


I. INTRODUCTION

Among the other unconventional normal state properties of high-T; supercr)nductors an
arlomalous charge dynamics has also been detected‘ rn the optrcal measurements of fhe under-
doped samples [1]. Namely, a non-Drude fall off of the lorv-frequency absorptiorr indrcatrn‘g
a linear w-dependence of the relaxation rate and an anomalous mid-infrared (MIR) band
with‘a typical energy ~ 0.1 €V have been observed [2,3].

It is widely believed that unusual properties of the superconducting cuprates are due to
the strong electron correlations [1]. The minimal model to describe correlation effects in
the cuprates is the ¢t — J model. While a number of analytical works have Been done to
investigate spin dynamics within the ¢ — J model, only few of authors have studied charge
dynamics [4-6]. In Refs. [4,5] charge fluctuations have been studied by slave boson and
Hubbard operator (HO) formalism within the leading order of 1/N expansion, respectively.
It was found that the density fluctuations at large momenta shows a sharp hlgh energy
peak correspondlng to the collective mode which reduces to the sound mode in the long-
wavelength limit [4,5]. Later, the authors of Ref. [6] showed that next order correctlons in
1/N expansion leads to the broadening of the high energy peak due to mcoherent motlon of
bear holes Similar features of the density response have been prevrously observed in exact
dragonallzatlon studies of small clusters {7). L

In the present paper we investigate charge ﬂuctuat‘ion spectrum gf thet —-J moder m fhe
pararrragnetic state with short-range antiferromagnetic (AFM) correlations.’ VYe gieyelop‘ a
self-consistent theory for the dynamical charge susceptibility (DCS) by applyrng the rnempry
function method in terms of HO’s. The employment of HO technique has a twefold advan-
tage; By using the equations of motion for the HO’s we automatically take into account
scattering of electrons on spin and charge fluctuations originated from the strong correla-
tions, as it has first been pointed out by Hubbard ([8]. Moreover HO formalism allows us to
preserve rigorously the local constraint of no doubly occupancy.

We calculate the memory function within the mode coupling approximation (MCA) in
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terms of the dressed particle-hole and spin fluctuations. Similarly to the antiferromagnetic
Fermi liqﬁid approach [9], we treat fermionic and localized spin excitations as independent
degrees of freedom. We show that the memory function involves two contributions. The first
one stems from the hopping term and describes a particle-hole contribution from the itinerant
hole subsystem to the DCS. The second one involves scattering processes of electrons on
charge and spin fluctuations and comes from both kinematik and exchange interactions.

Further, we perform an analytical analysis of different limiting behavior of DCS to show
that the essential features observed in the exact diagonalization studies [7] can be reproduced
within the present formalism. We find out that for small ¢ the DCS is mainly governed by the
sound mode. Although unrenormalized sound velocity is larger than Fermi velocity, unlike
to the Fermi liquid theory, the “self-energy” corrections, lead to softening of the sound. The
renormalized sound falls down into particle-hole continuum getting a finite damping due to
the decay into pair excitations. In the short-wavelength limit momenta devnsity fluctuation
spectrum mainly consists of a broad high-energy peak. At large enough wave vectors the peak
is dispersed out from coherent particle-hole continuum and broaaens due to high energy ~ ¢
transitions involving the incoherent band of the one-particle excitations. The contribution
from the particle-hole excitations from the coherent bandwidth leads to a some low-energy
structure in the charge fluctuation spectrum.

We also discuss the optical conductivity o(w). For low frequencies we analyze o(w) in
terms of the generalized Drude law. We show that there is a mass enhancement of order
m*/m ~ 6, due to the electron seattering on sﬁin fluctuations. These scattering processes
also leads to a freqﬁency dependent relaxation rate which exhibits a crossover from w3/
behavior at low frequencies, w < 2|u/, to a linear w-dependence for w > 2|u|. We also
discuss a possible origin of MIR band. '

The paper is structured as follows. In the next section we give the basic definitions and
sketch the memory function formalism. In Sec. III we employ MCA to calculate a memory
function. The dynamical charge susceptibility and optical conductivity are discussed in Secs.

IV and V, respectively. The last section summarizes our main results.

II. MODEL AND MEMORY FUNCTION FORMALISM

The ¢t — J model expressed in terms of HO’s, Xf'ﬂ = |4, @)(3, B], reads as

H = Hg +HJ = —Zt,-jX,f’oX?"

i

S - XX, 1)

1,0
where the indices 0 and ¢ = +1 correspond to a hole and an electron with spin 0/2,
respectively, t;; =t and Ji; = J for the nearest-neighbor (n.n.) sites on a planar lattice.
The HO’s can be either Bose-like or Fermi-like and obey the following on-site multiplication

rules X#? X7 = §3,X¢% and the commutation relations
[x22X7], = 8 (52 + 85aX77), (@)

where the upper sign stands for the case when both HO’s are Fermi-like otherwise the lower
sign should be adopted. In the t — J model only singly occupied sites are retained and the

completeness relation for the HO’s reads as
XO+¥Y X7 =1 (3)
7
The spin and density operators are expressed by HO’s as
87 = X7, Si‘:%g:aX,f’”, n.~=;X‘5"’. 4)

The dynamical charge susceptibility Nq(w) is given by a Fourier transformed two-timne

retarded Green function (GF) [10]
No(w) = ~{(naln oo =i [ dte*{[nq(t), n-al) ()

To calculate Nq(w) we employ the memory formalism as discussed in [11,12]. First we

introduce density-density relaxation function

@y(w) = (maln-q))o = =i [ dte*!(na(t)ln-a), ©)



where the Kubo-Mori scalar product is defined as
5
(4(), B) = [ d\(A(t - iNB), (7)
with # = 1/T. The DCS Nq(w) is coupled to the relaxation function ®,(w) by the equation
Nq(w) = Nq — w®,(w), (8)

where Ny = Ny(0) is the static susceptibility.
We introduce the memory function M§(w) for the relaxation function ®(w) as

Ng

Bg(w) = VY (9)

By adopting the equation of motion method for the relaxation function &4(w) one finds,
that the memory function Mg(w) is given by the irreducible part of the relaxation function

for “currents” [13,14]
Mg(“’) = ((Jali—a))i" (10)
The “current” operator jq in the site representation reads as
Ji=1n; = —i[n;, H] = —iZt,-j(X;"’X?" ~He). (11)
o

The Heisenberg part of the Hamiltonian (1) conserves the local particle number and thus
gives no contribution to the “current” operator (11). To treat properly a contribution from
H; term we go one step further and similarly to Eq.(9) we introduce the memory function

Mq(w) for the relaxation function for “currents” MZ(w) (10}, by the following equation

)= S )
where
Mg = =({Jali-a))w=0 = i([jq, n-q]) (13)

s the first momentum of DCS and the memory function M,(w) is given by the irreducible

part of relaxation function for “forces ”:

Mglw) = ((Fqu—q))gr (14)
with
Fq= jq = _i[ij]' (15)

Further, to close the system of equations [see Egs.(8),(9), and (12)] we employ a mode

coupling approximation for the memory function Mq{w).

III. MODE COUPLING APPROXIMATION

First we express the memory function in terms of the irreducible part of time-dependent

corelation function for “forces” by means of the fluctuation-dissipation theorem [11]

My(w) = Tdo e -1
alw) = J 2m w'(w—w' +1in)

00
x [ dte™ (F_ot)|Fo). (16)
—00
The “force” operator given by

im.j mi.j

F= Y [m;- 155, +Hel, ar)

m,j,o0’

H7% 5 = tim [ tmi(X7°X 7800 — XT° X7 BLY)

m,i.g

+ Jmi X7 X7 BY ], , (18)
where the Bose-like operator.
BY? = X[70,0 = X760
1 .
= [-2—71,- - as:] Sow = 57830 (19)

describes electron scattering on spin and charge fluctuations.
The sum in Eq.(17) contains the products of HO’s from the same site. As follows,

such products give no contribution to the memory function, while being decoupled they



do contribute. That is result of the complexity of HO’s algebra (2). To show this let us
consider the term given by Eq.(18); since (i,m) and (m,j) are n.n. pairs i # m and m # j,
however i can be equal to j. For the latter case, i = j, the first term in Eq.(18) is linear
in density operator (X{°X)* = X7°) and thus gives no contribution to the irreducible part
of corelation function for “forces” {14]. As for the second term (18), one can easily verify
that in the case ¢ = j it is canceled out by its counter part from the sum (17). Finally, the
last term in Eq.(18) vanishes for i = j since X7°B7'? = 0 due to the constraint. Therefore
we have to substruct these terms from the “force” operator. As a result we come to the

following expression in the momentum space
F,= L Gra X208 XY
Q== \/NkZ kqk+q
T
1
- N Z Mkyq,PXl‘(,-?-q—le(()aJB:a: (20)

k,p,00’

the vertexes Gy q and My qp are given by

Gra = 9ka — Tkaq (21)
Mk)Q;P - Z{ml(:,)qp ml((‘,)q,p] (22)
1
where
1 z tJ
Gxq = (Zt) ’7k,q: mi,f,,p = 3 ’YP[’Yk-p,q Yk,
ml((,q p (Zt)2[7k,q7k+q—p = M- paTe)- (23)

In Eqgs.(21) and (22) g(m) denote g(m) averaged over the Brillouin zone and are given by

o ztJ
=2zt (1- 7q) (1,2],]) ) [7k,q - 'Tk-p,ql

m£ le = 22" g0 (24)

where Yicq = Mcrqg = M Yq = 1/2[cos(g;) 4+ cos(g,)] and z = 4 for 2-dimensional square
lattice. This form of the renormalized vertexes (21)-(22) insures that all the operators in
the products of Eq.(20) are from different sites. Therefore they can be simply permuted

within the decoupling procedure.

To calculate the irreducible part of the time-dependent corelation function in the right-

hand side of Eq.(16) we apply the mode-coupling approximation [12] in terms of an indepen-

 dent propagation of dressed particle-hole pairs and charge-spin fluctuations. The proposed

approximation is defined by the following decoupling of the time-dependent correlation func-

tions

(X2 (6) X0 () X 2 X58) =

5a,a'5k—q,k’(X|qu(t)Xg’ ) YOU t)Xk'+q) (25)
(X2 g p (XN (1) BE (1) X520, g X&' B

2 8g,51847,50k- q-pkOp,—p’

(X22qop (DX ) (G (DX, g (B (1) Byy)- (26)

By using the decoupling scheme and the spectral representation for the two-time retarded

GF’s [10] we obtain for the memory function
1
Mq(w) = ~[M(q,w) - (q, 0)],
H(q)w) = H](q,(d) + H2(q:w)1 (27)

where I1; (q, w) and Il3(q, w) stems from the first and the second term of Eq.(20), respectively.

Their imaginary parts are given by

I (q,w) = — Z G / dw Ny,

X Ak (d|)Ak+q wh +(1J), (28)

2 . n
le’(q, w) = V kz M]ﬁ,q,p // dwldw‘lNu,wl w2
P ~00

X Aktq-p(w — w1 + W'I)Ak(w‘Z)X:/,(P’wl)’ (29)

where 1, = n(w;) = 1w Fw), Ny w = 1+ N(wi) + N(w = @)ty 00, With n(w) and

N(w) being Fermi and Bose distribution functions respectively, and



Adw) = = Im(X3 | X2, (a0)

is a single-particle spectral function which does not depend on spin ¢ in the paramagnetic

state. We have also introduced the unified spin-charge fluctuation spectrum

Xia(@,0) = - Na(w) + X4(w), (31)
with
Xq(w) = _%((Sqis—q))u (32)

being the dynamical spin susceptibility. In obtaining Eq.(29) we have also used the identity
((Sq1S%gNw = 2((S%|S*))w which holds in the paramagnetic state.

As it is clear from Eq.(27) the memory function involves two contributions; the first
one (28) stems from the H, term (1) and describes the particle-hole contribution, while the
second one comes from both H, and H; parts and involves electron scattering on spin and
charge fluctuations.

Since the charge fluctuations are suppressed for § — 0 (6 being the hole concentration)
Ng(w) is at least of order of 6 (or even smaller). Therefore, considering the leading in §
contributions we retain only the scattering from spin fluctuations.

For further discussion it is more convenient to integrate out the fermionic degrees of

freedom (k,w,) in I1§(q,w) (29). That results
3(q,w) = %Zp: 7(10;, 1+ N, + Noo]
X ﬁg_p(w - wl)xg(wl), (33)
where we have introduced an effective spectral function
m_(w)= Z Fap 7dw;nu,u,
x Ak+q-p(w + o)A, (34)

for particle-hole excitations coupled to a particular (p,w) state of spin fluctuations.

To conclude the section we calculate the first momentum of DCS (13). By performing

the commutation between the density and “current™ (11) operators we readily get

mq = 42tN1(1 — 7g), (35)
where
Z m(XchXOa (36)
q

is the particle-hole corelation function.

IV. DYNAMICAL CHARGE SUSCEPTIBILITY

The Egs.(8),(9), and (12) result in the following form of DCS

Nal) =~ G i o) — g 0] fme = 2 SR

where mgq is the first momentum of DCS given by Eq.(35), and Qf* = mq/Nq is a mean

field (MF) spectrum for the density fluctuations. The memory function formalism does
not provide itself the static susceptibility Ng. The latter one is calculated within the same
approximation scheme as for the static spin susceptibility [15]. That results to the following

form of MF spectrum |
Q2 = 2242Cq(1 — 7q) , (38)

where
Ca=200=2) 4 My = TN (1 4 274) | (30)

and the parameters N,, are defined by Eq.(36). Here we note that the MF spectrum
resembles the dispersion of undamped collective mode in the charge channel found in the
leading order of 1/N expansion [4].

In a proper analysis, Egs. (27)-(29) and (37) should be treated self-consistently with

the equations for the single-particle spectral function Ax(w) [16] and the spin susceptibility



Xq(w) {15], the problem, to our knowledge, can be solved only numerically. Here we show,
that the main features of charge fluctuation spectrum observed in the exact diagonalization
studies [7] can be, at least qualitatively, reproduced in an analytical way based on the
physically justified anzats for the single-particle spectral function and the dynamical spin
susceptibility. First we discuss one-particle spectral function Ax(w).

Actually, the spectral characteristics of the ¢— J model have been investigated by various
analytical and numerical approaches [17]. Those results led to the consensus that the single-
particle spectrum involves a narrow quasiparticle (QP) band of coherent states and a broad
continuum of the incoherent states. The corresponding spectral function can be represented

as
Ar(w) = AP W) + AP (w), (40)
where the QP part is given by
AP (w) = Zib(w — &), (41)

with Zy and ex = ex — p being the QP weight and dispersion referred to the chemical
potential u, respectively. While the incoherent part Aif¢(w) is little effected by the doping,
the cohérent band strucil;ure strongly depends on the magnetic background. Namely, in the
low doping regime (ordered phase) the QP dispersion is determined by the hopping within
a given AFM sublattice [17] and Fermi surface (FS) consists of small hole-pockets centered
around (+7/2,+m/2). Whilevfor a moderate doping (paramagnetic state) the dispersion
reflects the dominance of n.n. hopping and there exists large, electronic FS which enclose
a fraction of the Brillouin zone equal to the electron concentration n [18] . For the latter
doping regime, the exact diagonalization results are well fitted by the simple tight-binding
dispersion with some effective hopping amplitude ¢, which scales with J ( for § = 0.1 and
J = 0.4t t.g = 0.24¢ [18]). Hence, in the paramagnetic phase we can put ex = —zleryic — -

Nearly structureless incoherent part is predominantly distributed bellow the QP band

(in the electronic picture) and we approximate Ai"(w) as follows

10

»

AL() = PO Wi + ), *

where W, ~ 5t is the incoherent bandwidth and ' is measured from the bottom of the QP

band. The spectral weights of the incoherent band T and QP Zy are provided by the sum

rules
1 7 hy n
— =1-=
23 [ doAdw) =
1 | ,
w2 [ doAw) =n, (43)
ko oo
and are given by
26 2(1+6)
=1 = f 44
Z=15% r (1—6)2W“‘°’ (44)

where Z = (Zy) is the averaged QP weight and it coincides with one obtained within the
Gutzwiller approximation [19].

Based on the above form of the spectral function (40)-(42), the equal time correlation
functions Ny » (39) is estimated to be

n

=3 (45)

2
Ny~ =nZ, N,
iy

13

Finally we assume that the spin susceptibility xq(w) (32) is peaked at the AFM wave

vector Q = (m,7) [20]. Then, at T = 0, we approximate I15(q,w) (33) as follows

5(q,w) =~ /dwlfl’c’l_q(w — wi)x"(w), (46)
where .
x(w) = % Zp: Xp (W) (47)

is the local spin susceptibility. Since the detailed form x(w) is not essential for our study

we use the following relaxation type form

X

1 - iw/wy (48)

xw) =

11



which seems to be in accordance with the exact diagonalization data {7,21]. In Eq.(48)
wg o J is the energy scale of spin fluctuations and x is the static susceptibility provided by

the sum rule

We

/dwx(w) = zn, (49)
°

with high-energy cutoff w. = 2J. Eqs. (48) and (49) results

_ 3rn
" 2wpln[l + (we/wo)?]

A. Long—wavelength limit

First we discuss small q,w limit of DCS. In the long wave-length limit, ¢ — 0, MF

spectrum (38) reduces to the sound mode Qq = vsg with the sound velocity vs = zt4/Cy/2

larger than the Fermi velocity vp () = ztegy/(1 — A2)/2 (

At small g the vertex functions (21)-(24) are given by

= |u|/zteg ~ w6/4 for small J).

Giq = 28°[22(aViend)’ — 1]¢, (51)

My qp = z(z — ItJ(@Viendg (52)

with g = q/q.
First we consider the real part of “self-energy” Il(q,w) (27)-(29). Since for small ¢ the
vertex functions Gy,q ~ ¢* and My qp ~ ¢ we proximate II'(q,w) ~ I5(q,w) to keep the

leading in small g contributions. Moreover for small w we expand [j(q,w) as

My(q,w) = H’z((L 0) - aqwzy (53)
where o > 0 and is given by
1d°My(q, w) 1 7 Imy q,w)
=5 2| W{) (54)

Since Mj(q,w) (46) is an odd function of w there is no linear in w term in the expansion

(53). The Egs.(37) and (53) results in the following form of DCS for small ¢,w

12

— ST

—mq/(14 A) (55)
T - 2@ + Ziwly’

where

T e 4 C 1))
qwm., TVIEX T 2mg(1+ W’

(56)

75 and 'y are the renormalized sound velocity and sound damping, respectively.

First we consider renormalization factor A. The estimation of A is interesting by itself,
since it represents the interaction induced electron mass enhancement factor [see Sec. V]
and can be related to experiment [22]. The approximation (40) for the one-particle spectral
function Ag(w) leads to the two different contributions to the effective spectral function for
particle-hole excitations ﬁg_q(w) (34). The first one ﬁg_q(w)c‘c is due to the transitions
within the QP band and the remaining part l:[ﬁ;_q(w)i‘c are provided by the incoherent-
coherent transitions.

First, considering ﬂ{{_p (w)e< (34), (51) we come to the following expression for small ¢

i q(u)** = 570 Tlavion”
X[n(ex) ~ nlesw)]d (W — €icsq-q + €x), (57)

with A = {z(z — 1)¢J]%. As it has been previously discussed by several authors [23], the
particle-hole spectral function for tight-binding electrons exhibits a crossover at frequency
w = 2|u|. Namely, for w < 2|y| it is peaked at the incommensurate wave vectors Q, =
(£ 6% 7),(m,m £ 8*) where the displacement &* for small p is given by 8* =~ u/t.e. While
for w > 2|u| particle-hole spectral function gets its maximum value at AFM wave vector Q
and follows the nested Fermi liquid scaling [24]. Hence we consider the cases w < 2{u| and
w > 2|p| separately.

In the case w < 2|p| we put €x1q-q = €x—q. in Eq.(57) and for 8* <« 1 expand eyiq, ~
—ex — 0" D¢y /Ok,. Moreover, since the dominant contribution in the integration in Eq.(54)
comes from w ~ 0, at T' = 0 we approximate n{ex) — n{€xt,) = wd(ec) and as a result we

get

13



—2wAtZ?

ﬁll- W) =
o=

Pwh(w)(2lu| - w), (58)

where Won = 2zt4 is the coherent bandwidth, and

02 1w
2sin® k7,

hw) = 72| cos k3 sin kj|

with sink} = 1 — w/(2|p|) and cosk] = 2 — cosk]. For w < 2|u| we have [;{w) ~

2y/w/}ul/n? and thus
~ o —AMZE [u
l'l:;_Q(w)c € o W qu. (59)

coh

Then from Egs. (46) and (59) for the velocity renormalization factor A (56) we get

oo o V2AZ%x (60)
= 157r2zt§ﬂN1w0

where the QP weight Z and n.n particle-hole correlator N, are given by Eqs.(44) and (45).
For the actual values of the parameters J = 0.4¢, t.s = 0.24t, and § = 0.1 we obtain AT~ 4.
Next we consider the case w > 2|u|. In this case particle-hole spectral function is peaked

at AFM wave vector ) and from Eq.(57) we come to

Iy qw)™ = ‘{;AZ " 1()0(6 - 2802~ 3), (61)
where @ = 2w/W,,;, and
1@) = = [, (@ a,) ~ 25K 5-a,)] (62)

with @y = 2+, K(z) and E(z) are the complete elliptical integrals of the first and second
kind, respectively. The function J(z) (62) is normalized to 1/4 in the interval 0 < z < 2

and well approximated by the following linear dependence I(z) = (2 —z)/8 and we get

= —rAZ?
0y )™ = Jr— I (e’
7 ) = (Wear = w)B(e = 204)0(Weap — ). (63)

That results in the following contribution to A

14

2(z ~1)*tJ 22
1\[1 w2 ’

coh

ASC o~ (64)

with
I

I= 0/ 0/ dzdyf—(-II;—y)X(y)eu ) (65)
where the dimensionless function f(z) and %(y) stands for f(w) (63) and spins susceptibility
x(w) (48) measured in units of J. For J = 0.4¢, § = 0.1 we calculated the integral (65)
numerically and found / = 0.5. Then from Eq.(64) we estimate A® ~ 0.8.

As for the remaining contribution I:I:;_Q(w)"c, with the help of Eqs.(34),(42), and (52)

at T = 0 we obtain

S i-c Nl_""AZ 2
N azr ! .
X 02w — Weoh, + 2|p))8(Woo, — w), (66)

where W, = Weon, + Wiy is the total bandwidth. From Eq.(56) and by using the sum rule

(49) the upper value of the incoherent-colerent contributions to I} (q, w)"< is estimated as
1 i-c 3 14 i-c
5 (q,w)™ ~ Zan_Q(w) . (67)

That results in

L 3n(z —1)2Zt? [ w2

X6~ . —coh | ~ 0.1,
16I'V; Wczoh Wtzot ] (68)

The small value of A*¢ =~ 0.1 in comparison with Ai-¢ ~ 4 is due to the existence of the
large threshold energy (Weon/2 — || = t) (66) for the incoherent-coherent transitions which
are important only in déscribing the high energy density fluctuations. ’

Finally, by summing all three contributions (62), (66), and (70) for the velocity renor-
malization factor we get A ~ 5. »

It follows that the renormalized sound velocity(56) gets smaller than the Fermi one
U = vg/v/I+ X < vp. Here we notice, that in the Fermi liquid theory, for v; > vp the many

body corrections leads to the stiffening of the sound [25]. Contrary to this, , in the present

15



case there is a softening of the sound. That is due to the scattering on spin fluctuations
given by IT;(q,w) term (46). The renormalized sound falls down into particle-hole continuum
getting finite damping due to the decay into particle-hole pairs {26]. This process is described
by II{(q,w) (28) . The latter one in the small g,w limit reads as [see Eqs.(28) and (51))

(q,w) = —8th"2qu3 Y [22(aViend)® — 1)?
x 8(ex)d(w/q — Gvi), 7 (69)

where vy = Ve is the QP velocity. The integration over k in Eq.(69) results

—V2t1 22 2w \?
H” =_ Y% 1 -1Z= 3
l(qvw) thﬂ‘l sin Bl qUF wq, (70)
where cos 8 = [p? + 2w?/q?)/vk — 1. That results in the following form of the sound damping
Z%3
I, ~ po =—
¢~ Bsg P L (1)

for the actual values of the parameters § < 1, and thus, in accordance with Ref. (6], one

obtains that the sound damping is only numerically smaller than its energy.

B. Short-wavelength limit

At large momenta the main spectral weight of density fluctuations is located at high

energies, (~ t), near the MF spectrum Q, (38). For instance at q = Q we have Qq =~ z¢
while in the exact diagonalization studies [7] the peak is observed at w ~ 6t. However,

considering a *

* self-energy” corrections and noting that IT;(w) falls off as 1/w? at large
frequencies, from Eq.(37) we obtain the renormalized spectrum as {3 ~ Q2 — I, (0) /mq.
One can easily show that IT; (0) < 0 and hence the spectrum is shifted to the higher energies.
At large momenta the peak is dispersed out from the coherent particle-hole continuum and
its broadening is only due to the high energy transitions involving the incoherent band.
Since the latter one has been neglected in Ref. [5] the authors observed an infinitely sharp

peak. However, as it follows the damping of the high energy mode is comparable to its

energy. Near the pole flq we estimate the damping as

16

P -1 (qy ﬁq)

[q (72)

2mqgQlq
where I1"(q,w) = II{(q,w)" + II5(q,w)"* describes the incoherent-coherent transitions.

From Egs.(28) and (42) for g = Q we obtain

I(Q, ) =~ i’%ﬂz (73)
The second contribution I15(q,w) from Eqs.(34), (42), and (67) is estimated as
(Q, w)* = lm—’gﬂ (72)
The Eqs.(72),(73), and (74) result in
r L ABH UL 3t. (75)

T NI,

Thus the peak gets rather broad in accordance with the exact diagonalization results [7].
For large momenta but low energy, charge excitation spectrum should show some low
energy structure related to the contribution from particle-hole continuum to Nj (w). Since 4
is larger in (¢, £) direction than in (£,0), the low energy structure should be less pronounced
in the latter case. The same anisotropy has been observed in the exact diagonalization

studies (7].

V. OPTICAL CONDUCTIVITY

In this section we discuss the optical conductivity o(w). In the linear response theory
of Kubo [27] the frequency dependent conductivity is given by the relaxation function for

currents

ie?

02z (W) = 7((J,|J,))u. (76)

By using the continuity equation and equation of motion for the GF’s, one can easily relate

the longitudinal conductivity to the dynamical charge susceptibility (5)
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ze whNy(w)
Uzz(w) - V }Igr[l) ;2 s (77)

where ¢ = ¢,.- From Eqgs. (37) and (77) we express conductivity in terms of the memory

function
(W) = — ———— (78)

where D = lir% Mq/q? = 2tN is the Drude weight which is given by the half of the averaged
= .
kinetic energy D = —(H;)/2, mq and N, are defined in Eqs. (35) and (36), respectively.

The memory function M(w) reads as

M) = 1) =10 - o (79)
where
N{w) = lim g}:} ), (80)

with I1(q, w) defined in Eq. (27). Since for small ¢, I (q,w) ~ ¢* .(28),(51) and I,(q, w) ~ ¢*
(29),(52) only the second one contributes to II(w). The latter is given by Egs.(33)and (34)
at ¢ =0 with My

ap replaced by the transport vertex given by

[tk pUk — tkvk—p - 2t‘Up]

%w + Tyl = (&)

where ty, = 2t7, Jx = 2J 7, and vy = 8ty fOk,.

We rewrite conductivity (78) in the form of the generalized Drude law as follows

e D)
€ v) 82
7==l) = ¥ 170y - (62
where an effective Drude weight and the relaxation time are given by
. D . T(w)
_ = "W 83
D=3 T = T (83)

with
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Aw) =-— = = -M(w)", (84)

and 1 4 A(w) is the interaction induced mass enhancement factor. The latter one in the
static limit is calculated in the proceeding section and is estimated to be of order 6. That is
in a good agreement with the optical measurement data [22]. Here we mainly focus on the
analysis of the low frequency behavior of the reldxation rate

1 "W
W) Dw

[w) = (85)
Following the Sec. IV we approximate [1”(w) as

7 M (w—w) w<?
H"(w) ~ /dwlxu.(wl) x ~Q-.( l) |ll'| (86)
0 MGw—uw) w>2y|.

In the case w < 2|u| the effective spectral function of particle-hole excitations ﬁ{s (w) (59)

- —4nAtZ? [w
Iy (w) @ ——— 1 [—. 87
Q. ( ) IVcollD !ul ( ‘)

We remark the square root behavior of particle-hole spectral  function 04, () ~ Vw in-

is given by

stead of the conventual linear w-dependence [25]. This behavior results in the square root
singularity of the structure factor that is known as 2kg anomaly familiar for the electron
system in low dimension [23]. It also leads to the deviation from the conventional square

law resulting in the following form of relaxation rate

W) _ 16AZ%y
157rDWcuh ‘/ wo

Here we note, that w-dependence (w*?) of inverse life time for electrons close the saddle

3/'2 (88)

points has been obtained in Refs. (28,29). In the present case Van Hove singularity plays no
role. The obtained w*2-dependence of the relaxation time is rather due to the coexistence
of the peak in the spin fluctuation spectrum and the 2kr “anomaly” in the particle-hole
spectral function at ¢ ~ (). We notice that the former one ,2kr “anomaly”, is not related

to the FS topology and is inherent to the low dimensional electron systemn.
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Now we consider the region w > 2|u|. In this case the particle-hole spectral function
is peaked at AFM wave vector and is almost w independent for low frequencies w < Weon

(63), that results in

TAZ%y
~ . 89
F(w) 8Wcoth0w ( )

Unlike to the previous case, now the electron band structure is mainly responsible for ob-
tained behavior. Of course the AFM character of spin fluctuations favors the scatter process
with momentum transfer @ and thus enhance its contribution to the relaxation rate.

To summarize the low energy behavior of optical conductivity, we have shown that the
relaxation rate due to the electron scattering on spin fluctuations exhibits the crossover from
[(w) ~ w*? behavior at low frequencies w < 2|/ to linear w-dependence at w > 2|ul.

Now we discuss the conductivity at intermediate frequencies. The exact diagonalization
studies of the latter quantity have suggested a possible explanation of the MIR absorption
within the one band model [17,30]. For instance, as it was observed in Ref. [30], the fi-
nite frequency part of o(w) is dominated by a single excitation which scales with J in the
underdoped regime [30] The origin of this excitation was ascribed to transitions in which
an internal degrees of freedom of the spin-bag QP are excited. The presence of the extra
absorption ranging from MIR frequency to ~ 1 ¢V was also observed in 1/N expansion
study of the ¢t — J model [31]. The authors of Ref. [31] interpreted this feature as due to the
incoherent motion of charge carriers. Below we also support the latter point.

Actually, with increasing energy an extra channel of optical transitions opens. These
are the transitions which invoive an incoherent band of the single-particle spectral function.
As we have already discussed the incoherent-coherent transitions are characterized by the
energy scale A = Wy, — 2|u| being a threshold energy for creating “ particle-hole” pairs
with a “hole” in the incoherent band. Due to-this extra channel at w > A the real part of
o(w) starts to increase. Since o(w) vanishes in the limit w — oo there should be a peak
in conductivity at energies of order A. Since the coherent bandwidth W, (and hence A)

scales with J it follows that the typical energy of the peak is also J. That is in accordance

with the exact diagonalization results [30].
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VI. CONCLUSION

To summarize, we have developed a self-consistent theory for both the dynamical charge
susceptibility and the optical conductivity within the memory function formalism in terms
of the Hubbard operators.

We have found that in the long-wavelength limit the charge fluctuation spectrum is
mainly governed by the sound mode (55). Although unrenormalized sound velocity is larger
than the Fermi velocity the “self-energy” corrections leads to the softening of the sound, it
falls down into the the particle-hole continuum and thus acquires a finite damping due to
the decay into pair excitations. The sound damping (71) is only numerically smaller than
its energy and hence there is no well-defined sound mode.

At large momenta the density fluctuation spectrum mainly consists of a broad high-
energy peak which nearly follows MF dispersion (38). At large enough wave vectors the
peak is dispersed out from the coherent particle-hole continuum and its broadening (72) is
due to the high energy ~ t transitions involving the incoherent band of the single—particle
excitations. Contribution from the particle-hole continuum results in some low energy struc-
ture of the charge fluctuation spectrum. Since the high energy peak is situated at higher
frequencies in (£,&) direction than in the (£,0) one a low energy structure should be less
pronounced in the former case.

We have also discussed the optical conductivity. At low frequencies we analyzed o(w) in
terms of the generalized Drude law. We have shown that there is large mass enhancement of
order m*/m ~ 6, due to the electron scattering on spin fluctuations. This scattering process
also leads to the non-Drude fall off of the low energy part of o'(w). Namely, the relaxation
rate shows a power law w-dependence with the exponent 3/2 at low frequencies w < 2|y|
and is linear in w at frequencies w > 2|u|. As for the intermediate frequency conductivity, we

have pointed out the existence of a characteristic energy A (of order J) above which an extra
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channel of the optical transitions opens. These are the transitions in which a particle-hole
pairs with a hole in the incoherent band are excited and they might be responsible for the
experimentally observed MIR absorption.

Obtained results are in a good agreement with the exact diagonalization studies of small

clusters [7].

ACKNOWLEDGMENTS

We would like to thank V. Kabanov, V. Yushankhai, V. Oudovenko and N. Perkins
for useful discussions and comments. Financial support by the the INTAS-RFBR Program
Grant No 95-591 is acknowledged. One of the authors (N. M.) acknowledges also the support
by NREL in the framework of Subcontract No AAX-6-16763-01.

22

REFERENCES

[1] W. Brening, Phys. Rep. 251, 153 (1995).

[2] G. A. Thomas et al., Phys. Rev. Lett. 61, 1313 (1988).

[3] S. Uchida et al., Phys. Rev. B 43, 7942 (1991).

(4] Z. Wang, Y. Bang, and G. Kotliar, Phys. Rev. Lett. 67, 2773 (1991).
(5] R. Zeyher and M. L. Kulié, Phys. Rev. B 54, 8985 (1996).

[6] G. Khaliullin and P. Horsch, Phys. Rev. B 54, R9600 (1996).

[7] T. Thoyama, P. Horscl, and S. Maekawa, Phys. Rev. Lett. 74, 980 (1993); R. Eder, Y.
Olta, and S. Maekawa, tbid. 74, 5124 (1995).

(8] J. Hubbard, Proc. Roy. Soc. A 281, 401 (1964).

(9] D. Pines, in High Temperature Superconductors an the C% systems, ed. H. C, Ren, p. 1
(Gordon and Breach, 1995).

(10} D. N. Zubarev, Usp. Fiz. Nauk. 71, 71, (1972).

(11] D. Forster, Hydrodynamic fluctuations, Broken Symmetry and Correlation Functions
(Benjamin, New York, 1975).

[12) W. Gétze and P. Wollle, J. Low Temp. Phys. 5, 575 (1971); Phys. Rev. B 6, 1226
(1972). ’ '

[13] Yu. A. Tserkovnikov, Theor. Math. Fiz. 50, 261 (1982).

[14] The irreducibility means that only the part of “current” operator orthogonal to the

density one is retained in the memory function. For the rigorous definition see Ref. (13].
[15] G. Jackeli and N. M. Plakida, Theor. Mat. Fiz. 114, 426 (1998).

[16] N. M. Plakida and V.S. Oudovenko (unpublished).

23



[17] For a review see E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[18] W. Stephan and P. Horsch, Phys. Rev. Lett. 66, 2258 (1991).
[19] D. Vollhardt, Rev. Mod. Phys.56, 99 (1984).

[20] Although experiment suggests that the spin susceptibility is peaked at the incommen-
surate wave vectors, we do not discuss this case since it does not introduce qualitatively

new physics.
{21} J. Jakli¢ and P. Prelovéek, Phys. Rev. Lett. 75, 1340 (1995).

[22] A. V. Puchkov, D. N. Basov, and T. Timsuk, J. Phys.: Condens. Matter 8, 10049

(1996).

[23] P. Benard, L. Chen, and A.-M. S. Tremblay, Phys. Rev. B 47, 15217 (1993) and refernces

therein.
[24] A. Virosztek and J. Ruvalds, Phys. Rev. B 42, 4064, (1990.).
[25] D. Pines and P. Nozieres, Theory of Quantum Liguids (Benjamin, New York, 1966).

(26] Since I15(q,w) (29) involves a higher order scattering processes it results in a next order

in small ¢ corrections to the sound damping.

{27] R. Kubo, J. Phys.Soc. Jpn. 12, 570 (1957).

Phys. Rev. B 46, 11 798, (1992).
(28] S. Gopalan, O. Gunnarsson, and O.K. Andersen,
[29] R. A. Hlubina, T. M. Rice, Plys. Rev. B 51, 9523, (1992).
[30] R. Eder, P. Wrébel, and Y: Ohta, Phys. Rev. B 54, R11034 (1996).

[31] Y. Bang and G. Kotliar, Phys. Rev. B 48, 9898 (1993).

Received by Publishing Department
on September 3, 1998.

24

Ixaxemn I, naknga H.M. - E17-98-251
3apapoBas AHHaMKMKa M ONTHYECKas NpOBOOMMOCTH B ¢ —J Momenu

JuHamuyeckas 3apamoBast BOCMPHUMYWBOCTE WM OATHYECKast MPOBOAMMOCTD
BbIYMCIISIOTCS AN ¢ —J Monenu B napaMarHuTHoi#l ¢ha3e Ha ocHoBe (hopMantHaMa
(hyHKLIHMHM MaMsATH B TepMHHax oneparopoB Xab6apaa. [TonyyeHa camocorniacoBaHHas
cHCTeMa ypaBHeHMH Ul (PYHKLHI namMaTH B paMKax NpUONHXeHus B3auMoneifcTBy-
ioux Moa. [Tokaszato, YyTO B ATMHHOBOJIHOBOM Tpefie/ie CMEKTP 3apsiioBbiX (IyKTYy-
alMii naercsl 3aTyxalolied 3BYKOBOH MOMOH, B TO BpeMs KaK B KOPOTKOBOJIHOBOM
npefene CyLECTBYeT ILIHPOKHA MaKCHMYM ¢ XapakTepHoil sHepruei (~ t). Hccneno-
BaHMe ONTHYECKOH NPOBOAHUMOCTH MOKAa3bIBAaET, YTO 3aBUCHUMOCTh (DYHKLMii penak-
CAUMM OT YacTOTbl MMeeT BHI @/ > npu w<?2 | u| M OIUCHIBAETCA JIHHEHHBIM
3aKOHOM NpH > 2 I 1 | [NonyyenHsie pe3ynbTaThl XOpOLIO COMNAcYIOTCs C pe3ylib-
TaTaMH TOYHOMN JHarOHaNH3aLHH. '

Pabota Bbinonxena B JlaGoparopuu teoperuueckoit pusuku um. H.H.Borosnio-
6osa OHSIH.

[Mpenpuut OOBEAMHEHHOrO HHCTHTYTA AUEPHBIX HecnenoBannit. yGHa, 1998

Jackeli G., Plakida N.M. E17-98-251
Charge Dynamics and Optical Conductivity of the t —J Model

The dynamical charge susceptibility and the optical conductivity are calculated
in the planar ¢ —J model within the memory function method, working directly in
terms of Hubbard operators. The density fluctuation spectrum consists of a damped
sound-like mode for small wave vectors and a broad high energy peak (~ ¢) for large
momenta. The study of the optical conductivity shows that electron scattering from
spin fluctuations leads to the Drude frequency dependent relaxation rate which

exhibits a crossover from >/ 2 behaviour at low frequencies (w < 2 | u | ), to a linear
w-dependence for frequencies large than 2|u|. Due to the spin-polaron nature of
charge carriers extra absorptions starting at frequency < J arise. Obtained results

are in good agreement with exact diagonalization studies as well as with experimental
results for copper oxides.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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