


1 INTRODUCTION

Experimental studies of high-temperature superconductors have provided strong‘

support for a major role of strong electron correlations in copper-oxide materials
(see, e.g., [1]). Many anomalous normal state properties have been explained within
the models with strong electron correlations as it first has been proposed by Ander-
son [2, 3). However, the origin of the d-wave superconducting pairing is still under
discussion [4]. Presently we have no rigorous methods to study these models for
dimensions d > 2 to find an unambiguous solution of the problem. The recently
developed dynamical mean field theory (for reviews see [5, 6]) being exact in the
infinite dimensions has been successfully applied to study the Mott-Hubbard transi-
tion and normal state properties within the Hubbard model where local correlations
are the most important. However, the theory is unable to treat properly nonlocal
correlations as e.g., exchange interaction in-the ¢ — . model and the nonlocal d-wave
type superconducting pairing.

To deal with the strong coupling limit for the Hubbard model and the t—J model
a number of numerical methods for finite clusters has been developed (for reviews
see [7), [4]). These studies show strong antiferromagnetic correlations which lead to
the formation of the d,2_,2 pairing correlations. However, the finite cluster calcula-
tions due to known limitations (finite size effects, few filling fractions, etc.) can give
only restricted information. For instance, as it was shown recently by applying the
constrained-path Monte Carlo method (8] to the two-dimensional Hubbard model,
small lattice sizes and weak interactions show da_,: pairing correlations while with
increasing lattice size or interaction they vanish. So to prove superconducting pair-
ing in the strong coupling limit an analytical treatment is highly demanded.

In the limit of a low electron density a ¢-matrix approach can be used to study
the t — J model. In [9] the authors observed various forms of electron pairing at
low temperatures including the d-wave instability at large values of J/t > 1. By
combining a generalized Lanczos scheme with the variational Monte Carlo method
in the ¢ — J model, a finite d-wave long-range superconducting order was observed
below the phase-separation region [10].

The main problem in studies of the ¢t — J model is the so-called kinematical
interaction imposed by the projected character of electron operators acting in the
subspace of singly occupied lattice sites. To take into account the constraints of
no double occupancy different types of slave-boson (-fermion) technique were pro-
posed (see [11]-[14] and references therein). In the mean field approximation (MFA)
the local constraints are approximated by a global one, that reduces the problem
to free fermions and bosons in the mean field {11]. To treat the constraints in a
systematic way, in [12], [13] a large-/V expansion, with N being a number of states
(orbitals) at a lattice site, was used. In that approach the local constraints are
relaxed and a weak coupling approximation is possible. By using the 1/V expan-
sion, the d-wave superconducting instability induced by the exchange interaction
was obtained in the ¢t — J model close to half filling {13].

Another method is based on the Baym-Kadanoff variational technique for the
Green functions in terms of the Hubbard operators.[15]. The method was used
in [16, 17), also in the limit of large NV, to consider superconducting pairing in the t—J
model. It was shown that in the lowest order of 1/N there is a strong compensation of
different contributions to the pairing interaction and for J = 0 the superconducting

T, is extremely small. For a finite J the d-wave superconducting instability mediated

by exchange and charge fluctuations was obtained below T, ~ 0.01t. However, in
the large- N expansion the kinematical interaction is suppressed and this approach,
being rigorous in the limit N — oo, is difficult to extrapolate to real spin systems
with N = 2.

A formally rigorous method to treat the unconventional commutatlon relatlons ,
for the projected electron operators is based on the diagram technique for the Hub-
bard operators (18], [19] since in this method the local constraints are rigorously
implemented by the Hubbard operator algebra. A superconducting pairing due to
the kinematical interaction in the Hubbard model in the limit of strong electron
correlations (U — oo) was first obtained by Zaitsev. and .Ivanov:[20] who studied
the lowest order .diagrams for a two-particle vertex equation. - Their-approximation,
being eqmvalent to the MFA for a superconducting order parameter, gives only the
s-wave pairing.. Close results. were obtained for the Hubbard model in-[21, 22] by
applying the equa.tlon of motion method for the Green functions. However, as was
shown later [23, 24] the s-wave pairing in the limit of strong correlations violates
an exact requirement of no single-site pairs and should be rejected. In [23,:24] the
BCS mean field theory for the ¢ — J model was developed within the formally exact
projection technique [25] for the Green functions in terms of the Hubbard operators.
It was proved that the d-wave superconducting pairing mediated by the exchange
interaction is thermodynamically stable and has high T, =~ 0.1t for J = 0.4¢.

On the basis of the diagram technique, detailed studies of spin fluctuations and
superconducting pairing in the ¢ — J model were performed by Izyumov et al. [26].
Summation of the first order diagrams for the self-energy reproduced the results of
the MFA in [23, 24]. In the second order diagrams only the exchange interaction J
was taken into account while the corresponding contributions due to the kinematical
interaction ¢ were disregarded. Estimations done in the weak coupling limit for the
Eliashberg equation revealed quite a low superconducting T,.. The diagram technique
for the Hubbard operators was also used in {27, 28] where the BCS equation in the
MFA was obtained. In [28] the s-wave and d-wave solutions were studied for a model
with large FS.

In the limit of small hole concentrations one can consider a one-hole motion on
the antiferromagnetic background within the spin-polaron representation for the t—J
model {29, 30]. A number of studies of this model (see, e.g.,.[31] - [37) and references
therein) predicts that a doped hole dressed by antiferromagnetic spin fluctuations
can propagate coherently as a spin-polaron quasi-particle (QP) even for a finite hole
doping [33, 34). It was suggested that the same spin fluctuations could mediate a
superconducting pairing of the spin-polaron QP. This problem was treated in the
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framework of the weak coupling BCS formalism for a phenomenological model of QP

with numerically evaluated spectrum [38], {39]. A self-consistent numerical solution
of the strong coupling Eliashberg equations for spin-polarons and magnons in the
t — J model has been given in [40]. A strong renormalization of the hole spectrum
due to spin-fluctuations and the d- wave pairing of spin-polaron QP with maximum
T, ~ 0.01¢ were obtained. In Ref. [41] the superconducting instability within the
spin-nolaron model was obtained only with additional electron-phonon coupling.

However, numerical studies [42] of the 2D ¢ — J model at moderate doping have
questioned the single-hole QP picture developed within the spin-polaron model for
the superconducting paramagnetic regime. To elucidate the problem, in the present
paper we propose a theory of electron spectrum and superconducting pairing for
the ¢ — J model in paramagnetic state by applying the projection technique [25] for
the Green functions {43] in terms of the Hubbard operators: A formally exact rep-
.Tesentation for the Dyson equation with the self-energy as the many-particle Green
function is derived. By using the noncrossing approximation, numerical solution
of the self-consistent system of the Eliashberg equations is performed. We observe
narrow QP peaks for the single-electron spectral density near the Fermi surface (FS)
and a broad incoherent band below the Fermi level. The incoherent part of the spec-
trum results in nonzero occupation numbers N (k) throughout the Brillouin zone. In
that respect our results are in a reasonable agreement with niumerical studies [42].
A direct numerical solution of the linearized gap equation reveals the d-wave super-
conducting instability and high T, at optimal doping. These results are in accord
with the previous calculations for the spin-polaron ¢ — J model [40].

The paper is organized as follow. In the next, Sec. II, we present the Dyson
equation for the matrix Green function in terms of the Hubbard operators. In
Sec. III a self-consistent system of the Eliashberg equations in the noncrossing (self-
consistent) approximation is formulated. In Sec. IV numerical results for the single-
electron spectral density, occupation numbers N(k), a superconductmg gap function,
and T are analyzed. Conclusions are given in Sec. V.

2 DYSON EQUATION FOR THE t-J MODEL

We consider the t— J model in the standard notation (2, 44]5

Ht—J - —t Z a’waJU + JZ 4TL;TLJ) (1)

it o)

where &}, = a},(1—n,_,) are projected electron operators and S¢ = (1/2) Yo dhog iy
are spin-1/2 operators. Here t is an effective transfer integral and J is the antifer-
romagnetic exchange energy for a pair of nearest neighbor sites, (ij), i > j .

"To -take into account on a rigorous basis the projected character of electron
operators we employ the Hubbard operator (HO) technique [45]. The HO are defined

as ;
X2 = i, a)(i, B @)

for three possible states at a lattice site i: li,a) = |3,0); |i,0) for an empty site

and for a singly occupied site by an electron with spin ¢/2 (¢ = *1, 6 = —0).

They obey the completeness relation

XP+Y X7 =1, (3)
ag s
which rigorously preserves the constraint of no double occupancy.
The spin and density operators in Eq.(1) are expressed by HO as
) I .
ST =X[7, Si=5X 0X7, nmi=) X[ (4)
a a
The HO obey the following multxphcatlon rules
X X7 =6 X" (3)
and commutation relations
a & X a {4 )
(X2, 57, =64 (S0 X0 £ 05 X77) (6)

In Eq.(6) the upper sign stands for the case when both HO are the Fermi-like ones
(as, e. g., X2°). The spin and density operators (4) are the Bose-like and for them
the lower sign in Eq.(6) should be taken. ' o

By using the Hubbard operator representation (2) for a, = X7° and ;o = XJ°
and (4) for spin and number operators we wrlte the Hamiltonian of the ¢ — J model
(1) in a more general form:

Hyy=— Y tX{°X) —pd X7
i#j0 io

+ > Jis (XPTXET - X77 X)) )
’-#Jy )

The electron hopping energy for the nearest neighbors, #;; = ¢, and the second
neighbors, ¢;; = t, on a 2D square lattice, and the exchange interaction Jij = J for
the nearest neighbors can be considered as independent parameters if, starting from
a more realistic for copper oxides three-band p — d model, we reduce it to the ¢ — J
model [44]. In that case the parameters ¢,t' and J can be evaluated in terms of the
original parameters of the p —d model (see, e.g., [46], [36], [37]). We introduced also
the chemical potential ¢ which can be calculated from the equation for the average

number of electrons
n= Z(X:’”) (8)

i,



To discuss the superconducting pairing within the model (7) we consider the matrix
Green function (GF)

Gij, a(t - t) = ((\I’w(t)l\p (tl)» (9)

in terms of the Nambu operators:
X()g- U, - )
;e = ( Xao ) ’ “I’; = (Xi O,sza) ) (10)

where Zubarev’s notation for the anticommutator Green function (9) is used [43].
By differentiating the GF (9) over the time ¢ we get for the Fourier component
the following equation :

WGio@) = 85G0 + (Zio | Yjohr 1)

where Zi, = (Y0, H] , Qp = %’7 QO_ ) with Q; = (XX + X{¢7). Since we

consider a spin-singlet state the correlation function Q, = Q = 1 — n/2 depends
only on the average number of electrons (8).

Now, we project the many-particle GF in (11) on the smgleAelectron GF by

introducing the irreducible (irr) part of Z,,, operator

(Zi | 95, »—ZEW«%W »+«2,-‘;">|w;a»,

| {25 L = (250, vt 25y =0, (12)
that results in the equation for the frequency matrix
Eijo = {[\I’w;HL\IJ;a}) Q—l : ‘ (13)

To calculate the matrix (13) we use the equation of motion for the HO:
d 0o 00’
dt +u X = _ZtilBiaa’Xl
1

1 ' ; ‘
+§ Z Jil(Blaa" - 600‘)/\/?0” (14)
1
where we introduced the operator
Bigy = (X2 + X7 Vo0 + X605
1 ~
=(1- §N,- + 05605 + Sféglﬁ. _ (15)

The Bose-like operator (15) describes electron scattering on spin and charge fluctu-
ations caused by the nonfermionic commutation relations for the HO (the first term
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in (14) - the kinematical interaction) and by the exchange spln-spm mteractlon (the
second term in (14)). ‘

Now we introduce the zer0~0rder GF in the generalized MFA which is given by
the frequency matrix (13)

IJG ) Q{WTOJU - E'»Jﬂ'}_ (16)

By writing the equation of motion for the irreduciblé part of the GF in (12) with
respect to the second time ¢’ for the right-hand side operator \II (¢') and performing
the same projection procedure as in (12) we can obtain the Dyson equation for the
GF (9) in the form

o) = G ) + 3 08 ) Su(e) Gz, (17)

where the self-energy eperator f)k,,,(w) is defined by the equation
T,,,,(w) Zijo(w) + Zzzkﬂ (w) lea("-’) TlJa w) . (18)

Here the scattering matrix is given by
Tija(w) Z(zrr) I Z(trr)+ Yo @71 (19) -

From Eq. (18) it follows that the self-energy operator is given by the irreducible part
of the scattering matrix (19) that has no parts connected by the smgle zero—order
GF (16): ‘ R
Biolw) = QLD | 257G @1 o (20)
Egs. (16), (17) and (20) give an exact representation for the single-electron GF
(9). To calculate it, however, one has to introduce an approximation for the many-

particle GF in the self-energy matrix (20) which descrlbes inelastic scattering of
electrons on spin and charge ﬂuctuatlons

3 SELF-CONSISTENT ELIASHBERG EQUA-
- TIONS

In the kérepresentation for the GF

G (k,w) = 3 G (w) e, @)

ojo
o J

we get for the zero-order GF (16): _

GOk, )™ = {who — (B — f)fa— AR}Q, 22)
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where 7y, 71, 73 are the Pauli matrices. The energy of the quasiparticles Ef, the
renormalized chemical potential g = p — 6,u and the gap function A{ in the MFA
(13) are given by

Bf = ()@ - (/@ = 2 ok = )Ny (23)

where we have introduced J(g) = 4Jv(q) and
e(k) = t(k) = 4ty(k) + 4'Y/ (k) ,
€5(k) = 4ty(k)x1s + 4ty (k) Xas,

with (k) = (1/2)(cos azq; + cos aygy) | and
¥ (k) = cos azq. cos ayqy ,

b= L)~ 25~ %), (@)
A7 = —N%z o(g, k= g) (X2 X%), (25)

where the interaction is given by the function:

90k~ ) = t{a) — 570k = q). (20)

There are two contributions in the gap equation (25): the k-independent kinematical
interaction ¢(g) and the exchange interaction J(k — q). The kinematical interaction
gives no contribution to the d-wave pairing in MFA, Eq. (25)(see [23]), and we disre-
gard it in the following equations. The average number of electrons in Egs. (23), (24)
in the k-representation is written in the form:

= (XP°XEY= QN . (27)

In calculatlon of the norma.l part of the frequency matrix (23) we have neglected
the charge fluctuation and introduced the spin correlation functions for the nearest
(x1s) and the next-nearest (X2,) nelghbor lattlce s1tes

(s sl+¢11) X2s = (s s|+az) ‘ ) - ( . (28)

where a; = (+ay, :i:ay) and a; = *(a, £ ay) are the nearest and the next-nearest
neighbor lattice sites.

~ To calculate the self-energy operator we employ the noncrossing approximation
(or:the self-consistent Born-approximation) for the irreducible part of the many
particle Green function in (20). For the two-time GF the noncrossing approxima-
tion is given by the two-time decoupling for the correspondmg correlation functions
in"(20):

(X7 BL X} (t)B,-,,, ®))

]aa’

8

i (X; OXOU ))(B+ 'Bwa’(t’)) . A‘ . (29)

joo

- The proposed decoupling does not violate equal time correlations since in Eq. (29)

J # 3" and i # ¢ . Using the spectral representation for the GF, we obtain in the
noucrossing approximation the following expression for the normal and anomalous
components of the self-energy, Yos(k,w) = Qqps(k,w):

271 (k,w) = “Egz(_k: "W) =

+00
1 .
= 55 [ 0N, 2, A0,k - ¢ | 945, (g, 2), (30)
7 "o : -
'2‘172(13»“/) = (Egl (k,w))” =
1 too -
=+ 3 [[ dedON (@, 2, DAiala, b~ g | Q) A% (g, 2), (31)
e '
where
N(w,2,0) = 1 tanh(z/?T) + coth(Q/?T). (32)
w—2z—
Here we introduce the spectral density:
o 1 o ( o .
A%(g,2) = ‘“alm UX | X)) aviss T (33)
ag 1 ats Lg
Al(g,2) = “,‘67;1"1 ((A.? | ng))z+i;5, (34)
and the electron ~ electron interaction functions caused by spin-charge fluctuations
Mg k—g] Q) =
= ¢%(q, '—q)[——lm D*(k q,Q+u$)] (35)
Ne(g b —q ] Q) = -
= g%(q, k- q)[— 2 m D‘(k -q, 0+ 16)] o (36)

where the spectral density for the | spm charge fluctuations is defined by the boson—
like commiutator. GF C :

D¥(g,9) = ((8; I S-g))a £ {(ng | o (37)
Thes‘olution of the Dyson e(juation ( 17) can be written in the Eliashberg notation

as -
G (k,w) = QG (k,w)



wZf (w)fo + (EY + & (w) ~ @) 73 + PF ()T

= ezz @) - (B + @) - 1P [85@) 9
where ,
w1 = Z2()) = 5[5, (k) + Sk, w)]
() = 5150, (k) - Bk, w)] (9)

P (w) = AL + 5, (kw) 5
and, by fixing the phase of the gap function, we take it to be real.

4 NUMERICAL RESULTS AND DISCUSSION

For numerical solution of the system of equations (30) - (39) we have used the
imaginary frequency representation for the Green function  (38) with w = iw, =
inT(2n + 1) and the spin-charge Green function (37) with Q = iw, = inT2n where

n=0,%1,%2, ... . By using the representation for the function (32)
N(iwn,2z,Q) =-T ; T oo :Jm) el (40)_
after integration in Egs. (30), (31) we get
57, (kyiwg) =
T % . . .
=-% Xq:; G (g, twn) (g, k — ¢ | iwp — 1wpm), - (41)
59, (ky iwy) =
- ‘% I IATERAICETT it — i), (42)
The interaction functions are given by
Mg, k- g |iw) = g*(g,k — q)D*(k — g,1w,) (43)
Mz, k=g | iw,) = g%(¢,k — @)D (k — g,iw,): (44)

To calculate superconducting T, it is sufficient to study a linearized system of
the Eliashberg equations (39) which has the following form
ﬂ 1

Q) = " (45
G”(kz n) = B ti- E”(kzwn) (45)

v+ &7 (k,iwy)

D7 (k,iw,) =

10

i

Zl’ﬂ

Y2 (I~ ‘I+/\12(q,k q | wn — iw,)}
q m

x Gll (g, iwm) Gcl-rl (q7 —iwn) (g, iwm). (46)
At first the system of equations for the normal GF (45), (41) was solved numerically

for a given concentratlon of electrons

n . 2T o ;
Ty NZNk”_1+W; > Gulk,iw,) . (47)

n=—oo

Then the eigenvalues and eigenfunctions of the gap function (46) were calculated to
obtain the superconducting transition temperature T, and the (k,w)-dependence of
the gap function.

For numerical calculations we take into account only the spm-ﬂuctuatlon contri-
bution and write the function D (g, zw,,) (37)’in the form

3 B 2zdz | / »
D (i) = ((Sq | Sg))iwn = - / k@) (48)
0
For the spin-fluctuation susceptlblllty we used a model representation suggested in
numerical studies [47, 48]

X, (00) = =21 (8,15 = 0(0) Xi(0)

- X0 pe 1

1+ £2(1+(q)) 2T 1+ (w/w,)?’

with characteristic AFM correlation length ¢ and spin-fluctuation energy w, ~ J.

However, the g-dependent part we took in a slightly different form, as a periodic

function in g-space with more extended maxima at (+m,+r) points. To fix the
constant xq in (49) we use the following normalization condition

(49)

1 1 TP dr "
N X’_:(Sisi)f: N Xq:xa(‘I)-_O/o ,fo ()

W’ Zxa =7 | (50)

which gives ’ ,
3n s lz 1
2,0 T N1+ (1 +1(g)

In the approximation (48) we get for the interaction functions (43), (44)

Xo =

ek — g iw) = Malg, k — g | iw,)

11



7(a,k — Q)xs(k — ) Fi(iw,), (51)

where

R 2zdz 1
) — 92
Fj,(w,,) —/0 2 ( u/ 3)2 1122 tanh (o )

is the spectral functlon T= T/w, Within the model (49) the static spin correlation
functions (28) read:

= (SiSira) = = (0SS0,

20 = (Sive) = 7 S 7@(ES) ()

where (S S—q) = (1w, /2)x(q)-

To analyze a role of different interactions in the electron - spin-fluctuation scatter-
ing in (51) we consider the weak coupling approximation for the Eliashberg equation
(38). It is given by the folldwing approximation for the interaction (51) [49):

/\12(% k—q|iw, — zwm)

= ~A(g, k — q)8(ws — |wal)0(ws — |wml), (54)
where we take Fy(w,) ~ Fi(w,) ~ 1 and 1ntr0duce
Mk —q) = %0, k= gk — g). - (%9)

In the weak coupling limit we have for the anomalous GF:

- N 14
NI G” k. ~o e ok
‘ ‘ 12( s Wm) (wWm)? + ()2’
where Qﬁ = (E” + fk( ) — ) +1 <I> | is the QP energy in the superconducting
state with the frequency mdependent gap function ®%. By performing summation
over m.in Eq.(42), we get the weak couplmg BCS equatmn
s a7 Q,
(Pa _ q
Z{J (K-q)— A(q,k q)}29 tanh oL

(57)

In comparison with the results of the diagra.m technique [26], in Eq. (57) the kine-
matical interaction is also included in the effective coupling constant of the second
order (55). The equation for the gap function obtained in the MFA approximation
within the diagram technique in [27] is given by Eq. (57) with A(g, &k — ¢) = 0 while
the equation obtained in (28] has an additional factor Q = 1 —n/2 which is spurious

as was shown in [23] (compare with [22]). Below weé compare results for the super-

conducting T, calculated in the weak coupling limit, Eq.(57), and obtained within

12

(56)

e

T —

the Eliashberg equation (46) and study the role of the kinematical interaction in
Mg, k — q).

The numerical calculations were performed using the fast Fourier transforma-
tion [50] for a 32x32 cluster. .In the summation over the Matsubara frequencies
we used up to 700 points with the constant cut-off wy,,, = 20 ¢. Usually 10 — 30
iterations were needed to obtain a solution for the self-energy with an accuracy. of
order 0.001. The Padé approximation was used to calculate the one-electron spectral
function A, (k,w) (33) and the density of states

= ¥ Ak R

on the real frequency axis.

The calculations were performed for several values of the ¢ —J model parameters
(J/t, ¢ /t), the AFM correlation length £ in the model function (49) with w, = J,
and the hole concentration § = 1 — n. Below we present results for § = 0.1 — 0.4
and £ = 1, 3 for the parameters J = 0.4, ¢ = 0 if other values are not indicated.
All the energies and\ temperature are measured in units of £. To mimic suppression
of AFM correlations with doping we usually take £ = 3 for § = 0.1 and keep £ = 1
for § = 0.2 — 0.4. Temperature effects are rather small for T < 0.1 and therefore we
present only results for T = 0.0125.

4.1 Normal state

Results for the electron spectral density in the normal state, A(k,w) = A;,(k,w)

(33), are shown along the three symmetry directions in the BZ: I'(0,0) — X (r,0) =»

M(m,7) - I in Fig. 1'for 6 =.0.1, £ = 3, Fig. 2 for § = 0.4, ¢ = 1. For small

concentration of holes, § = 0.1, we observe quite narrow QP peaks at. the wave vec-
tors crossing the Fermi surface (FS) along M — X and M —'T directions. Along
X — T direction wave vectors are below the FS (see Fig. 7.) and there are no QP
peaks: In addition to the QP dispersion we see also a band of incoherent excitations
with large dispersion below the Fermi energy, w < 0. Tfle incoherent band is caused
by the self-energy contribution peaked at the AFM wave vector (“shadow bands”).
For £ = 3 in Fig.’ ‘1 the incoherent band has a higher intensity due to stronger
spin-fluctuations weight at the AFM wave vector . With increasing hole concentra-
tion the dispersion of the QP band also'i mcreases and the 111te1151ty of QP peaks are
enhanced as shown in Fig. 2 for § = 0.4, E = 1. At the same time the mtensny
of the incoherent excitations are suppressed the “high-energy féature” below the
Fermi energy-at the X-point:for § = 0.1, = 3.in Fig. 1'practically disappears for
6 =0.4; = 1in Fig. 2. As was discussed by Shen and Schrieffer [51]-(see also [52])," -
the doping dependence of the spectral lineshape near (7,0) point can be explained
by strong coupling’of the QP.'hole excitations with collective excitations. In our '
model the latter are 'spin fluctuations which intensity at (7.7) point is proportional -

13
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Fig. 1. Electron spectral ‘density A(lé:,w) fbr ') 4_—..0.1 and{ = 3
Fig. 2. Electron spectral density A(k,w) for § =04 and {=1.-

to £2 (see Eq. (49)) res{tilfingk in strong supprésSiqn of the incoherent excitations with

decreasing £ and increasing . An important role of the next neighbor hopping ¢’ in

l the explanation of the doping dependence of the spectral lineshape near (m, 0) was
also pointed out in [53)]. . o R .

Fhese conclusions are supported by the doping dépendence of the imaginary part

of the self-energy —ImX(k,w) = —~Im¥3, (k,w+i4€) shown in Fig. 3 for § = 0.1, £ =3

and Fig. 4 for § = 0.3, £ = 1. With increasing hole concentration and decreasing

14

AFM correlation length £ the self-energy decreases due to suppression of electron
scattering on spin-fluctuations. It is interesting to note that for the underdoped
region, § < 0.1, ImX(k,w) for T € w < J is approximately proportional to w (see
Fig. 3, especially M-point) while for the overdoped region, § > 0.3, for small w we
have ImE(k,w) « w?. However, our (k,w) resolution is not high enough to prove a
transition from the non-Fermi liquid to the Fermi-liquid behavior with doping. Our
results for electron spectral functions generally are in accord with calculations [48]
done for zero temperature. However, contrary to [48],we did not introduce any
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Fig. 3. Irﬁéginary part of the electron self-energy —Imf_)"{l (k,w +1€) for 6 =0.1 and £ = 3
Fig: 4. Imaginary part of the electron self-energy —Im%{; (k,w + i¢) for § = 0.3 and £ = 1.
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additional incoherent part for the self-energy (30) to fulfill the Luttinger theoremn.
We feel. this fitting to be artificial. We find also a reasonable agreement of our
results for the spectral function for § = 0.1, £ = 3, including both the coherent
QP dispersion and incoherent band, w1th the calculations in [42] within the exact-
. diagonalization technique for a finite cluster of 20 lattice sites with 2 holes (§ =.0.1).

" In Fig. 5 we show the QP dlspersmn E( ) for J= 0 1, £=3 and t' = 0, :tO 1

(upper panel) and § = 0.1, £ =3 and § = 0.4, &= 1 (lower panel) which are
calculated from the maxima of spectral dens1ty As we see, the QP band width
strongly increases with doping while the next neighbor hopping ¢' change the dis-
persion mostly at T'(0,0) and X (r, 0) points. These results can be already explalned
within the spectrum Ej in MFA, Eq. (23). Being written in the form

EY = —4ty(k) Q1 + x1,/Q% — 4ty (k) Q[T + x2,/ Q7]

= —toss y(k) = Tess 7 (K),

it shows a strong dependence of the effective hopping parameters on the static
AFM correlation functions (28): X1 = (SiSita;) , X2s = (SiSita,). For-small hole
concentration and large AFM correlation length, e.g., § = 0.1, £ =3 , we have
X1s = —0.23; xa; = 0.13 (see Table I) and t.;; ~ 0.53t, t'ss; =~ 1.25t". At large
hole concentration, e.g., § = 0.4, £ =1, we have x;, = —0.06, x2, = 0.016 and
ters = 2.5t, t'ep; > 2.7t'. The self-energy additionally renormalizes the spectrum
but the general 6,€ dependence obta.rned in the MFA agrees quite well wrth the
observed.in Fig. 5. ;

Here we would like to p01nt out that in the large-N expansion technlque, both

for the slave boson [12], [13] and the Baym-Kadanoff variational GF [16, 17], the _

narrowrng of the’ band due to the discussed above AFM correlations is ignored.
In the 1/N expansion the static spin correlation functions i, X1s-appear to be
_ of the higher order in 1/N and therefore are omitted. Moreover, the factor ().in
the spectrum in the MFA, Eq. (23) is also underestimated. . We have’in Eq. (23)
Qs = (X® 5 Xr7) = (1 +<5)/2 while in the 1/N expansion Q = (X{) = § since the
correlation function (X7} is of the order 1/N and is disregarded. These underesti-
mation of the strong kinematical interaction in the large-N expansion changes the
doping dependence of the QP spectrum in MFA in comparrson with real srtuatlon
with N =2, ’

Figure 6 shows electron density of states A(w) for 6 = 0.1, £ = 3 (dashed hne) ;
and § = 0.4, £ =1 (solid line). Since the incoherent band is strongly suppressed-at .-
large hole concentratlon (6 = 0.4) and small AFM correlation léngth (£ = 1), the -

electron density -of state has a nearly symmetric form with a broad band width (of
the order of 7t) in comparison with highly asymmetric one for low doplng (6=10.1)
where high density-of states ‘below the Fermi level is due to-the incohérent band.
The obtained results for the spectral functions seem to prove a strong dressing of

hole QP in the underdoped regime and weak coupling of electrons with spin fluc-
tuations in the OVerdoped regnne whrch are in accord with results of ang]e-resolvedf
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photoemission spectroscopy [534].
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Fig. 5. Electron quasxpartlcle spectrum E(k) for §=01andt =0, £0.1, £ =3 (upper panel),
and 8 = 0.1, £ = 3 (solid line) and & = 0.4, ¢ = 1 (dashed line) (lower panel)

Fig. 6. Electron densnty of states A(w) for 6=0.1, £ 3 (dashed line) and § = 04, £ = 1 (solid
line). )
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Remarkable results were obtained for the electron occupation numbers (27)
e = (XZOX0°) = [(1+6)/2] Ni, . In Fig. 7 the function N(k) = Ny, is shown for
different hole concentrations: (a) § = 0.1, £ = 3, and (b)-(d) § = 0.2— 04, £ = 1.
The shape of the FS changes from the hole—like around M (x, ) point of BZ at small
doping to the electron-like around I'(0,0) point of BZ for large doping. However,
the drop of N(k) at the FS is quite small, especially at small doping, which is a
specific feature of strongly correlated electronic systems. Large occupation numbers
throughout the BZ are due to the incoherent contribution in the spectral density

A(k,w) under the Fermi level (see Figs. 1 - 2). The maximal occupation numbers

for electrons, ny = (1 —n/2) N(k) < 0.55 for § = 0.1, agrees with the results
of the exact-diagonalization technique for finite clusters [42]. The FS crosses the
(£m,0), (0,%7) points of BZ at § ~ 0.3. The evolution of the FS with hole con-
centration is also shown in Fig. 8 by bold solid lines. The volume: of the FS at

Fig. 8. The Fermi surface (bold solid lines) and the gap function ®(k,0) (thin solid lines w1th
(+) and (-) showing the sign of the gap) versus k, (0 < k;, k, < ), for different hole concentration
- 4 and AFM correlation length £:-6 = 0.1, { =3 (a), 6§ = 0.2, 5 =1(),8=03, §=1(c),
§=04, ¢6=1(d).

small doping is proportional to the hole concentrations, e.g., for 4 = 0.1, 0.2 the
ratio of the BZ part for ¥ > kr to the whole BZ are close to 10 % and 20 %,
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respectively, while according to the Luttinger theorem the ratio should be equal to
(1 + 6)/2. However, the problem of the Luttinger theorem for strangly correlated
systems should be discussed for the Hubbard model where the weight transfer from
the upper Hubbard subband to the lower one with doping is important and cannot
be taken into account within the projected one-subband ¢t — J model (see, e.g., [55]).

4.2 Superconducting state

The results of numerical solution of the linearized Eliashberg equation (46) are
presented in Figs. 8 - 11. Figure 8 shows the contour plots in a quarter of BZ,
(0 < kg, ky < ), for the static gap function ®(k) = ®(k,w =0). At a small dopmg,
§ = 0.1, (Flg 8 (a)), it has a more complicated k-dependence, with two positive
and two negative maxima (shown by (+) and (-)) while at § > 0.2 only one positive
and one negative maximum survive (Figs. 8 (b)-(d)).. More clearly it is shown in
Fig. 9 for ®(k) in k-space for small concentration of holes, § = 0.1 (a), and for
a nearly optimal one, § = 0.3 (b). The ®(k)-dependence has a complicated form
that cannot be described by simple (cosk; — cos k,) function usually used for the
d-wave symmetry. However, in all cases the gap function obeys the B,, symmetry:
®(k,, ky) = —®(ky, k;) which breaks the 4-fold symmetry of the FS in k-space.

In Fig. 10 we present the superconducting T versus hole concentration § for AFM
correlation length £ = 1 (solid line) and ¢ = 3 (dashed line) obtained from numerical
solution of Eq. (46). With increasing AFM correlation length ¢ effective electron-
electron coupling A12(¢,k — ¢ | iw,) mediated by spin fluctuations x,(k — ¢) also
increases that rises T.. For comparison, in Fig. 11 we present also superconducting
temperature T, versus hole concentration ¢ for AFM correlation length £ =1 in the
weak coupling approximation, Eq.(57), for the full vertex, J(k—q)—A(g,k—q) (solid
line), the vertex with t(q) = 0 in A(g,k — ¢) (dashed line), and in the MFA with
A(g, k — g) = 0 (dotted line). We see that in the weak coupling approximation T
is ‘much higher in comparison with that one obtained from the frequency-dependent
equation (46) for the same static susceptibility, i.e., £ = 1 in Eq. (49). However, the
most important contribution in the weak coupling approximation gives the vertex
in MFA, ie. J(k — ¢) in Eq. (57). The second order contribution, A(g,k —gq) =
9*(g,k — q)xs(k — q) , enhances T, both due to kinematical, t(g), and exchange,
J(k — q), interactions. For larger AFM correlation length superconducting 7} is
greatly enhanced in the weak coupling approximation, e.g. T, ~ 0.1 for £ = 3.~

So our calculations, done for the paramagnetic state in the ¢ — J model, confirm
the results of the d-wave superconducting pairing with quite high T, obtained within

_the spin-polaron ¢ — J model [40]. Contrary to the latter model, having the long-

range AFM order, we obtain quite a high value of T, ~ 0.01 — 0.04 ~ 50 — 200 K
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for small AFM correlation length ¢ =1 ~3.
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Fig. 10. The superconducting temperature
T, versus hole concentration § for AFM cor-
relation length £ = 1 (solid line) and £ = 3
(dashed line), obtained from Eq. (46).

Fig. 9. T};xe gap function ®(k,w = 0) vérsus
kfor6=01,6=3(a),6=02, =1 (b).

To elucidate the role of AFM short-range fluctuations in the model and particu=""

lar, strong dependence of T; on the AFM correlation length £, obtained both within

the full equation (46).and in the weak coupling limit (57), we present in Table I -
&-dependence of the static correlation functions, x1s, X2, and the constant Xo in

Eq. (49). The latter, as well the ratio y, (Q)/xs(g = 0), estimates the electron-spin

fluctuation coupling while the static correlation functions X1s, X2s> Eq. (53), define *

the band width in the MFA, Eq. (23) as discussed’ above. Large increase of these

parameters seen in Table I, with increasing ¢ from their values at'é =1, explains’
strong changes in the spectral functions A(k,w) and T.. To analyze unconventional '

(k,w)-dependence of the gap function we consider the kernel in the integral equation
for the gap, Eq. (46), given by .

K(g,k—q|w) = J(k=q)+ (g, k — g | iw,)
=J(k - q) — g*(g, k — @)xs(k = q) Fa(w,). (59)
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For the d-wave gap symmetry we can analyze only its g-dependence given by the
projection: ) |
R(qku) = N Z(COS kI — COS ky)l{(lb k— q | (.u',,)
k

= (cos g, — cosqy) J — Fy(w,)Blgzrqy), (60)
where ] . ‘ .
B(qz,4y) = 37 2_(cos ks = cos ky)g*(g, b — g)xs(k — q)- (61)
k
0.06
0.04
<
&U . »
0.02
0.00 : : : :
0.2 . 0.3 0.4 0.5

| i ) ati for AFM cbrrelatidn .
ig. 11. The superconducting temperature T, versus hole concentration  cor
f::lr%gth &= 1e in Ehe weak cougpling approximation, Eq. (57}, for the full vertex.(solld line), t,hs.:
vertex with t(q) = 0 (dashed line), and in the MFA with A(g,k — ¢) = 0 (dotted line).

Table I. Static spin correlations versus AFM correlation length £ at diﬂ’erept llole concentration 4. -

f 6 Xo © Xis X2s XS(Q)/Xa(())
11030} 1.56|-0.072 [ 0.019 | - 3
31010} 7.401-0.230 | 0.130 19
510.05{17.08'| -0.311 } 0.213 | 51

The spectral function F,(Q,,)(52) being large for low temperature 7 = T/.ws‘ < 1 -
at wu,: Wp =Wy = 0 (Fy(ws) =~ 1) tends to zero for w,/w, > 1. Smce thg_ ;
susceptibility x;(k — ¢) is peaked at k — ¢ = (,7) we can further approximate the
sum in Eq. (61) by. :

i
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B(gz, ¢y) ~ ~(cos g — cos ¢,)[t(g) + 2J]* -11\7 > x,(k—q)
k

=~ (cos ¢; — cos ¢,)[t(g) +2J]% xo. (62)

Therefore the full projected kernel in the gap equation for the d-wave pairing in
Eq. (46) is estimated by

K(q, wy) = (cos ¢, — cos g, ) {J + [t(g) + 2J)% xo F, (w)}. (63)

The same estimation holds for the weak coupling approximation (67) with F,(w,) ~
L. The kernel gives no contribution along the lines lgz| = lgy], as it should be
for the d-wave pairing, while the kinematical interaction t(q) vanishes along the
lines |g;| + |gy| = m. Therefore, the pairing interaction should strongly depend
on hole concentration being large when FS crosses the maxima of the Kernel (60)
in g-space. For the “optimal” doping the FS is close to the lines lgz| + lgy| = =
and the largest kinematical interaction gives no contribution. The very complicated
behavior of the kernel in g-space ( also influencing the gap w-dependence) can explain
unconventional k (and w) dependence of the gap function. A small minimum for
T. in Fig. 10 at £ = 1 for § ~ 0.37 could be due to suppression of the kinematic
interaction in the kernel (63) as discussed above. ;

5 CONCLUSIONS .

In the present paper a theory of electron spectrum and superconducting pairing in
the ¢t — ¢ — J model (7) in a paramagnetic state is proposed. By employing the
equation of motion method for the two-time GF (43] and projection technique [25]
we obtained the self-consistent system of equations for the matrix GF (38) and the
self-energy (30), (31) in the noncrossing approximation, Eq. (29). Our equation
for the gap function (46) in comparison with the diagram technique [26] has an
additional contribution due to the kinematical interaction in the second order which
enhances the d-wave pairing. . - '

( The analytical calculations were performed in the real time representation though
the imaginary frequency technique was employed for numerical study of the lin-
earized system of Eliashberg equations (45), (46). A model dynamic spin suscepti-
bility (49) suggested in numerical studies [47, 48] was used for the calculations. The
results for‘the electron spectral density (see Figs. 1-2) show QP excitations at the
FS crossing and a dispersive incoherent band. For small hole concentration the QP
dispersion. is small while the intensity of the incoherent band is quite large. With
doping the QP band width strongly increases and the incoheérent band is suppressed.
The results for single-electron spectral functions are in general agreement with the
studies within exact-diagonalization technique [42] and compatible with ARPES in-
vestigations [54]. However, we have not tried to fit our single-hole QP dispersion to
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experimental curvés restricting ourselves to the simple version of the ¢ — J model
with only one dimensionless parameter J/¢ (for discussion of the fitting problem see,
e.g., [35] - [37). .

The occupation numbers N(k) have the characteristic behavior for strongly cor-
related systems, Fig. 7. Being large throughout the BZ they show only a small
drop at the FS. The volume of the FS at small doping is proportional to the hole
concentration §, as shown in Fig. 8, that does not obey the Luttinger theorem.

The superconducting pairing due to the exchange and the kinematic interactions
(in the second order) has the d-wave symmetry, Fig. 9, and high T;, Fig. 10. In the
weak coupling approximation, Eq. (57), much larger T, is observed, Fig. 11. Our cal-
culations confirm the results of the d-wave superconducting pairing obtained within
the spin-polaron ¢t — J model [40]. The advantage of the proposed microscopical
theory of the d-wave spin-fluctuation superconducting pairing, in comparison with
phenomenological approaches based on the Fermi liquid models close to AFM in-
stability, is that we have used only two basic parameters for the model, the hopping
eunergy, t, and the (super)exchange energy, J, which are characteristic to strongly
correlated systems [56] and bring about the electron - spin-fluctuation interaction
due to kinematical and exchange interactions. .

In the noncrossing approximation (29) vertex corrections are disregarded as in
the diagram technique in [26]. We think that vertex corrections should not change
the main conclusions of our calculations. At least, we can argue that in our approach,”
where the model spin susceptibility (49) with small AFM correlation length, ¢ =
1-3, is used, the vertex renormalization, estimated as x,(Q)/xs(0) (see [57]), should
not be large (see Table I). ‘

However, the theory is still not fully self-consistent in that respect that a phe-
nomenological model for spin-fluctuations has been used, Eq. (49), to enable a nu-
merical study of temperature and doping dependence of one-electron spectrum and
superconducting pairing. We are planning to perform fully self-consistent calcula-
tions by employing results for a dynamical spin susceptibility in the ¢ —J model {58]
and to generalize our calculations for the asymmetric (p—d) Hubbard model [55, 59].
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[T1akuga HM., Yiuosenxo B.C. E17-98-244
DIeKTPOHHBII CNEKTP M CBEPXMPOBOAHMOCTD B ¢ ~.J MOJIGNH [PH YMEPEHHOM
JOMHPOBAHUH

Ipemnoxena MHKpOCKOMHYECKasd TeOPHA U1 OMMCAHHA TEKTPOHHONO CHEKTpa M CBEPXMPO-
BOJHMOCTH B IIPEAc/ie CIUTbHBIX 3/IEKTPOHHBIX KOPpesiiHiil. MbI paccMaTpuBaeM ABYXMepHYIo £ —J MOJENb
/TS [1apaMATHHTHOTO COCTOSHHS, HCITONB3ys MPOEKUHOHHYIO TEXHHKY 1% byHkuuit I'puHa oT oneparopos
Xaf6apna. CamocoriacoBaHHOe YHMCNEHHOC peleHUE YypaBHeHMit Dnuambepra BHIOJIHEHO B
NMpHOMIKEHHH HeMepecekaounxcs auarpaMM. O6MeHHOE M KHHEMAaTHYeCKOe B3aHMOJEHCTBHA AIEKTPO-
HOB CO CNHMHOBBIMHM (NIyKTYauHsMH OITHCHIBAIOTCH *AMHAMHYECKOH CIHHOBOH BOCIPHHMYHBOCTbIO C
KOPOTKONEHCTBYIONIMMH aHTH(EpPOMarHHTHBIMH KoppenauniMy. CTpYKTypa OQHOXIEXTPOHHOH CNexT-
PaIbHOI ITTOTHOCTH NPEACTARISET OGO Y3KHIT KBA3HYACTHYHBIA MUK y NOBEPXHOCTH DEpMH H ITHPOKYIO
HEKOTepPEHTHYI0 YacTh HuXe ypous Pepmu. KBasuyactuynas aucnepcus, OyayqyH Manoil NpH MaioM
JOMHPOBAHUH, CTAHOBHTCA 0OALINONA NMpH yMepeHHoM Ronuposanmuu. Hosepxnocte MepMH NpH Manod
KOHUCHTPAUHH ABIPOK O HUMEET BHA YECTHIPEX «KapMaHOB» BOKPYr Touek (X, + 1), a NpH YBETHYCHHH
AONMPOBaHHA MepeXoauT B GONBIIYIO 31EKTPOHHY) NMOBEPXHOCTb, KOTOpad NMEepPeceKacT TOYKH 30HB
Bpunnrana (£ x, 0), (0, £ ) npa gonuposanuy & ~ 0,3. Uncia 3anonxenns N(K) BeTHKH BO BCeit 30He
BpiumiosHa, mpossss HeGoNbINOi CKavY0K, YBETHYMBAIOLMIACH ¢ IOMHPOBAHAEM, Ha TOBEPXHOCTH PepMu.
Beiuncnena (K, @) 3aBUCUMOCTE CBePXIpOBOAALUEil teneBoit GyHKUHN ¥ TEMNIEpaTypa CBEPXIPOBOAALIETO
nepexona T, MPAMBIM YHCICHHBIM PellleHHeM JTHHEaPH30BAHHBIX YpaBHeHHH Danambepra. Mel nomyymiu
d-BOHOBYI0 CHMMETPHIO IueNeBoii (yHKUHH K T, ~ 0,04¢ mpH ONTHMATHHOM ZOMHPOBaHMH & ~ 0,3.
CeepxnpoBoadiiee CrapiBaHie NOCPSACTBOM CIMHOBMX dWiykTyalnii ofycomIeHO Kak 0OMEHHDBIM, Tak

H KMHEMaTHYeCKHM B3aHMOJCHCTBHEM; MoCIeaHee, Oylydn nopaaka 7 /J, daeT OCHOBHOIi BKJal.
Pa6ora BuinoHeHa B JlaGopatopun TeopeTyeckoil ¢usuxu UM. H.H.Boromo6osa OHUSH.
Mpenpust OCbeaMHEHHOTO HHCTHTYTa SAePHBHX Hccnenopanuit. Hybna, 1998

Plakida N.M., Oudovenko V.S. E17-98-244
Electron Spectrum and Superconductivity in the f —J Model at Moderate Doping

A microscopical theory of electron spectrum and superconductivity in the limit of strong electron
correlations is formulated. We consider the two-dimensional ¢ —J model in a paramagnetic state by
employing a projection technique for the Green functions in terms of the Hubbard operators. A
self-consistent numerical solution of Eliashberg equations is performed in the noncrossing approximation.
Exchange and kinematical interactions of electrons with spin fluctuations are desciibed by a dynamical
spin susceptibility with short-range antiferromagnetic correlations. The one-electron spectral density
reveals narrow quasiparticle (QP) peaks close to the Fermi surface (FS) with an additional broad
incoherent band below the Fermi level. The QP dispersion, being small at low doping, & < 0.1, becomes
large for moderate doping. The form of the FS changes from four hole pockets at (% m, + 1) points at
low doping to a large electron-like one crossing the (+ =, 0), (0, + &) points of the Brillouin zone (BZ)
at § ~ 0.3.  The occupation numbers N(k) are large throughout the BZ and show only a small drop,
increasing with doping, at the FS. The (k, w)-dependent superconducting gap function and T, are
calculated by a direct numerical solution of the linearized Eliashberg equations. We observe the d-wave
symmetry of the gap and T, 0.04: at optimal fluctuations due to the exchange and kinematical

interactions where the latter, being of the order ¢~ /J, gives a substantial contribution.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.
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