


1 Introduction

Optical response has been for a long time one of the main tools to in-
vestigate the properties of metal clusters. See Ref. [1] for early exper-
iments and Refs. [2, 3] for early theoretical explanations. Remarkable
progress in experimental photoabsorption techniques and continued studies
on the subject have accumulated in,the meantime, producing an impor--
tant amount of information covering the range from small (N ~ 8) up to
medium-heavy (N ~ 500) clusters for a variety of materials, see, e.g., Refs.
[4,5,6,7,8,9,10]. The experimental development was, of course, accompa-
nied ‘by equally intense theoretical studies at various levels of approaches.
Among the studies involving the detailed microscopic description of the
electronic response one has: time-dependent local-density-approximation
(TDLDA), or equivalently random-phase-approximation (RPA), with the
steep [2, 3, 11, 12] and soft [13, 14, 15, 16] jellium model; TDLDA with
the pseudoHamiltonian (or pseudopotential) jellium model (PHJM) which
accounts for nonlocal ionic effects in an spherically averaged fashion [17,
18, 19, 20, 21, 22, 23]; TDLDA with a structure averaged jellium model
(SAJM) which incorporates volume averaged local pseudopotentials and
structure effects [24, 25, 26]; TDLDA in real time with realistic ionic
pseudopotentials [27, 28]; fully microscopic RPA with explicit treatment of
exchange and correlations [29, 30]; shell-model theory [31]; and even quan-
tum chemical ab-initio calculations {32]. For recent reviews and a more
complete list of citations see [33, 34, 35, 36]. R

The aim of this paper is a systematic theoretical 1nvest1gat10n of the d1-
pole optical response of three different types of alkali- metal clusters, namely
K, Na and Li. These three metals are distinguished not-only by different
values of their Wigner-Seitz radii (in atomic units r;(K) = 5, r(Na) = 3.96,
and r,(Li) = 3.25) but also, and more importantly, by a different influence
of the ionic structure on the cluster’s dynamical properties. Motivated by
the available experimental data, clusters in the size range 8 < N, < 440

(where N, is the number of valence electrons) will be considered. Thereby
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we will pay particular attention to the evolution of the Landau fragmen-
tation with cluster size and with varying material, as well as the general
trends of peak energies and widths. A strong motivation for this survey
comes also from the appearance of new photoabsorption data for small Li
clusters [10] which allow us to further analyze the impact of the ionic-core
structure in these clusters.

" As theoretical tools for this survey, we employ TDLDA calculations. lin-
earized for the case of small oscillations. This is often also called Random-
Phase Approximation (RPA), a name which we will use from now on.
The RPA calculations are performed on the Kohn-Sham grour{d state of
the electronic cloud and they employ consistently the same energy-density
functional. Another essential input is the description of the ionic back-
ground. We will model it using the PHJM and the SAJM, where com-
parison of both allows to deduce the particular ionic effects. The SAJM
includes ionic structure effects in an averaged manner [24]. It was designed
predominantly to compute properly the systematics of ground state prop-
erties in all sorts of metals, as e.g. cohesive energy, surface tension, or
ground state deformation. The crucial ingredient for the plasmon response
is the use of a pseudopotential-folded jellium background whose softer sur-
face places the plasmon position quite correctly [25] (we.ought to mention,
however, that this effect of a soft jellium surface was advocated earlier in
[38]). The SAIJM provides quite accurate plasmon properties for K and Na
clusters, as will be shown in Sec. 3. More elaborate is the PHJIM which
consists:essentially in the spherical average of a realistic atomic pseudo-

- Hamiltonian [37], designed to take into account nonlocal effects of core
electrons on valence electrons in the isolated atom. This average produces
a global cluster pseudoHamiltonian with a similar structure of the atomic
one and thus retains its nonlocal features. In particular, a radial-dependent
effective mass and angular-momentum-dependent potential for each Kohn-
Sham orbital are obtained. The model is then also capable of describing
Li clusters where nonlocal effects becomne crucial.

-

In fact, both SAJM and PHJM are closely related. The SAJM can be
derived from ionic structure models if local pseudopotentials are employed,
and the PHJM follows a similar strategy but is more general’ in that it al-
lows also for nonlocal pseudopotentials. Thus comparing SAJM and PHJM
we easily judge on the possibility of a purely local treatment in contrast to
the need for nonlocal models. Obviousiy, in modelling the PHJM an essen-
tial input is the parametrization of the atomic pseudoHamiltonian. We use
in the present paper a new parametrization of the Li pscudoHamiltonian
as recently proposed in [22]. In the bulk limit for lithium, the associated
PHJIM cffective electron mass (see the definition in eq. (34) of [18]) becomes
m*/m, ~ 1.2, which is considerably less than the value m*/m, ~ 1.5 of
PHJIM calculations based on a previous parametrization [17]. The new
value is more realistic, since it reproduces the result of more claborated
pseudopotentials (see Table 1 of Ref. [23]). It is interesting to watclr the
consequences of this new parametrization on the plasmon peak position in
Li clusters. A - 7

The RPA treatment is much simplified when invoking an expansion of
the residual illtel'acti011 into a sum of separable terms, leading to a “separa-
ble RPA” (SRPA)‘. It was shown earlier that such an expansion converges
quickly (within 4—12 terms depending on system size and method) and
yields an extremely efficient method to solve the RPA yet achieving full -
RPA accuracy [14, 15, 16]. The SRPA is thus an ideal tool for large scale
systematic investigations covering deformed [15] or large spherical clusters
[14, 16]. As it cooperates equally well with SAJM or PHIM. we will enu-
ploy it also for the present case after a quick test of its applicability for our

purposes. ' ‘



2 Technical details

2.1 Handling the separable RPA

" The SRPA [14. 15] used in the present paper combines aspects of the vi-
brating potential model (or schematic model of RPA) [39, 40, 41. 42]and
the local RPA [13, 25, 34] expanding the residual interaction as a sum of
separable terms. Due to the separable ansatz, the expensive RPA eigen-
value problem turns into a much simpler dlspelslon relation which is ex-
tremely helpful (if not compulsory) for systematic investigations of de-
formed and/or very large clusters. The force coefficients in the separable
expansion are derived systematically and unambiguously from the given
residual interaction. The RPA residual interaction is derived by second
functional variation of the same energy-density functional that was used
to compute the Kohn-Sham ground state. In practice, we are using here
the energy-density functional of [43] for exchange and correlations.

There is some freedom in the choice of a basis set of input local opera-
tors. A good choice should embrace operators which couple to the surface
plasmon, those which attach to the volume plasmon, Lan{f{l several more
~ which account for polarization effects from higher states. A most efficient
(i.e., well converging) choice for the basis set of local operators in the ex-
pansion can be taken over from experience gained in the local RPA [25].
Similarly to [16], the set of 10 local dipole operators (f,(r) = ()"Y10(©)
with p = 1,3,5,7, and f,(r) = ji(%r)Y10(0) with ¢ =2.0, 2.8, 3.6, 4.4,
5.2 and 6.0 is used. Here, j;(%gr) is the spherical Bessel function, Y10(0©)
is the dipole spherical harmonic, R = rsN!/3 is the jellium radius, and
‘N, is the number of atoms in a cluster. The radial parts of these basis
operators (weighted with the ground state density) are peaked at different
values of r, thus covering the surface as well as many slices of the interior
of a cluster. This demonstrates how such a basis can embrace the coupling
to the surface plasmon together with volume plasmon and further interior

excitations. What remains is to check the convergence of the series when

proceeding to new applications (new range of sizes, new maferials, new

potentials). Further details can be found in [14, 15; 16] whereby it is to

be noted that these both presentations differ in details of the separable

ansatz and in the actual handling of the dispersion relation. Here we re-

cur to the version of [14, 15] employing explicit particle-hole states from -
the underlying Kohn-Sham ground state. The above local operators are
used to derive self-consistently the operators of the residual interaction and
these are used in the separable expansion (this differs from [16] where the
expansion is done directly in terms of input local operators). The present
scheme yields sufficient convergence with about four separable terms up
to the largest clusters in the present investigation (N, = 440) and for the
chosen resolution (width). The enormous gain in efficiency can be easily
read-off from the technical complexity: with SRPA we handle dispersion
relations with matrices typically of rank 4 whereas a full RPA treatment
of a cluster with N, = 440 would invoke a dlagonahzatlon of 1000 x 1000

matrices.

2.2 Observables and their presehtation

The SRPA in the present form leads to a spectrum of eigenstates with
frequencies w; and associated B(E1); values, i.e., reduced probability of
El transition from the ground state to the excited RPA state with the
number j. All details of a calculation are visualized when plotting the dis-
crete spectral states with their, normalized oscillator strength .S (E Lw;) =

B(El) /m; where m; = ¥;w; B(E1); is the energy-weighted sum rule.
This presentation shows in, detail the amount of Landau fragmentatlon
of the collectlve dlpole strength over the various nelghbormg lph states.
Wlthm PHJM the energy-weighted sum rule my is modlﬁed with respect
to the standard Thoma.s Relche Kuhn expressmn by an ‘amount which in-
dicates the 1mp01tance of nonlocal ionic effects. For sodium and potassium
clusters these are negligible and only for Li one has a sizeable modification
[17, 18]. In the calculations presented below the RPA’ partlcle -hole basis



was chosen large enough such that the sum rule is exhausted for all cases
with an accuracy of 1-2%. Unfortunately, a detailed comparison of this
sum rule with the experiment is not feasible at present because of the large
uncertainties in the absolute measured cross sections.
‘Actual experimental strength distributions look much smoother due to
finite spectral resolution and, more importantly, due to thermal broad-
ening of the resonance peaks (for a _quantitative discussion see, e.g.,
[47]).  For comparison with data, we smoothed the (é-like) distribu-
tion by Lorentz function which yields a dipole strength distribution as
Skr(w) = T S(E1)jp(w — wj) with p(w — wj) = (QW)_IW- The
value of the averaging parameter is A = 0.25 eV which is tuned to roughly
simulate the typical thermal broadening of the plasmon. The actual widths
would, of course, vary with temperature and material. Since we do not aim
‘at a detailed description of widths, we use here one average value to simplify
‘mmatters. As will be seen in Fig. 4, this average value provides appropriate
results in all cases considered here. '
Although Landau fragmentation leads to many details in the spectra,
the main trends can well be characterized in terms of peak posmon and
width. We deduce both properties from the smoothed strength distribu-
-tions. The peak position is defined as the centroid energy analyzed in an
interval which is centered at the peak and has a width of 1 eV. It needs to
be determined in an iteration procedure. The correspondmg width F is es-
tlmated within the following prescription [16] the highest peak was plcl\ed
and the farest occurrences of half the peak height are determmed above
and below the peak.. The width is then the energy difference of these two
half helght points. This, as a rule embraces the whole bump of the struc-
_tured plasmon strength and, in the 51mp1est case of a one-peak structure,
reduces to a familiar full width at half maximum ‘(FVVHM) Finally, as a
complementing global feature of the excitation spectrum we cvaluate the
statlc dipole polarlzablhty a which is related to mverse energy- welg,htcd

sum rule a=2m_ | =2%;w _IB(El)
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Figure 1: The oscillator strength calculated in the framework of the SRPA (up) and
full RPA (down) shown as bars (the latter is done for Nad and Nak onlv). The I'ullr
line represents a smoothed strength distribution as averaged by a Lore function of width
0.25¢V. The length of the bars is rescaled by a factor 1/2.55 to it the scale to the
smoothed strength. The SRPA results are presented for several numbers of separable

terms: dashed = sh- d = 4. solid Ii T .
1ed = 1, dash-dotted = 4, solid line = 10. The insert for Nad,, demonstrates

the high density of RPA states covered by the dipole pla.smon.



| 3 Results and discussion

3.1 Convergence of the SRPA expansion

" The convergence of the SRPA results with the number of separable terms is
demonstrated in Fig. 1. As pointed out earlier [14, 15, 16], it is obvious that
one separable term (the strictly separable RPA) is insufficient by far. The
strength is too much blue shifted. But the results improve dramatically
with each additional term in the expanslon such that good convergence is
achieved with already four operators (with the radial dependence (%) and
p =1,3,5,7) leading, in fact, to the same result as in the case of 10 local
operators. It is only the largest cluster in the sample, Nagq; T, for which
one can spot tiny differences to the exact results (reached here certainly
when using 10 separable terms [16]). This hints also that more terms may
hecome necessary when stepping up to even larger clusters. It is also to

be noted that a higher number of terms becomes necessary when aiming

at a higher spectral resolution, see the tiny differences in the fully spectral-

presentation (up versus down bars in the two upper pancls of Fig. 1). Asa
sideremark, the present SRPA technique achieves convergence for Nagq
with four terms where the method of [16] would have required six terms
for the same precision. The two methods differ in the way they employ the
local operators in the separable ansatz. In [16] the residual interaction is
parametrized directly in terms of these operators. In the method [14, 15]
which is exploited here the local operators are used as generators of the
separable terms in the framework of the vibrating potential model [40, 42].
This pre-processing leads naturally to a somewhat faster convergence.
Altogether, Fig. 1 compares SRPA and full RPA (obtained without the

separable approximation) results for K and Kdy. The comparison proves -

again what lhad been shown extensively in previous works [14, 15, 16],
namely that the separable expansion for Coulomb systems converges very
Wel'l‘ with respect to spectral properties in general, and the dipole strength

functions in particular. The actual number of separable terins needed is so

s

“small that SRPA delivers an extremely efficient scheme.

3.2 SAJM versus PHJM

Fig. 2 compares dipole strengths calculated with SRPA using SAJM and
PHJIM for the ionic background. The cases K§;, K#y, and Lij; are chosen as’
typical examples. The first two represen.t clusters with very weak nonlocal J
effects (m?/m, = 1.02 = 1), and with Landau fragmentation increasing
with cluster size. The last example, Lij;, represents a cluster with strong
nonlocal effects. One sees that for KJ; and Ki; both calculations, the
SAIJM-SRPA as well as the PHJM+SRPA, give almost identical results,
especially for the smoothed dipole strength. This is not surprising since
the nonlocal effects, which constitute the principle difference between the
SAJM and PHJM, are not so large in potassium. We have checked similar
results for Na clusters and find the same agreement between SAJM+SRPA
and PHIM+SRPA as for K ;clusters. Nonlocal effects are thus negligible

- for computing the plasmoh response in Na or K and the SAJM is quite

sufficient for this purpose. In a similar fashion, one finds that a more
detailed (not averaged) treatment of the ionic background in Na and K
clusters can also be simplified by invoking merely local pseudopotentials,
as done e.g. in the cylindrically averaged pseudopotential scheme [52] .
This positive experience has inspifed further work to achieve a better fine-
tuning of local pseudopotentials for simple metals, see [53] and references
cited therein. B .' .

The lowest panel in Fig. 2 shows the results for Lij;. Here we
see large discrepancies between SAJM+SRPA and PHJM+SRPA. The
PHIM+SRPA predicts a l;lasmon energy very close to the experimental
data [10] while the SATM+SRPA considerably overestimates the peak fre-
quency of the plasmon resonance. This proves clearly the meortance of
nonlocal effects which are taken into account in the PHJM+SRPA
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Figure 2: The oscillator strength calculated in the framework of the SRPA with the
SAIM (up) and PHIM (down) single-particle schemes. For Lij, the photoabsorption
experimental data (in A?/N,) [10] are compared. The results are shown in the same
fagﬁion as in Fig. 1.
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3.3 Strength distributions

Fig. 3 shows the dipole strength distributions for a broad selection of spher-
ical. singly charged K, Na, and Li clusters. The results are compared with
experimental data where available [6. 7, 8,9, 10]. It is worth noting that
these experimental data have been obtained at different temperatures: 350
K for K¢ and K3, [6]; 600-800 K for Ky, Lifze and Lig,, [8): 560. 340, 310,
995 and 290 K for Nag, Naf;, Naj;, Nafy and Nag;, respectively [9]; 105
K for Li{ and Lif; [10]. An increase of the temperature causes a cluster
dilatation and a corresponding redshift of the plasmon (see, for instance,
146, 47)),
100 K [7, 48]. We have employed the Wigner-Seitz radii at room tempera-

which can be estimated as about 1% of the plasmon energy per

ture. The temperature effect on the plasmon position can thus reach 5% in
the worst case, but stays generally below 2%. Moreover, the bulk melting
temperature is T, = 336, 371 and 452 K for K, Na and Li, respectively.
So, one may assume that at least clusters Ky, Lifye and Lif,; have been
measured in a liquid-like phase.

The computed strength distributions in Fig. 3 agree generally well with
the experimental data for Na and K clusters, and for the small Li clusters.
They reproduce even some details as the shoulder above the plasmon peak
in case of Naj, Najj, Nafy and Lij;. There are only minor deviations from
the experiment: the calculated plasmon energies are slightly redshifted by
0.1-0.15 eV in K, K, and Naj; and blueshifted by about the same value
in K},;. The deviation for Kf;; could be partially attributed to a) the
high temperature of 600-800 K in the experiments which would favor a
redshift and b) core-polarization effects which are small but can cause a
few percent redshift in large clusters. Generally, good agreement of the

calculations with the experimental data for such a wide group of clusters

shows that the SAJM+SRPA and PHIJM+SRPA provide quite reliable
’;, models.

While small lithium clusters are well described, there are substantial

“deviations for the large lithium clusters Lijzet

12

and Liyy™, where the/

PHIJM+SRPA calculations yield a blue-shift by =

with the experimental plasmon frequency. BeSIdes, for L1441 the w1dth is

0.5 eV as compared

greatly underestlmated These results are similar to those found in Ref
[18] when using the full pseudopotentlals (see Fig. 6 of that reference) and
thus confirm that the accuracy of the present pseudoHamrltonlan parame-
trization is similar to that of the full pseudopotential. Addltlonally, this
shows again that the good agreement with the experiment for large clusters
obtained in the first PHJM calculations of Ref. [17] was rather spurious
and due to an incorrect parametrization of the atomic pseudoHamlltonlan
This sensitivity of the pseudoHamiltonian parametrization is more impor-
tant the bigger the cluster (in big clusters the contribution of the kinetic
energy to the restoring force and, therefore, the influence of the effective
mass is more essential) and yields substantial differences in the bulk limit
[23]. In small Li clusters the results are much more stable. In fact, as is
seen in Fig. 3, the new parameterization gives an striking agreement with
the experiments for Lig and Lig;. ‘ R

The failure of the PHIM+SRPA in large Li clusters could be attributed

to different effects which are not included in this simple ‘model. We men-
tion the following as important sources of d1screpancy

a) Large temperatures in the photoabsorption experlments for b1g Li clus-
ters which would induce a redshift in the energy and increase the width.
b) Effects of the cluster ionic array on the elect'ronicproperties, similarly
to the band structure in bulk Li [49, 50], which are washed out by the
spatial average of PHJM. However, the photoabsorption measurements for
large clusters have been performed at a high temperature, 600 800 K, and
so these clusters were in the liquid-like phase, which could suppress band
structure effects. ' o

c) Our present treatment of the ionic background neglects exp11c1t core-
polarization effects. The dielectric response of the i 1on1c cores w1ll reduce
the plasmon frequency This effect develops fully for larger sizes as was
shown in detailed 1nvest1gatlon for Ag clusters where the lomc core polar-

13



1zat10n plays a cruc1al role [44].
Altogether, there may be a bit of everything. In any case, large Li clusters
need’ further careful fine- -tuning of nonlocality properties and ionic back-
g"roﬁrxld models in order to achieve the good agreement seen for Na and K
“clusters. N -
3.4 Trends
; : o
Fig. 4 shows the trends with N3 for the plasmon frequencies w and
widths F which were extracted from the strength distributions as explained
at the end of section 2.2. We had seen in Fig. 3 that the strengths in many
clusters have a rather structured form which is not easily characterized by
one peak position. Therefore, we provide in Fig. 4 also the frequencies
of hlghest peaks. The difference between plasmon and highest peak fre-
quencies allows to estimate the uncertainty in a peak assignment caused
by the fragmentation pattern. All trends from the SRPA calculations in
Fig. 4 look quite similar for K, Na, and Li clusters. The frequencies de-
crease from a bulk limit (close to the Mie value) and for decreasing size as
NS 1/3 However, at N, ~ 50 this trend levels off or even turns into a slight
increase. The linear decrease is due to the spill-out of the electron cloud
[34] The spill-out is a surface effect and remains about independent of
system size (for not too small clusters), but the ratio of surface to volume
increases with decreasing size which then explains the observed trend. For
Small clusters, however, the quantization of the 1ph states comies up as a
‘process which limits the resonance position from below thereby stopping
the linearly decreasing trend.

The widths show also similar trends for K, Na and Li clusters. For small
clusters there is a vacuum of 1ph states at resonance frequency which leads
to very narrow peaks, representing here bas1cally the imposed background
width. Landau fragmentation sets on for N, 2 40 where we see a strong

mcrease in width. It is interesting to note that this increase in width is

accompamed by an increasing difference between the two definitions of a
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SRPA results are compared with experimental data (triangles) {6, 7, 8. 9. 10].

peak (sce left paunel of Fig. 4). For very large clusters, one expects again a
decrease [16, 41]. This trend, however, becmnos manifest ‘0111_\"‘f01'(('lust('r
sizes N, > 1000 and requires investigations which go up to much larger
sizes, as e.g. in [16, 21]. It is wortll mentioning that the observed widths
come in any case predmninafltly from Landau fragm(‘ntation‘.j ‘Large clus-
ters show a sizeable fragmentation in spite of the splﬁu‘icnl sh‘a‘pv. whereas
small clusters require thermal averages in ensembles (-611t.;1i11i11g ()('tl;ll)()l(‘
deformed clusters for which Landau damping is ;1,.('ty.ivafrl(‘(lr_ by symmetry
breaking [47]. L o ' ‘

Compaung with the (‘\1)(‘11111(‘lltdl (lata n Flg, 4 we see, tlmt tlw nvmls
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of widths and frequencies with the material are essentially reproduced. The
calculations confirm the general increase of the plasmon width from K to
Li, discussed in many papers. This increase in our calculations is not so
strong as in experiment [8] and in some RPA calculations (sec Fig. 16 for
K440, Nagqo and Ligg in [35]). The difference with Ref. [35] can be partly
explained by the fact that we use here more realistic single-particle schemes
where the decrease of the width of the §ingle~particlc potential from Ix to Li
is partly compensated by the increase of the potential depth (in Ref. [35]
a square potential well with three different potential widths, 2r, N/ was
exploited). The discrepancy with experimental trends is mainly caused by
the too small calculated width in Lij;; (see above the discussion for large Li
clusters). Looking at the trends with N173 for fixed material, we see that
they come out best for Na clusters. For K clusters the agreement is also
good.: However, the supply of measured clusters is too small, specially in
‘the middle size region, for a detailed comparison. The case of Li is worse.
As already seen in Fig. 3 and extensively discussed above, the calculations
for large Li clusters produce too high peak frequencies and too low widths.
As complementing information, we show in Fig. 5 the sta,tié dipole po-
‘larizabilities « caleulated within the SRPA. They demonstrate an expected
general decrease with size, based on the decreasing importance of the elec-
tronic spill-out. The kink at Naj, — Na/, is connected with the correspond-
ing kink in plasmon energies discussed above. The normalized values a/a
in Li clusters are considerably larger than in K and Na. This is caused by

stronger spill-out effect in Li clusters due to the ion-core nonlocal eftects.

3.5 Details of the Landau fragmentation

“We have seen in the detailed Fig. 3 and in the trends in Fig. 4 that the
Landau damping for spherical clusters changes dramatically from small
";llist(zl's, N, < 20, to larger clusters, N, & 40. This feature is related to
shell structure, as has been discussed earlier {12, 25]. The surface plasmon

resonance lies in a “vacuum” of 1ph states for small clusters. But the 1ph

s
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versus N 1/2. See text.

energies shrink oc N 1/3 and interfere necessarily with the resonance at
some point, which comes typically around N, ~ 40. From that point on,
one has always a large level density near the resonance which leads to a
substantial Landau damping. The level density increases with size and so
increases the width. But a further mechanism comes into play for even
larger clusters: the coupling between the resonance and 1ph states fades
away due to increasing mismatch of momenta. This leads to a decrease
of the plasmon width oc N7 173 estimated analytically in the wall formula
[41] and tested in extensive SRPA calculation [16].

The interplay between plasmon position and 1ph states for the present
samples is visualized in Fig. 6 whereby we have distinguished the 1ph dipole
transitions with shell spacing AN = 1,3,5, ..., where N = 2(n — 1)+1is
the principle shell quantum number with'n and ! being the number of
the nodes and orbital momentum, respectively, of the single-particle wave
function. These 1ph configurations represent unperturbed dipole states
taking place if the residual interaction is neglectéd One sees'in Fig. 6
that the spectra are bunched in groups of AN, with well separated gaps
for small clusters and small AN and with a tendency to overlap for larger
systems or AN. The gaps are more distinctive for 'small Clusters since the

single-particle potential in such clusters is close to the’ ‘harmonic oscillator
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‘and, therefore, single-particle levels are well bunched. In larger clusters
‘the form of the single-particle potential is more similar to the square well
§vhich favors less bunching. In saturated systems (with a density about
unsensitive to the size), like clusters and atomic nuclei, where a potential
radius increases with a size while a potential depth remains to be about
the same the tendency of energy gaps between qﬁantum shells to fade with
a size is of quite common character (see, e.g., Ref. [54]).

The dipole plasmon is mainly gererated by the AN = 1 configurations
first placed at 0.5-1.5 ¢V. Due to the residual interaction, the AN = 1
oscillator strength is mixed and blueshifted to form the plasmon at the
appropriate energy which is indicated by arrows in Fig. 6. The shift in-
creases strongly with system size due to the long range of the Coulomb
forces such that the emerging plasmon position changes very little with
electron number (this is different, e.g., from the case of the nuclear giant
resonances generated from a short-range interaction, see [25]). The large
shift now places the plasmon far away form the original AN = 1 shell. In
small clusters the plasmon lies in the wide gap between AN = 1 and 3 and

“remains unperturbed as a clean collective peak. This is ideally realized in
the cases N, = 8. The N, = 20 in Fig. 6 represents already a limiting stage
where the resonance approaches the next bunch of the AN = 3 states. It
does this in similar fashion for all three materials. This leads to the onset
of fragmentation for this cluster sizes, as observed in Fig. 3. The medium
size clusters (the case N, = 58 in Fig. 6) find the plasmon already fully in-
terfering with the AN = 3 bunch which corresponds nicely to the sizeable
Landau fragmentation seen in Figs. 3 and 4. The plasmon runs deeper
into a swamp of 1ph states for larger clusters, as nicely seen for the case
Ne = 440 in Fig. 6. This leads to the general trend of increasing width
which is, however, overlaid by strong fluctuations. These fluctuations are
related to the fluctuations in level density at resonance position which can
also be read off from Fig. 6. For very large clusters with N, > 1000 the

level density is so smooth that fluctuations shrink and the resonance devel-
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hole configurations corresponding to AN = 1 (light dotted bricks). AN = 3 (dashed
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ops into one broad unstructured peak [16]. This is, on the other hand. the
point where the width starts to shrink with a size (as reviewéd above). We
want to remark that these gencral trends are the same for the materials

shown in Fig. 6. They are, in fact, valid for all simple metals.

4 Summary

Systematic investigations of the (lipgle plasmon for K, Na and Li e¢lusters
have been performed in a wide range of sizes for which experimental results
are avarilablev. The ionic structure was treated within the pseudoHamil-
tonian jellium model (PHJM), that takes into account possible nonlocal
effects on the valence clectrons. These are specially important in Li. For
the Na and K cases, where nonlocal effects are negligible, we have explic-
itly shown that the PHJM is equivalent to the structure-averaged jellium
model (SAJM) and have .used this for the systematic calculations. The
dipole optical response was calculated within the separable random-phase-
‘approximation (SRPA), which is actually an RPA using a separable ex-
pansion for the residual interaction. The séparable expansion of the SRPA
converges rapidly such that a sum of four separable terms was sufficient for
the clusters studied here. This rapid convergence reduces drastically the
computational effort, yielding at the same time the full accuracy of RPA
methods.

The results from SAJM+SRPA and PHJM+SRPA are in good quan-
titative agreement with most of the available experimental data. The
SAJM+SRPA (relying on folding with local pseudopotentials) turned out
to be quite sufficient for K and Na clusters whereas the nonlocal effects in-
corporated in the PHIM+SRPA are required to describe Li clusters. The
calculations reproduce the main experimentally observed trends of the plas-
mon encrgies and widths with cluster size. These trends with size are very
,Simila1‘ for K, Na, and Li clusters. The trends with changing material, an

increase in plasmon frequency and width from K over Na to Li, are also
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reprod‘uced by the calculations. The leading role of the Landau damping ’
for the plasmon width in medium and large clustei‘_s was aflalyzéd in de-
tail, showing also that a substantial fine structure ‘rém‘ai‘ns in the sﬁectra.
of medium sized clusters. o
In spite of the general success of the models, we ought to pbint out
that still a large discrepancy remains for large Li clusters, for Wthh the -
calculations overestimate the pla.smon frequency (for Lij;y and L1441) and
underestimate the width (for Lif,;). We have brought up several reasons
for the defect (thermal effect, missing band structure, core polarization)
where each may explain a fraction of the mismatch. The largest correction
would come probably from an explicit treatment of the dielectric ‘fespohse

of the ionic cores. Work in that direction is underway.
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