregs the correct, singular expansion is
¥ &) = isecha + Uy (z) + ABsechz + 0(v2), (39)

where A®) are given by Eq.(35). Comparing (38) to (39), one con-
cludes that the difference between the regular and singular expansions
is negligible provided %y > h§°) ~ 2% 1073, Otherwise the difference
cannot be ignored. -

4 Concluding remarks and conclusions

1. In the undamped case (y = 0) for any & € (0,v/2/27) Eq.(3) has
two explicit solutions [14]:

(£)( _ 2sinh? a
V) = do {1 T cosh(Az) cosha |’ (40)

—1/2

where
Po = {2(1 + 2 cosh? a)}

is the asymptotic value of 1(*)(z) as |z] — oo; the parameter « is
defined by inverting the relation

. V2 cosh? o
"~ (14 2cosh?a)3/2’
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Flg 1. Sohton transformatlon for small v (v =.0.01).. ((1 b): . For It far.
above the turning point fy,, = 6. 3662 x 1073 the imaginary parts are
close to zero and the two solitons are well approxmmt(‘d by the two
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point, the real parts decrease and converge while imaginary parts
grow (dotted then solid lines.) (c,d): In the immediate vicinity of
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and A'is given by

"~ v/2sinh o -
V1 + 2cosh? a

(Note that in ref.[11] the last formula. is reproduced with a misprint;
namely, the factor /2 is missing,.)

One could expect that Eq.(40) would remain a reasonable approx-
imation for the solitons with the same h and small nonzero v —.in
other words, that the two solutions can be smoothly continued from

A = 21gsinha =

the h-axis to the (v, h)-plane. On the other hand, we know that for
the given value of A the soliton z/)(+) merges with (=) at some 7y, -

[defined, approxuna,tely, by h = (2/7)yine + h2 'Ythr] If & is small
then this 7y, .is also small, so that the point of the merger is very
close to the h-axis and hence intuitively one could expect solutions
at this point to be close to the undamped solitons (40). However, it
is not quite obvious how this’ proximity can be reconc1led with the
fact tha.t the two real solutlons (40) are rather far from each other;
»(¥) has a hump and %(~) has a dip. -

The situation near the turning point can be clarified by invoking

the. asymptotic expansions (4-5) and (27- 28). For the sake of illustra- -

tion, we have also computed the two solitons numerlca.lly for a fixed
small v (v = 0.01) a.nd varying h; results are shown in Fig.1. In
"agreement with Eq. (4 5) for not very small (h > 0.1) the imagi-

nary parts of the solitons are seen to be almost zero [dashed lines in

Fig.1(b)] while the.real parts change slowly with the variation of h.
For these h the pair of real solutions (40) does indeed provide a good
approximation for the corresponding P! (#) with v = 0.01. However,
as h goes:down, the real parts start changing (decreasing) more vig-

orously while the imaginary parts begin to grow; consequently, the
approximation deteriorates. Near the turmng pomt the real parts of

both solitons become much sma.ller than' their' una.gma.ry parts [see
Fig. 1(c,d)]. Nevertheless, for h not very close to the turning point

(more specifically, for & > 6.3665 >< 1073), the rea.l pa.rt of ¢(+) still

has a'hump and real part of 1/) ) still has a dip’ [Flg 1(a)]. - This

Justifies our usage of the “notations 1/)(+) and (-) for v # 0. Fma.lly, :

in a very near: v1c1n1ty of the turmng pomt hthr = 6 3662 X 1()“3 the

12
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hunip of the real part quickly transforms into the dip [Fig.l(c)].‘ _
This evolution of the two solitons (in particular, the rapid change
near the turning. point) can -be easily understood:in. terms of the

- singular expansion (27-28). Near the turning point, where hy-is close -

to h( ), ; we can deﬁne a small € by wrltmg b »
| | h = 7rh( )+e R ' (41)

The correspondmg A s in Eq (18) are then glven by B 4 R
A = AO & e .. | | o "“(4'2)

Recalling that to the leading order in v it is only this coefﬁc1ent A
that determines the dependence of solutions on &, Eq. (42) gives the
rate of change of the1r rea.l pa.rts

(,;9;2 :t—2-7 sech:b + 0(72) L (43)-
As it should be the ca.se near the turnmg pomt the derlva.tlve (43)
becomes very large as € — 0 lmplymg a very rapld transformatlon of
the soliton. Away from the neighbourhood of the turning point, in
the region of the a.pphca.blhty of the regula.r expa.nsmn (4-5), the rate
of the tra.nsforrnatlon of the sc.'tons 4 is given by

Similarly to Eq.(43), this shows that as A — 2/, the two solitons
transform increasingly fast. |

Thus if we want to use the two real solitons (40) as approximations
for their respective (y # 0)-counterparts, we should keep in mind
that this approximation is-valid only far away from the turning point
Ythr- Since for small h the turning point is close to the h-axis (i.e.
Yt ~ (7 /2)h is also small), the validity of the a.pproxunatlon w111 be
restrlcted to very small v, y/h < 7/2. SR

- It is important to emphasize that the perturbative expansion
constructed in this note is asymptotic, i.e. it only tends to hg(7y) as

13



v — 0. To seé that the series does not necessarily have to converge ) Refel‘enCGS'

for finite v, take ¥ = 0.48 in which case the numerical analysis [11] P ' V S
shows that the difference Ay /7 — (2/7) is approximately 10-3. The [1] G. J. Morales and Y. C. Lee ths Rev Lett. 33, 1016 (1974):

discrepancy between this numerical value and the perturbative result A V. Galeev, R. Z. Sagdeev, Yu S. Sigov, V. D. Shapiro and V.
(1.667 x 1073)42 is of the order 6 x 10~4, which is a good agreement. - L bllevchenko Flz Plazmy, 1 10 (1975) [Sov J Plasma Phys.
However if we wanted to improve the accuracy even further, by adding ‘ 1,5 (19 ’5)] . S

the next term hzy3 to the expansion Ay = 3 ﬁn’7"+1’ then in order [ [2] L. A. Lugiato and R. Lefever, Phys Rev. Lett. 58, 2209 (1981)
to a;:count for the above discrepancy we would have to take Az ~ 6 X \ M. Haeltermann, S. Trillo and S. Wabnitz, Opt. Lett, 17, 745
1073, The coefficient h3 being several times larger than the prev10us ‘ (1992); Opt. Commun. 91, 401 (1992), S Wabmtz Opt Lett.
coefficient h( ) is .an indication of the divergence of the series. ' 18, 601(1993)

3. Finally, we briefly summarize the main points of this work. 3 S R

- (a) The lower boundary of the existence domain of the two (3] K. Makl Phys. Rev. B 18, 1641 (1978) D. J. I\3‘111) and A C.
solitons is given by the following asymptotlc expression (as y — 0): o Newell; Phys. Rev. B 18, 5162 (19t8) D. Berinett, A. R. BIShOp :

~and'S. E. Trullinger, Z. Phys B 47, 2ﬁo (1982)

fehe = _7 + (1'667 X 107%)7° + 0(74)' (44) ' (4] Lel Lin, C. Slm an(l G. Xu J. Stat ths 39, 633 (1980)

(b ) For h away from the above threshold, more precisely for h — ' [5]-E.. B. Volzhan N P Clorgadze and A. D. Pataraya. le\a;
(2/7)7y > 0.00293, the solitons are given by the asymptotic expansion A .- Tverdogo Tela, 18,2546 (1976) [Sov. Phys. Solid. State, 18, 1487
- Eq.(4-5) where v; and u; are given by explicit express1ons (17)- (19) V ~(1976)]; M. M. Bogdan, PhD thesis, FTINT; Kharkov (1983); G.
w1th A = 24378 x 101, 7 : Wysin and A: R. Bishop, J. Magnetism and Magnet. Materials

(c.) For h close to the turning point, h = (2/7)y+hyy3 with Ay ~ ©'54-57, 1132 (1986); G: A. Maugin and A. Miled. ths Rev.
0.002 the second, y2-order of the regular expansion (4-5) becomes .7 B 383, 4830 (1986); A. M. Kosevich, B. A. lvanov and A.S.
greater than the first order, and the expansion breaks down. In this 1 R ‘Kovalev Phys Rep. 194, 118 (1990)
case the two solitons are given by the singular expansion (39) with : S
A® as in Eq.(35) and hgo) — 1.667 % 10-3. (6] D W. McLaughlm and A C. Scott, P]lVb Rev A 18,1652

(1978); J. C. Eilbeck, P. S. Lomdahl and A. €. Newell, Phys.
- Lett. A 87,1 (1981)
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[lopor cyuiecTBOBaHHA COJIMTOHOB B HEJIHHEHHOM YPaBHEHHH

HlpenuHrepa ¢ auccHnauueit ¥ Hakaykoii

VI3BECTHO, YTO CONMUTOHBI HETHHEIHOIO ypasuenus: Llpeaunrepa ¢ auccunauueii
M MepHOOHYECKHM BO3DYXIEHHEeM CYIUECTBYIOT MIIL B Clydae, ECIH aMIUIMTyaa
HaKayKH npessiiiaet npubnusurensto (2 /T ¥, rae Y — Ko3thHUHMEHT IHCCHNALMH.
HepagHue uccinenoBanua nokasany, 4to dopmyna hy, — (2 /1) Y OMHCBIBAET NOPOT

BO3HHKHOBEHHs COJIMTOHOB ropa3fio TOUHee, YeM MOXHO Obu10 bl 0XHAATL, HCXOL
U3 TOoro ofGCTOSTENILCTBA, YTO OHA MOJYYEHA JIMIUb B IJIAaBHOM IOpANKE TEOPHH
Bo3mylueHHii. Ha 3ToM ocHoBaHHH OBUIO BRICKA3aHO MPEINOIOXEHHE, YTO YKazaHHas
dopmyna siBisieTcsl TOYHOM, T.e. CpaBelIiBa BO BCeX Mopsaxkax. B Hacrosuied
pabote BblYMCIIEH CNEAYIOUIMH MOPAAOK B Pa3noXeHuu Ay (Y) M NoOKasaHo, 4To

JNEACTBUTEILHOH TIPHYMHOH B3TOrO SBJEHHS ABIACTCY AHOMAIbHAA MATOCTh KO-

achpHLMENTA ClIeayIOUIEro YieHa paloxXenns: by = (2/7) v+ 0,002 y3. '

Pabora Bhmonnena B JlabopaTOpHM BLIYHUC/IMTENIBHOH TEXHHKH H  aBTO-
maruszauun OUSH.

MMpenpunt OGBEIMHEHHOTO MHCTHTYTA AlepHbIX Hccaeqosanui. dybna, 1998

Barashenkov [.V., Zemlyanaya E.V. E17-98-290
Existence Threshold for the AC-Driven Damped Nonlinear

Schrédinger Solitons

It has been known for some time that solitons of the externally driven, damped
nonlinear Schrodinger equation can only exist if the driver’s strenght, h, exceeds
approximately (2/m)Y, where y is the dissipation coefficient. Although this
perturbative result was expected to be correct only to the leading order in v, recent
studies have demonstrated that the formula h, =(2/r)y gives a remarkably
accurate description of the soliton’s existence threshold prompting suggestions that
it is, in fact, exact. In this note we evaluate the next order in the expansion
of hy, (Y) showing that the actual reason for this phenomenon is simply that

the next-order coefficient is anomalously small: Ay = (2/m) Y+ 0.002 Y3.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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