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1 INTRODUCTION 
Experimental studies of high-temperature superconductors have provided strong 
support for a major role of strong electron correlations in copper-oxide materials 
(see, e.g., (1]). Many anomalous normal state properties have been explained within 
the models with strong electron correlations as it first has been proposed by Ander­
son (2, 3]. However, the origin of the d-wave superconducting pairing is still under 
discussion (4]. Presently we have no rigorous methods to study these models for 
dimensions d 2:: 2 to find an unambiguous solution of the problem. The recently 
developed dynamical mean field theory (for reviews see [5, 6]) being exact in the 
infinite dimensions has been successfully applied to study the Mott-Hubbard transi­
tion and normal state.properties "'ithin the Hubbard model where local correlations 
are the most important. However, the theory is unable to treat properly nonlocal 
correlations as e.g., exchange interaction in the t- J model and the nonlocal d-wave 
type superconducting pairing. 

To deal with the strong coupling limit for the Hubbard model and the t-J model 
a number of numerical methods for finite clusters has been developed (for reviews 
see (7], [4]). These studies show strong antiferromagnetic correlations which lead to 
the formation of the d,,,2_y2 pairing correlations. However, the finite cluster calcula­
tions due to known limitations (finite size effects, few filling fractions, etc.) can give 
only restricted information. For instance, as it was shown recently by applying the 
constrained-path Monte Carlo method [8] to the two-dimensional Hubbard model, 
small lattice sizes and weak interactions show d,,,1_y2 pairing correlations while with 
increasing lattice size or interaction they vanish. So to prove superconducting pair­
ing in the strong coupling limit an analytical treatment is highly demanded. 

In the limit of a low electron density a t-matrix approach can be used to study 
the t - J model. In [9] the authors observed various forms of electron pairing at 
low temperatures including the d-wave instability at large values of J /t > 1. By 
combining a generalized Lanczos scheme with the variational Monte Carlo method 
in the t - J model, a finite d-wave long-range superconducting order was observed 
below the phase-separation region [10]. 

The main problem in studies of the t - J model is the so-called kinematical 
interaction imposed by the projected character of electron operators acting in the 
subspace of singly occupied lattice sites. To take into account the constraints of 
no double occupancy different types of slave-boson (-fermion) technique were pro­
posed (see [ll]-[14] and references therein). In the mean field approximation (MFA) 
the local constraints are approximated by a global one, that reduces the problem 
to free fermions and bosons in the mean field [11]. To treat the constraints in a 
systematic way, in [12], [13] a large-N expansion, with N being a number of states 
(orbitals) at a lattice site, was used. In that approach the local constraints are 
relaxed and a weak coupling approximation is possible. By using the 1/N expan­
sion, the d-wave superconducting instability induced by the exchange interaction 
was obtained in the t - J model close to half filling [13]. 
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Another method is based on the Baym-Kadanoff variational technique for the 
Green functions in terms of the Hubbard operators. [15]. The method was used 
in [16, 17], also in the limit oflarge N, to consider superconducting pairing in the f-J 
model. It was shown that in the lowest order of 1 / N there is a strong compensation of 
different contributions to the pairing interaction and for J = 0 the superconducting 
Tc is extremely small. For a finite J the d-wave superconducting instability mediated 
by exchange and charge fluctuations was obtained below Tc ::::'. 0.Olt. However, in 
the large-N expansion the kinematical interaction is suppressed and this approach, 
being rigorous in the limit N -+ oo, is difficult to extrapolate to real spin systems 
with N = 2. 

A formally rigorous method to treat the unconventional commutation relations . 
for the projected eiectron operators is based on the diagram te~hnique for the Hub­
bard operators [18], [19] since in this method the local constraints are rigorously 
implemented by the Hubbard operator algebra. A superconducting pairing due to 
the kinematical interaction in the Hubbard model in the limit ofstrong electron 
correlations (U -+ oo) was first obtained by Zaitsev and Ivanov (20] who studied 
the lowest order diagrams for a.two-particle vertex equation. Their approximation, 
being equivalent to the MFAfor a superconducting order parameter, gives only the 
·_s-wave pairing. Close results were obtained for the Hubbard model in· [21, 22] by 
applying the equation of motion method for the Green functions. However, as was 
shown later [23, 24], the s-wave pairing in the limit of strong correlations violates 
an exact requirement ·of no single-site pairs and should be rejected. In [23, · 24] the 
BCS mean field theory for the t - J model was developed within the formally exact 
projection technique [25] for the Green functions in terms of the Hubbard operators. 
It was proved that the d-wave superconducting pairing mediated by the exchange 
interaction is thermodynamically stable and has high Tc::::'. 0.lt for J ::::'. 0.4t. 

On the basis of the diagram technique, detailed studies of spin fluctuations and 
superconducting pairing in the t - J model were performed by Izyumov et al. [26]. 
Summation of the first order diagrams for the self-energy reproduced the results of 
the MFA in [23, 24]. In the second order diagrams only the exchange interaction J 
was taken into account while the corresponding contributions due to the kinematical 
interaction t were disregarded. Estimations done in the weak coupling limit for the 
Eliashberg equation revealed quite a low superconducting Tc. The diagram technique 
for the Hubbard operators was also used in (27, 28] where the BCS equation in the 
MFA was obtained. In [28] the s-wave and d-wave solutions were studied for a model 
with large FS. 

In the limit of small hole concentrations one can consider a one-hole motion on 
the antiferromagnetic background within the spin-polaron representation for the t-J 
model[29, 30]. A number of studies of this model (see, e.g., (31] - (37] and references 
therein) predicts that a doped hole dressed by antiferromagnetic spin fluctuations 
can propagate coherently as a spin-polaron quasi-particle (QP) even for a finite hole 
doping (33, 34]. It was suggested that the same spin fluctuations could mediate a 
superconducting pairing of the spin-polaron QP. This problem was treated in the 
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framework of the weak coupling BCS formalism for a phenomenological Il.lOdel of QP 
with numerically evaluated spectrum [38), [39]. A self-consistent numerical solution 
of the strong coupling Eliashberg equations for spin-polarons and ,magnons in the 
t - J model has been given in [40). A strong renormalization of the hole spectrum 
due to spin-fluctuations and the d- wave pairing of spin-polaron QP with maximum 
T,, ~ O.Olt were obtained. In Ref. [41) the superconducting instability within the 
spin-polaron model was obtained only with additional electron-phonon coupling. 

However, numerical studies [42) of the 2D t - J model at moderate doping have 
questioned the single-hole QP picture developed within the spin-polaron model for 
the superconducting paramagnetic regime. To elucidate the problem, in the present 
paper we propose a theory of electron spectrum and superconducting pairing for 
the t - J model in paramagnetic state by applying the projection technique [25) for 
the Green functions [43) in terms of the Hubbard operators; A formally exact rep­

_ resentation for the Dyson equation with the self-energy as the many-particle Green 
function is derived. By using the noncrossing approximation, numerical solution 
of the self-consistent system of the Eliashberg equations is performed. We observe 
narrow QP peaks for the single-electron spectral density near the Fermi surface (FS) 
and a broad incoherent band below the Fermi level. The incoherent part of the spec­
trum results in nonzero occupation numbers N(k) throughout the Brillouin zone. In 
that respect our results are in a reasonable agreement with numerical studies [42). 
A direct numerical solution of the linearized gap equation reveals the d-wave super­
conducting instability and high Tc at optimal doping. These results are in accord 
with the previous calculations for the spin-polaron t - J model [40). 

The paper is organized as follow. In the next; Sec. II, we present the Dyson 
equation for the matrix Green function in terms of the Hubbard operators. In 
Sec. III a self-consistent system of the Eliashberg equations in the noncrossing (self­
consistent). approximation is formulated. In Sec. IV numerical results for the single­
electron spectral density, occupation numbers N(k), a superconducting gap function, 
and Tc are analyzed. Conclusions are given in Sec. V. 

2 DYSON ~QUATION FOR THE t-J MODEL 

We consider the t - J model in the standard notation [2, 44): 

1 
Ht-J = -t L atajq + J z)S;Sj - 4n;nj), 

i,tj,q (ij) . 
(1) 

where at.= at.(1-n;_") are projected electron operators and Sf= (1/2) E. •' a.tu~ .,,ai.,, 
are spin..,1/2 operators. Here t is an effective transfer integral and J is' the a~tifer­
romagnetic exchange energy for a pair of nearest neighbor sites, (ij), i > j. 

To ,take into account on a rigorous basis the projected character of electrnn 
operators we employ the Hubbard operator (HO) technique [45). The HO are defined 
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as 
X;'/3 = /i, a) (i, ,B/ (2) 

for three possible states at a lattice site i: /i, a) = /i, 0), /i, a) for an empty site 
and for a singly occupied site by an electron with spin a/2 (a = ±1, a- = -a). 
1:_hey obey the completeness relation 

xoo +"~"" = 1 
l L_; t ' 

(7 

which rigorously preserves the constraint of no double occu·pancy. 
The spin and density operators in Eq.(1) are expressed by HO as 

sr = Xf", s: = iLaXf", 
(7 

The HO obey the following multiplication rules 

X"/3 x:ro = c5 xao 
' ' {3-y ' ' 

and· commutation relations 

n; = °" X"" L ' . 
(7 

[xff3, xJ6] ± = c5;i ( c5f37 Xf5 ± c5oaX?fJ) . 

(3) 

(4) 

(5) 

(6) 

In Eq.(6) the upper sign stands for the case when both HO are the Fermi-like ones 
(as, e. g., XI'"). The spin and density operators (4) are the Bose-like and for ther{1 
the lower sign in Eq.(6) should be taken. 

By _using the Hubbard operator representation (2) for at,. = Xf0 and iii" = XJ" 
and (4) for spin and number operators we write the Hamiltonian of the t- J model 
(1) in a more general form: 

Ht-J = - L t;jXf0 XJ" - µ L Xf" 
i'/:-j,<T icr 

1 " J (X"" VCT<7 X""X"") +- L · ii i -'~i - i i · 4 ifcj,<1 

(7) 

The electron hopping energy for the nearest neighbors, t;i = t, and the second 
neighbors, t;j = t', on a 2D square lattice, and the exchange interaction J;j = J for 
the nearest neighbors can be considered as independent parameters if, starting from 
a more realistic for copper oxides three-band p - d model, we reduce it to the t - · .J 
model [44]. In that case the parameters t, t' and J can be evaluated in terms of thr 
original parameters of the p-d model (see, e.g., [46], [36], [37]). We introduced also 
the chemical potential µ which can be calculated from the equation for the aYerage 
number of electrons 

n = L(Xf"). (8) 
i,CT 
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To discuss the superconducting pairing within the model (7) we consider the matrix 
Green function (GF) 

G;j,u(t - t') = ((IV;u(t)lwfu(t'))) (9) 

in terms of the Nambu operators: 

( X~") 
'V;u = x;o ' . ir,+ = (x'o x~u) 

tU l l ' 
(10)" 

where Zubarev's notation for the anticommutator Green function (9) is used (43]. 
By differentiating the GF (9) over the time t we get for the Fourier component 

the. following equation 

wGiju(w) = O;jQu + ((Z;u I Wju))w, (11) 

where Z;u = [w;o-, H] , ~" = ( ~" Ju ) with Q~ = (X?0 + Xf"). Since we 

consider a spin-singlet state the correlation function Q" = Q = l - n/2 depends 
only o-d the average number of electrons (8). 

Now, we project the many-particle GF in (11) on the single-electron GF by 
introducing the irreducible ( irr) part of Z;o- operator 

((Z;" I wf")) = "L E;1u(N1" I wt"))+ ((i;':;rl I wfu)), 
I 

· ({z·(irr) ir,t }) = (z(irrlir,t + ir,+ z(irr)) = O 
UT ' JU iq JU JfI tcT ) (12) 

that results in the· equation for the frequency matrix 

Eiju = ({[IV;o-,H], wtu}) Q- 1
: . (13) 

To calculate the matrix (13) we use the equation of motion for the HO: 

(
. d ) Xo" '°' B xoo-' 
i dt + µ i = - '7 t;1 iuu' 1 

+~ L .l;1(B1uu' - Ouu' )X7"', 
I 

(14) 

where we introduced the operator 

B;uu' = (Xf0 + Xf")ou'u + Xf"ou'u 

= (1- !N;+aSt)ou'u+S[ou'u• 
2 . 

(15) 

The Bose-like operator (15) describes electron scat~ering on spin and charge fluctu­
ations caused by the nonferrnionic commutation relations for the HO (the first term 
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in (14) ··· the kinematical interaction) and by the exchange spin-spin interaction (the 
second term in (14)). 

Now we introduce the zero-order GF .in the generalized MFA which is given by 
the frequency matrix (13) · 

• 0 • ' • -1 
G;ju(w). = Q{wroO;j - E;ju} . (16) 

By writing the equation of motion for the irreducible part of the GF in (12) with 
respect ~o the second time t' for the right-hand side operator iI!fu(t') and performing 
the same projection procedure as in (12) we can obtain the Dyson equation for the 
GF (9) in the form · 

Giju(w) = G?ju(w) + "LG?ku(w) f;klu(w) Glju(w), 
kl 

where the self-energy operator tkiu(w) is defined· by the equation 

T;ju(w) = f:uu(w) + Lf;iku(w) G21Aw) 1'uu(w) • 
. kl 

Here the s~attering matrix is given by 

t. .. ( ) = Q-l l(zfirr) I z(irr)+)\ Q-1 
ZJ<T W ~ ZIT JU /W • 

(17) 

(18) 

(19) . 

From Eq. (18) it follows that the self-energy operator is given by the irreducible part 
of the scattering matrix (19) that has no parts connected by the single zero-order 
GF (16): 

f;iju(w)_ = Q-l((z;':;r) I zJ;;rJ+))trr) Q-1 . (20) 

Eqs. (16), (17) and (20) give an exact representation for the single-electron GF 
(9). To calculate it, however, one has to introduce an approximation for the many­
particle GF in the self-energy matrix (20) which describes inelastic scattering of 
electrons on ·spin and charge fluctuations. 

3 SELF-CONSISTENT ELIASHBERG EQUA~ 
TIONS 

In the k-representation for the GF 

G0 P(k w) = '°' G0
~ (w) e-ikj 

<T ' L.J OJU ' 
(21) 

j 

we get for the zero-order GF (16): 

G~0l(k,w)-1 = {wfo - (Ef - µ)fa - ~kf1}Q-1
, (22) 
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where f-0 , f-1, f-3 are the Pauli matrices. The energy of the quasiparticles Ek, the 
renormalized chemical potential µ = µ - 8µ and the gap function 6.k in the MFA 
(13) are given by 

21 
Ek= -1;(k)Q - E,(k)/Q - N L 'J(k - q)Nqu, 

q 

where we have introduced l(q) = 41,(q) and 

1;(k) = t(k) = 4t1 (k) + 4t','(k) , 

1;,(k) = 4t,(k)x,. + 4t','(k)x2., 

with 1{k) = (1/2)(cosaxqx+cosayqy_) and 
,'(k) = COS axqx COS ayqy , 

1 ""' n Xis 8µ = N ~1;(q)Nqu - 21{2 - Q), 

6." - _ _2_""' ( k ~ ) (XOir xo") 
k - NQ ~ g q, q -q q ' 

where the interaction is given by the function: 

1 ' 
g(q, k - q) = t(q)- 21(k - q). 

(23) 

(24) 

(25) 

(26) 

Thei:e are two contributions in the gap equation {25): the k-independent_kine~atical 
interaction t(q) and the exchange interaction l(k - q). The kinematical interaction 
gives no contribution to the d-wave pairing in MFA, Eq. {25)(see [23]), and we disre­
gard it in the following equations. The average number of electrons in Eqs. (23), (24) 
in the k-representation is written in the form: 

nk,u = (Xk0Xf") = QNku. (27) 

In calculation of the normal part of the frequency matrix (23) we have neglected 
the charge fluctuation and introduced the spin correlation functions for the nearest 
(x1,) and the next-nearest (X2s) neighbor lattice sites 

Xis= (S;S;+a,), X2s = (S;Si+a2), . (28) 

where a1 = (±ax, ±ay) and a2 = ±(ax± ay) are the nearest and the next-nearest 
neighbor lattice sites. 

To calculate the self-energy operator we employ the noncrossing approximation 
( or the self-consistent Born· approximation) for the irreducible part of the many 
particle Green function in (20). For the two-time GF the noncrossing approxima­
tion is given by the two-time· decoupling for the corresponding correlation functions 
in (20): ·..:.::, :,.'. 

(Xf,'0 Btu,X~"' (t)B;uu' (t)) 
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'.:::'. (Xf,'0 X;qu'-{t))(Btu,Biuu•(t)) . (29) 

The proposed decoupling does not violate equal time correlations since in Eq. (29) 
j -1- j' and i -1- i' . Using the spectral representation for the GF, we obtain in the 
noncrossing approximation the following expression for the normal and anomalous 
components of the self-energy, taf3(k,w) = Q'ta/3(k,w): 

tf1 (k, w) = -t~2 (-k, -w) = 

1 +oo . 

= NL J J dzd0.N(w, z, ~)>.11 (q, k - q I n)Af1 (q, z), 
q -oo 

(30) 

tfjk,w) = (t~1(k,w))* = 
1 +oo , 

= NL I I dzd0.N(w, z, n)>-12(q, k - q I n)Af2(q, z), 
q -oo 

(31) 

where 

( n) = ~ tanh(z/2T) + coth(n/2T) 
N W,Z,H n · 

2 W-Z-H 
(32) 

Here we introduce the spectral density: 

Afi(q,z) = -d7rlrn ((xgu I x;0))z+i6, (33) 

Af2(q, z) = -d7rlm «xgu I x~~))z+i6, (34) 

and the electron - electron interaction functions caused by spin-charge fluctuations 

>-11(q,k ._ q In)= 
. ' . 1 

= _g2(q, k - q)[--Irn n+(k - q, n + i8)], 
7r ' 

(35) 

>-12(q, k - q I n) = 

= _g
2 (q, k - q)[-_!,Irn n-(k - q, n + i8)], 

7r (36) 

where the spectral density for the spin-charge fluctuations is defined by the boson­
like cornuiutatorGF 

1 
n±(q,n) = ((Sq I S_q))n ± 4((nq I nt))n- (37) 

The solution of the Dyson equation ( 17) can be written in the Eliashberg notation 
as 

G"(k,w) = QG"(k,w) 
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where 

= Q wZf(w)f-o + (Ef + ~f(w) - ji,)f-3 + <I>f(w)f-1 
(wZf(w))2 - (Ef + ~f(w) - ji,)2- I <I>f(w) 12' 

w(l - Zf(w)) = ~(Ef1 (k,w) + E~2 (k, w)], 

~f(w) = ~[Ef1(k,w)- E~2 (k,w)], 

<I>Hw) = D.'{_ + Ef2 (k,w), 

and, by fixing the phase of the gap function, we take it to be real. 

(38) 

(39) 

4 NUMERICAL RESULTS AND DISCUSSION 

For numerical solution of the system of equations (30) - (39) we have used the 
imaginary frequency representation for the Green function (38) with w = iw,. = 
in-T(2n + 1) and the spin-charge Green function (37) with n = iw,. = i1rT2n where 
n = 0, ±1, ±2; .... By using the representation for the function (32) 

1 1 
N(iw,.,z,0)=-TI:iw -z i(wn-:-Wm)-n 

rn rn 

after integration in Eqs. (30), (31) we get 

Ef1 (k, iw,.) = 
T -= - NL L Gf1 (q, iwm)>.n (q, k - q J iw,. - iwm), 

q m 

Ef2 (k, iw,.) = 

= - T LL Gf2 (q, iwm)>-12(q, k - q I iwn - iwm)­
N q m 

The interaction functions are given by 

>.11 (q, k - q I iwv) = g2 (q, k - q)D+(k - q, iwv) , 

>-12(q, k - q I iwv) = _q2(q, k - q)D-(k - q, iwv): 

(40) 

(41) 

(42) 

(43) 

(44) 

To calculate superconducting Tc it is sufficient to study a linearized system of 
the Eliashberg equations (39) which has the following form 

l 
Gf1 (k, inn) = iwn _Ek+ ji, - tr1 (k, iwn)' (45) 

<I>u(k, iwn} = D.'{_ + </>u(k, iwn) 
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= ~LL {J(k - q) + >.12(q, k - q I iwn - iwm)} 
q m 

xGf1 (q, iwm)Gf1 (q, -iwm)<I>u(q, iwm). (46) 

At first the system of equations for the normal GF (45), (41) was solved numerically 
for a given concentration of electrons 

n 1 ·2T oo_ 

1 - n/2 = NL Nku = 1 + N L L Gu (k, iwn) . 
k,u . ·k n=-oo 

(47) 

Then the eigenvalues and eigenfunctions of the gap function (46) were calculated to 
obtain the superconducting transition temperature Tc and the (k, w )-dependence of 
the gap function. 

For numerical calculations we take into account only the spin-fluctuation contri­
bution and write the functio~ D;(q, iwv) {37)'in the form 

+oo . 

D;(q, iwv) = {{Sq I S_q)}iw, ~ - /~;~:~x: (q, z). 
0 

(48) 

For the spin-fluctuation susceptibility we used a model representation suggested in 
numerical studies (47, 48] 

,, 1 ,, 
x.(q,w) = --Im ((Sq I S_q))w+i6 = x.(q) x.(w) 

. 7f . . 

Xo w 1 =----- tanh---
1 + e(l + 1 (q)) 2T 1 + (w/w.) 2 ' 

(49} 

with characteristic AFM correlation length € and spin-fluctuation energy w. ~ J. 
However, the q-dependent part we took in a slightly different form, as a periodic 
function in q-space with more extended maxima at (±1r, ±1r} points. To fix the 
constant xo in {49) we use the following normalization condition 

which gives 

+oo d . 
1 1 / Z II ) 

N };:(S;S;) = N I:x.(q) exp(z/T) -1 x.(z 
. • q -oo 

7rW8 ~ ( ) 3 = 2N L., Xs q = 4n, 
q . 

3n 1 1 
Xo = 21rw.C1 ' Ci = N ~ 1 + ~2(1 + 1 (q)). 

In the approximation (48) we get for the interaction functions (43}, (44) 

>.u(q, k - q I iwv) = >-12(q, k - q I iwv) 
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= -g2(q, k - q)x.(k - q)F.(iwv), (51) 

where 

1
00 2xdx 1 x 

F. Wv = tanh-
( ) o x2 + (wv/w.)2 1 + x2 27 

(52) 

is the sp-ectral function, r = T/w •. Within the model {49) the static spin correlation 
functions (28) read: 

1 
Xis= (S;S;+a1 } = NL ,(q)(SqS-q), 

. q 

x2. = (S;S;+a2) = ! L ,'(q)(SqS-q) , 
• . q 

(53) 

where (SqS-q) = (1rw./2)x.(q). 
To analyze a role of different interactions in the electron - spin-fluctuation scatter­

ing in (51) we consider the weak coupling approximation for the Eliashberg equation 
(38). It is given by the following approximation for the interaction (51) [49]: 

A12(q, k - q I iwn :.._ iwm) 

!::= -j(q, k - q)0(w. - lwnl)0(w. ~ lwml), 

where we take F.(wv) !::= F.(w.) !::= 1 and introduce 

>.(q, k - q) = g2(q, k - q)x.(k - q). 

In_ the weak coupling limit we ·have for the anomalous GF: 

- • q>U 
Gf2(k; iwm) !::= - (w )2: (na-)2 ' 

, ., m le 

(54) 

(55) 

(56) 

'Yhere n~ ·= (Ef + ~f (0) ::-- µ)2+ I 4>i 12 is the QP energy in the superconducting 
state with the frequency independent gap' function 4>k. By performing summation 
over min Eq.(42), we get the weak coupling BCS equation 

. , 1 . · . ' • . q>U n 
4>u(k) = N L{J(k - q) - >.(q, k - q)} 

20 
tanh 

2
;. 

q q 
(57) 

In comparison with the results of the diagram technique (26], in Eq. (57) the kine­
matical interaction is also included in the effective coupling constant of the second 
order (55). The equation for the gap function obtained in the MFA approxi~ation 
within the diagram technique in [27] is given by Eq. (57) with >.(q, k - q) = 0 while 
the equation obtained in [28] has an additional factor Q = 1- n/2 which is spurious 
as was shown in (23] (compare with (22]). Below we compare results for the super­
conducting Tc calculated in the weak coupling limit, Eq.(57), and obtained within 
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the Eliashberg equation ( 46) and study the role of the kinematical interaction in 
>.(q, k - q). 

The numerical calculations were performed using the fast Fourier transforma­
tion [50] for a 32x32 cluster. .In the summation over the Matsubara frequencies 
we used up to 700 points with the constant cut-off Wmax = 20 t. Usually 10 - 30 
iterations were needed to obtain a solution for the self-energy with an accuracy. of 
order 0.001. The Pade approximation was used to calculate the one-electron spectral 
function A 11 (k, w) (33) and the density of states 

on the real frequency axis. 

A(w) = ~ EAf1(k,w) 
N k 

(58) 

The calculations were performed for several values of the t - J model parameters 
(J/t, t' ft), the A.FM correlation length~ in the model function (49) ,with w, = J, 
and the hole concentration b' = 1 - n. Below we present results for b' = 0.1 - 0.4 
and ~ = 1, 3 for the parameters J = 0.4, t' = 0 if other values are not i1idicated'. 
All the energies and temperature are measured in units oft. To mimic suppression 
of AFM correlations with doping we usually take~ = 3 for b' = 0.1 and keep ( = 1 
for b' = 0.2 - 0.4. Temperature effects are rather small for T :S 0.1 and therefore we 
present only results for T = 0.0125. 

4.1 Normal state 

Results for the electron spectral density in the normal state, A(k, w) = A 11 (k, w) 
(33), are shown along the three symmetry directions in the BZ: r(O, 0) ---t X(n, 0) -~ 
M(1r,1r) ➔ r in Fig. 1 for b' = (J.1, ( = 3, Fig. 2 for b' = 0.4, ( = 1. For small 
concentration of holes, b' = 0.1, we observe quite narrow QP peaks al the wave vec­
tors crossing the Fermi surface (FS) along M ➔ X and M ➔ T directions. Along 
X ➔ r direction wave vectors are below the FS (see Fig. 7.) and th'ere are no,QP 
peaks: In a_ddition to the QP qispersion we see also a band of incoherent excitations 
with large-dispersion below the Fermi energy, w < 0. Tl1e incoherent band is caused 
by the self-energy contribution peaked at the AFM wave vector ("shadow bands"). 
For ( = 3 in Fig: ·1 the incoherent band has a higher intensity due to stronger 
spin-fluctuations weight at the AFM wave vector . \.Vith increasing hole concentra­
tion the dispersion of the QP band also increases and the intensity of QP peaks are 
enhanced as shown in Fig. 2 for b' = 0.4, .( ~ 1. At the same time the intensity 
of the incoherent excitations are suppressed: the "high~energy featui·e" b~low the 
Fermi energy-at the X·point•for b' =·0.1,·( = 3 in Fig. 1 practically disaJ;pearsfor 
b' = 0.4; ( = 1 in Fig. 2. As was discussed by Shen and Schrieffer [51] ·(see also [52]),' 
the doping dependence of the spectral lineshape near ( 1r, 0) point can be explained 
by strong coupling' of the QV hole excitations with collective excitations. In 011r 

model the latter are 'spii1 fluctuations which intensity at (1r.1r) point is proportional · 
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toe (see Eq. ( 49)) resulting in strong suppression of the incoberent excitations with 
decreasing ~ and increasing o. An important role of the next neighbor hopping t' in 
the explanation of the doping dependence of the spectral lineshape near (1r, 0) was 
also pointed out in [53]. 

These-Conclusions are supported by the dopin_g dependence of the imaginary part 
of the self-energy -ImE(k,w) = -Imtf, (k, w+i1:) shown in Fig. 3 for o = 0.1, ( = 3 
and Fig. 4 for 8 = 0,-3, ( = 1. With increasing hole concentration and decreasing 
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AFM correlation length ~ the self-energy decreases due to suppression of electron 
scattering on spin-fluctuations. It is interesting to note that for the underdoped 
region, o::; 0.1, ImE(k, w) for T::; w ~ J is approximately proportional tow (see 
Fig. 3, especially M-point) while for the overdoped region, o ~ 0.3, for small w we 
have ImE(k,w) ex w2

• However, our (k,w) resolution is not high enough to prove a 
transition from the non-Fermi liqu1d to the Fermi-liquid behavior with doping. Our 
results for electron spectral functions generally are in accord with calculations [48] 
done for zero temperature. However, contrary to [48],we did not introduce any 
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additional incoherent part for the self-energy (30) to fulfill the Luttinger theorem. 
We feel. this fitting to be artificial. Vve find also a reasonable agreement of our 
results for the spectral function for o = 0.1, ( = 3, including both the coherent 
QP dispersion and incoherent band, with the calculations in [42] within the exact­
diagonalization technique for a finite cluster of 20 lattice sites with 2 holes (o = ,0.1). 

In Fig. 5 we show the QP dispersion E(k) for o = 0.1, ( = 3 and t' = 0, ±0.1 
(upper panel) and o = 0.1, ( = 3 and o = 0.4, (s = 1 (lower panel) which are 
calculated from the m:axima of spectral density. As we see, the QP band width 
strongly increases with doping while the next neighbor hopping t' change the dis­
persion mostly at r(o, 0) and X ( 1r, 0) points. These results can be already explained 
within the spectrum Ek in MFA, Eq. (23). Being written in the form 

Ef = -4t,(k) Q[l + Xis/Q 2
] - 4t','(k) Q[l' + X2s/Q2

] 

= -teff ,(k) - t'eff ,'(k), 
it shows a strong dependence of the effective hopping parameters on the static 
AFM correlation functions (28): Xis = (S;S;+a1 ) , x2; = (S;S;+a2 ). For small hole 
concent~ation and large AFM correlation length, e.g., o = 0.1, ( = 3 , we have 
Xis = ...::o.23, X2~ = 0.13 (see Table I) and teff ~ 0.53t, t',,11 ~ l.25t'. Atlarge 
hole concentration, e:g., o = 0.4, ( = 1 , we have X1, = -0.06, X2~ = 0.016 and 
teff ~ 2.5t, t'eff ~ 2.7t'. The self-energy additionally renormalizes the spectrum 
but the general o, ( dependence obtained in the MFA agrees quite well with the 
observed in Fig. 5. · 

Here we would like to point out that in the large--N expansion technique, both 
for the slave boson [12], [13] and the Baym-Kadanoff variational GF [16, 17], the 
iiarrowing of theb_and due to the discussed above AFM correlations is ignored. 
In the 1/N expansion the static spin correlation functions Xi~, Xis .appear to be 
of the higher order in 1/N and therefore are omitted .. Moreover, the factor Q -in 
the spectru~)n the MFA, Eq. (23) is also underestimated. We have'in Eq. (23) 
Qu = (Xf0 + X:U) = (1 + o) /2 while in the 1 / N expansion Q = (Xf0) = o since the 
correlation function (xru) is of the order 1/N and is disregarded. These underesti­
mation of the strong kinematical interaction in the large--N expansion changes the 
doping dependence of the QP spectrum in MFA in comparison with real situatimi 
with N = 2. 

Figure 6 shows electron density of.states A(w) for o = 0.1, ( = 3 (dashed line) 
and o = 0.4, ( = 1 (solid line). Since the incoherent band is strongly suppressed a:t 
large hole conc~n:tration (o = 0.4) and small AFM correlatioI). length (( = 1), ~l~e 
electron density i:if state has a nearly symmetric form with a broad band width (of 
the order of 7t) in com:parison with highly asymmetric one for low dopi'r1g (o = 0.1) 
where high d_erisity. of states 'below the Fermi level is due to the incohere:nt band. 
The obtained results for the spectral functions seem to prove a strong dressing of 
hole QP in the underdoped regime and weak coupling of electrons with spin fluc­
tuations in the ove:i-doped regime which are in accord witli results' ofa~igl'e-~es~lved 

·.·., " . ·-: . . .... · . .. 
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photoemission spectroscopy [54]. 
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Remarkable results were obtained for the electron occupation numbers (27) 
nk,u = (Xf0 XZU) = [(l +l)/2] Nku • In Fig. 7 the fun~tion N(k) = Nku is shown for 
different hole concentrations: (a) <l = Cl.l, l = 3, and (b)-(d) t5 = 0.2 - 0.4, l = 1. 
The shape of the FS changes from the hole-like around M(1r, 1r) point of BZ at small 
doping to the electron-like around f(0, 0) point of BZ for large doping. However, 
the drop of N(k) at th.e FS is quite small, especially at small doping, which is a 
specific feature of strongly correlated electroi1ic systems. Large occupation numbers 
throughout the BZ are due to the incoherent contribution in the spectral density 
A(k, w) under the Fermi level (see Figs. 1 - 2). The maximal occupation numbers 
for electrons, nk = (1 - n/2) N(k) ~ 0.55 for <l = 0.1, agrees with the results 
of the exact-diagonalization technique for finite clusters [42]. The FS crosses the 
(±1r, 0), (0, ±1r) points of BZ at <l ~ 0.3. The evolution of the FS with hole con­
centration is also shown in Fig. 8 by bold solid Jines. The volume of the FS at 
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Fig. 8. The Fermi surface (bold solid lines) and the gap function 4.>(k,0) (thin solid lines with 
( +) and (-) showing the sign of the gap) versus k, (0 $ k.,, k'II $ 1r), for different hole concentration 
6 and AFM correlation length e: 6 = 0.1, e = 3 (a), 6 = 0.2, e = l (b), 6 = 0.3, e = l (c), 
6 = 0.4, e = I (d). 

small doping is proportional to the hole concentrations, e.g., for <l = 0.1, 0.2 the 
ratio of the BZ part for k > kp to the whole BZ are close to 10 % and 20 %, 
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respectively, while according to the Luttinger theorem the ratio should be equal to 
(1 + 6)/2. However, the problem of the Luttinger theorem for strongly correlated 
systems should be discussed for the Hubbard model where the weight transfer from 
the upper Hubbard subband to the lower one with doping is important and cannot 
be taken into account within the projected one-subband t- J model (see, e.g., [55]). 

4.2 Superconducting state 

The results of numerical solution of the linearized Eliashberg equation (46) are 
presented in Figs. 8 - 11. Figure 8 shows the contour plots in a quarter of BZ, 
(0 ~ kx, ky ~ 1r), for the static gap function <I>(k) = <I>(k, w ~ 0) .. At a sm~ll dopi~g, 
t5 = 0.1, (Fig. 8 (a)), it has a more complicated k-dependence, with two positive 
and two negative maxima (shown by ( +) and (-)) while at <l 2:: 0.2 only one positive 
and one negative maximum survive (Figs. 8 (b)-(d)). More clearly it is shown in 
Fig. 9 for <I>(k) in k-space for small concentration of holes, <l = 0.1 (a), and for 
a nearly optimal one, <l = 0.3 (b). The cT>(k)-dependence has a complicated form 
that cannot be described by simple (cos kx - cos ky) function usually used for the 
d-wave symmetry. However, in all cases the gap function obeys the B 19 symmetry: 
<I>(kx, ky) = -<I>(ky, kx) which breaks the 4-fold symmetry of the FS ink-space. 

In Fig. 10 we present the superconducting Tc versus hole concentration t5 for AFM 
correlation length€= 1 (solid line) and€= 3 (dashed line) obtained from numerical 
solution of Eq. (46). With increasing AFM correlation length l effective eiectron­
electron coupling >.12 (q, k - q I iwv)° mediated by spin fluctuations x,(k - q) also 
increases that rises Tc. For comparison, in Fig. 11 we present also superconducting 
temperature Tc versus hole concentration <l for AFM correlation length l = 1 in the 
weak coupling approximation, Eq.(57), for the full vertex, J(k-q)->.(q, k-q) (solid 
line), the vertex with t(q) = 0 in >.(q, k - q) (dashed line), and in the MFA with 
>.(q, k - q) = 0 {dotted line). We see that in the weak coupling approximation Tc 
is much higher in comparison with that one obtained from the frequency-dependent 
equation (46) for the same static susceptibility, i.e., l = 1 in Eq. (49). However, the 
most important contribution in the weak coupling approximation gives the vertex 
in MFA, i.e. J(k - q) in Eq. (57). The second order contribution, >.(q, k - q) = 
g2 (q, k - q)x.(k - q) , enhances Tc both due to kinematical, t{.q), and exchange, 
J(k - q), interactions. For larger AFM correlation length superconducting Tc is 
greatly enhanced in the weak coupling approximation, e.g. Tc~ O.l for l = 3. 

So our calculations, done for the paramagnetic state in the t - J model, confirm 
the results of the d~wave superconducting pairing with quite high Tc obtained within 

. the spin-polaron t - J model {40]. Contrary to the latter model, having the long­
range AFM order, we obtain quite a high value of Tc ~ 0.01 - 0.04 ~ 50 - 200 K 
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Fig. 10. The superconducting temperature 
Tc versus hole concentration o for AFM cor­
relation length ( = 1 (solid line) and ( = 3 
{dashed line), obtained from Eq. {46). 

Fig. 9. T4e gap function <P(k,w = 0) versus 
k ~or o =CJ.I;_(= 3 (a), o = 0.2, ( = 1 (b). 

To elucidate the role of AFM short-range fluctuations in the model and particu:..· 
lar, -strong dependence of Tc on the AFM correlation length t obtained both within 
the full equation (46) .and in the weak coupling limit (57), we present in Table I 
~-dependence of the static correlation functions, Xis, X2s, and the constant xo in 
Eq. (49) .. The latter,_as well the ratio Xs(Q)/xs(q = o); estitnates the electrori-spin 
fluctuation coupling while the static correlation functions Xis, x2s, Eq. (53), define 
the band width in the MFA, Eq. (23) as discussed above. Large increase of these 
parameters seen in Table I, with increasing~ from their values at ~ = 1, explains 
strong changes in the spectral functions A(k,w) and Tc. To analyze unconventional' 
( k, w )-dependence of the gap function we consider the kernel in the integral' equation 
for the gap, Eq. (46), given by, 

K(q,k- q I w,,,) = J(k - q)_+ >-12(q,k- q I iw,,,) 

= J(k - q) - g2(q, k - q)xs(k _:_ q)Fs(w,,,). (59) 
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For the d-wave gap symmetry we can analyze only its q-dependence given by the 
projection: 

- 1 

where 

~ -... 
~ 

K(q,w,,,) = N I;(cos kx - cos ky)K(q, k - q I w,,,) 
k 

= (cosqx - cosqy) J - F.(w,,,)B,qx,qy), 

1 " • 2 B(qx,qy) = NL.,(coskx-COSky)g (q,k-q)x.(k-q). 
k 
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Fig. 11. 'J'.he superconducting temperature Tc versus hole concentration o for AFM correlation 
length ( = l in the weak coupling approximation, Eq. (57), for the full vertex (solid line), the 
vertex with t(q) = 0 (dashed line), and in the MFA with >..(q, k - q) = 0 (dotted line). 

Table I. Static spin correlations versus AFM correlation length ( at different hole concentration o. 

~ 8 Xo Xls X2s x,(Q)/x.(0) 
1 0.30 1.56 -0.072 0.019 3 
3 0.10 7.40 -0.230 0.130 19 

5 0.05 17.08 -0.311 0.213 51 

The spectralfonction F,(w,,,)(52) being- large for low temperature T = T/w, « l 
at w,,, = Wn ._ Wm = 0 -(F,(w.) '::::'. 1) tends to zero for w,,,/ws » l . Since the 
susceptibility x,(k - q) is p·eaked at k - q = (1r, 1r) we can further approximate th~ 
sum in Eq. (61) by 
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B(qx, qy) ':::'. -(cos qx - cos qy)[t(q) + 2./]2 ! L x.(k - q) 
k 

-::= (cosqx - cosqy)[t(q) + 2./] 2 Xo. (62) 

Therefore the full projected kernel in the gap equation for the d-wave pairing in 
Eq. ( 46) is estimated by 

K(q, w,.,) -::= (cos qx - cos qy){ .J + [t(q) + 2J] 2 Xo F,(w,.,)}. (63) 

The same estimation holds for the weak coupling approximation (57) with F,(w,.,) -::= 

1. The kernel gives no contribution along the lines jqxl = jqyj, as it should be 
for the d-wave pairing, while the kinematical interaction t(q) vanishes along the 
lines jqxl + jqyj = 1r. Therefore, the pairing interaction should strongly depend 
on hole concentration being large when FS crosses the maxima of the l<ernel (60) 
in q-space. For the "optimal" doping the FS is close to the lines jqxl + jqyj = 1r 

and the largest kinematical interaction gives no contribution. The very complicated 
behavior of the kernel in q-space ( also influencing the gap w-dependence) can explain 
unconventional k ( and w) dependence of the gap function. A small minimum for 
Tc in Fig. 10 at l = 1 for o -::= 0.37 could be due to suppression of the kinematic 
interaction in the kernel (63) as discussed above. 

5 CONCLUSIONS 

In the present "paper a theory of electron spectrum and superconducting pairing in 
the t - t' - J model (7) in a paramagnetic state is proposed. By employing the 
equation of motion method for the t~o-time GF [43] and projection technique [25] 
we obtained the self-consistent system of equations for the matrix GF (38) and the 
self-energy (30), (31) in the noncrossing approximation, Eq. (29). Our equation 
for the gap function ( 46) in comparison with the diagram technique [26] has an 
additional contribution due to the kinematical interaction· in the second order which 
enhances the d-wave pairing. 

The analytical calculations were performed in the real time representation though 
the imaginary frequency technique was employed for numerical study of the lin­
earized system of Eliashberg equations (45), (46). A model dynamic spin suscepti­
bility ( 49) suggested in numerical studies (47, 48] was used for the calculations. The 
results for the electron spectral density (see Figs. 1-2) show QP excitations at the 
FS crossing and a dispersive incoherent band. For small hole concentration the QP 
dispersion is small while the intensity of the incoherent band is quite large. With 
doping the QP band width strongly increases and the incoherent band is suppressed. 
The results for single-electron spectral functions are in general agreement with the 
studies within exact-diagonalization technique (42] and compatible with ARPES in­
vestigations [54]. However, we have not tried to fit our single-hole QP dispersion to 
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experimental curves restricting ourselves to the simple version of the t - J model 
with only one dimensionless parameter J /t (for discussion of the fitting problem see, 
e.g., [35] - [37l). 

The occupation numbers N(k) have the characteristic behavior for·strongly cor­
related systems, Fig. 7. Being large throughout the BZ they show only a small 
drop at the FS. The volume of the FS at small doping is proportional to the hole 
concentration o, as shown in Fig. 8, that does not obey the Luttinger theorem. 

The superconducting pairing due to the ~change and the kinematic interactions 
(in the second order) has the d-wave symmetry, Fig. 9, and high Tc, Fig. 10. In the 
weak coupling approximation, Eq. (57), much larger Tc is observed, Fig. 11. Our cal~ 
culations confirm the re.sults of the d-wave superconducting pairing obtained within 
the spin-polaron t - J model [40]. The advantage of the proposed microscopical 
theory of the d-wave spin-fluctuation superconducting pairing, in comparison with 
phenomenological approaches based on the Fermi liquid models close to AFM in­
stability, is that we have used only two basic parameters for the model, the hopping 
energy, t, and the (super)exchange energy, J, which are characteristic to strongly 
correlated systems [56] and bring about the electron - spin-fluctuation interaction 
due to kinematical and exchange interactions. 

In the noncrossing approximation (29) vertex corrections 'are disregarded as in 
the diagram technique in (26]. We think that vertex corrections should not change 
the main conclusions of our calculations. At least, we can argue that in our approach, 
where the model spin susceptibility (49) with small AFM correlation length, l = 
1-3, is used, the vertex renormalization, estimated as x.(Q)/x.(0) (see (57]), should 
not be large (see Table I). 

However, the theory is still no.t fully self-consistent in that respect that a phe­
nomenological model for spin-fluctuations has been used, Eq. (49), to enable a nu­
merical study of temperature and doping dependence of one-electron spectrum and 
superconducting pairing. We are planning to perform fully self-consistent calcula~ · 
tions by employing results for a dynamical spin susceptibility in the t- J model (58] 
and to generalize our calculations for the asymmetric (p-d) Hubbard model (55, 59]. 
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fL1aKH)la H.M., Y)lose11Ko B.C. E17-98-244 
'.'heKTPOllllblll cneKTp II CBepxnpOBO)lllMOCTb B t - J ~IO!leJIII npn ~,epeHHOM 
,'.IOnllpOBaHIIH 

IlpewioJKeHa MHKpOCKOilHqecKM TeOpHll Will OilllCaHllll 3J1eKTpOHHOfO cneKTpa II csepxnpo­
BO)ll!MOCTII B npe)leJJe CUJJbllblX 3JJeKTp011HblX KOppeJJllUIIH. Mhl paccMaTp!!BaeM )lByxMep11yio I -J MO)leJJb 
!lJlll napaMan!IITHOro COCTOllllllll, IICilOJJL3Yll npoeKUIIOllll}'IO TeXHHKY W]ll cfJYHKUIIH fp1111a OT onepaTOpOB 
Xa66ap!la. CaMocornacosa1111oe q11CJJe1111oe pe111e1111e ypas11e1111ii 3JJ11aw6epra Bb!IlOJJ11e110 B 
np116m1JKe111111 HenepeceKaJOIIIIIXCll m1arpaMM. O611e1111oe II KIIHeMarnqecKoe B3a!IMO)leHCTBllll aneKTpo-
110B co CilHHOBb!MH cjJ.aYKTYaUllllMII Oill!CbIBaIOTCll • /lllH~lllqecKOH CilllHOBOH Bocnp1111Mq11socThlO C 
KOpOTKO)leHCTBYIOIIIIIMH ann1cpeppOManJHTllblMII KOppeJJllU!lllMII. CTPYKTYPa O)lll03.,'JeKTpOHHOH cneKT­
paJJbHOii IrnOTHOCTII npe)lCTaBJllleT co6011 Y3KIIH KBaJHqaCT!l'IHhlH IIIIK y nosepxHOCTII Cl>epMH 1111111p0Kyio 
HeKorepe11myIO tJaCTb HIIJKe ypoBllll <t>epMH. KBaJH'laCTH'lllllil )lHCnepCllll, 6y/lYtJII MaJJOH np11 Ma10M 
)lOilllpOBaHHII, CTaHOBHTCll 6oJJblllOH np11 yMepeHHOM /lOilllpOBa111111. IlosepXHOCTb Cl>epMII np11 MaJJOH 
KOHUeHTpar11111 )lb!pOK O IIMeeT B11/l tJeTh!pex «KapMaHOB» BOKpyr TOtJeK (± lt, ± it), a npH ysen11tJeHHII 
/lOilllpOBallllll nepeXO/lllT B 60JJblllYIO 3JJeKTpo1111yIO nosepXHOCTb, KOTOpM nepeceKaeT TO'IKII 30Hbl 
Ep1rnJJJ03Ha (± lt, 0), (0, ± lt) np11 )lOilllpOilaHIIII Ii~ 0,3. lfaCJJa 3anom1e11Hl1 N(k) BeJJIIKII BO BCeH 30He 
Ep1rnmo311a, npOllBHllll 11e60JJblllOH CKatJOK, ysenntJllBaIOII.UIHCll C )l011Hposa1111eM, Ha nosepxHOCTII <t>epMH. 
BbI'IIICJJeIJa (k, ro) 3aBHCIIMOCTb csepxnpOBO!lllIUeH IUeJJeBOH cfJYHKUHII II TeMneparypa CBepxnpOBO)lllIUero 
nepexo)la Tc npl!MhlM tJHCJJetttthlM peweuueM mrneap113osatttth!X ypas11eu11ii 3JJ11aw6epra. M1,1 noJJyqHJJH 

d-BOJJHOBYIO CIIMMeTpHIO !UeJJeBOH ¢YHKUIIII II Tc~ 0,04t npu OIITIIMaJJbllOM /lOilllpOBaHIIII Ii~ 0,3. 
CsepxnpoBO)lllIUee cnapumume nocpe)lCTBOM CIIIIIIOBblX cp.!IYKTyaum1 o6yCJJoBHeHO Kal( o6MeHHblM, Tal( 

11 Kl!IleMaTH'leCKml B3aHMO)leHCTBlleM; IIOCJJe)lttee, 6y/lYtJII IlOpll/lKa r / J, )laeT OCHOBHOH BKJJa.II. 
Pa6oTa sunom1eua B na6oparnp1111 TeopeTHtJeCKOH cjl11J11K11 HM. H.H.EoroJJI06osa OIUIH. 

Ilpenp1111T O6oe)lnHel!HOfO HHCTHTYTa ll/lepllblX IICCJJe)lOBaHHH . .!ly611a, 1998 

Plakida N.M., Oudovenko V.S. E17-98-244 
Electron Spectrum and Superconductivity in the t - J Model at Moderate Doping 

A microscopical theory of electron spectrum and superconductivity in the limit of strong electron 
correlations is formulated. We consicier the two-dimensional t - J model in a paramagnetic state by 
employing a projection technique for the Green functions in. terms of the Hubbard operators. A 
self-consistent numerical solution of Eliashberg equations is performed in the noncrossing approximation. 
Exchange and kinematical interactions of electrons with spin fluctuations are described by a dynamical 
spin susceptibility with short-range antiferromagnetic correlations. The one-electron spectral density 
reveals narrow quasiparticle (QP) peaks close to the Fermi surface (FS) with an additional broad 
incoherent band below the Fermi level. The QP dispersion, being small at low doping, Ii< 0.1, becomes 
large for moderate doping. The form of the FS changes from four hole pockets at (± lt, ± it) points at 
low doping to a large electron-like one crossing the (± lt, 0), (0, ± it) points of the Brillouin zone (BZ) 
at Ii~ 0.3. The occupation numbers N(k) are large throughout the BZ and show only a small drop, 
increasing with doping, at the FS. The (k, ro)-dependent superconducting gap function and Tc are 

calculated by a direct numerical solution of the linearized Eliashberg equations. We observe the d-wave 
symmetry of the gap and Tc~ 0.041 at optimal fluctuations due to the exchange and kinematical 

interactions where the latter, being of the order 12 
/ J, gives a substantial contribution. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR. 
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